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The dispersion of electromagnetic waves in molecular crystals has been studied using the second 
quantization formalism. The excitation spectrum, the Green's functions for the optical exciton and photon 
field, as well as the corresponding distribution functions, are calculated and discussed. The ground state 
ener~y of the crystal is derived in a closed form with the polarization of the medium taken into account 
explicitly. In the low-density limit the expression for the ground state energy corresponds to the sum­
mation of an infinite sequence of terms in a perturbation-theory approach. 

1. INTRODUCTION 

I N a recent paperl the excitation spectrum and the 
ground state energy of a molecular crystal has 

been calculated using a microscopic approach. In 
this treatment a molecular crystal has been considered 
in the tight binding approximation where an electron 
and a hole are tightly bound at the same lattice site 
and only contributions arising from the direct 
electron-electron interactions up to terms of the 
order N-! in the crystal Hamiltonian have been taken 
into account, N being the total number of unit cells 
in the crystal. In the present paper we discuss the 
same problem in the presence of an electromagnetic 
field. 

The problem is formulated in Sec. 2, where the 
total Hamiltonian of the system, consisting of the 
crystal Hamiltonian with direct interactions between 
the electrons plus the Hamiltonian for the electro­
magnetic field and the electron-photon interaction, 
i!>expressed in the second quantization representation 
and is used to derive the equation of motion for the 
two-particle double-time retarded Green's function. 
The higher-order Green's functions appearing in 

1 C. Mavroyannis, J. Chern. Phys. 42, 1772 (1965). 

the equation of motion are decoupled by making use 
of a procedure which is equivalent to the Hartree­
Fock self-consistent field approximation. Then a 
general equation is developed for the two-particle 
Green's function which describes under certain 
conditions the excitation spectrum of Frenkel or Mott 
excitons in an undeformed lattice. 

The equations of motion for the Green's functions 
of the optical exciton (polariton) and photon field for 
a molecular cry~l are developed in Sec. 3, while the 
dispersion of electromagnetic waves is discussed in 
Sec. 4. The expression for the excitation spectrum of 
optical excitons is identical to that found by Agrano­
vich,2 who used the Bogolyubov's canonical trans­
formation to diagonalize the crystal Hamiltonian 
plus the electromagnetic field. 

Using the expressions for the optical exciton and 
photon Green's functions, we derive the corre­
sponding distribution functions which are used in 
Sec. 4 to average the Hamiltonian of the system. The 
ground state energy of a molecular crystal is obtained 
in closed form. The polari]:ation of the medium 

2 V. M. Agranevich, Zh. Eksperim. i Teer. Fiz. 37, 430 (1959) 
[English trans!.: Soviet Phys.-JETP 10, 307 (1960»). 
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resulting from the electromagnetic field of the atoms 
or molecules in the crystal has been included fully in 
the expression for the ground state energy. Since no 
restriction has been made about the strength of the 
interactions involved, the result is exact in the model 
under consideration up to terms N-! in the total 
Hamiltonian. In the limiting case where the density 
of the crystal is small, an expansion of the exp~ession 
for the ground state energy in powers of the density 
leads to an infinite sequence of terms corresponding 
to an expansion in perturbation theory. 

Higher-order effects will be the subject of later 
publications; broadening of the exciton spectrum, 
scattering and absorption of electromagnetic waves 
including the phonon field, and the dielectric prop­
erties of molecular crystals are discussed. 

2. FORMULATION OF THE PROBLEM 

The Hamiltonian of a crystal, in which all the 
molecules are fixed at the lattice sites, is taken in the 
form 

(1) 

where Jeo is the crystal Hamiltonian with direct 
interactions between the electrons: 

Jeo = I (II L 1/')oc}a." 
II' 

+! I (j,/II V If',/J.>oc;octoc",oc". (2) 
f ,1' ,flttl' 

The index 1== (s, i, 0'1), s = noc (n being the lattice 
site), oc (= 1,2' .. 0') enumerates the molecules per 
unit cell, i designates the electron state, and 0'1 is the 
spin component of an electron (±!). OC} and a., are 
the creation and annihilation operators satisfying the 
Fermi anticommutation relations 

[oc" a.},]+ = CJII,. 

(II L If') are the matrix elements corresponding to 
the additive part of the energy operator, i.e., the 
kinetic energy and the energy of interaction of an 
electron with the periodic field of the lattice, 

<fl L If') = f VJ;(r,) 

X [~~ V2 + ~ VCr. - r;)]VJI'(r,) dT, 

VCr, - r:) being the potential of an electron at the 
site s, and the matrix elements, 

(I, iII V If',n> = f V':(r')V':1(r.1) 

X VCr, - r.)VJI'(r.)VJ'i(r'l) dTI dT2, 

e2 

VCr, - r'l) = , 
r· - r'l 

correspond to the potential energy of the electron­
electron interaction. e2 denotes the square of the 
charge divided by the static dielectric constant of the 
substance and the VJ's are the Wannier functions of 
the electron states. The system of units with Ii' = 1 is 
used throughout. 

Jeph is the Hamiltonian for the transverse radiation 
field 

(3) 

where {It). and {lq). are the creation and annihilation 
operators of a photon with wavevector q and polar­
ization A (= 1, 2), representing the two possible 
values of polarization perpendicular to the direction 
of propagation q. The interaction between the 
electrons and photons in the second quantization 
representation may be taken as3 

w w(l) w(2) 
"'-int = "'-int + "'-Int, 

where 

j:l" is the matrix element of the momentum operator 
of the pth electron of a molecule, eq;. (= e_a,\) is 
the photon polarization vector, V is the volume of the 
crystal, and r~j» is the position vector of the pth 
electron at the lattice site s. In the zero approximation, 
Jegl may be written as 

Je(2)(O) _ ~ 2 '" 1- iff if 
int - I"Wj) "'" f'q).f'q). , 

q.).cq 
(5b) 

Wj) being the plasma frequency 

w! = 41Te2NO'S/mV, (Sc) 

where Sand N are the total number of electrons in 
the unit cell and the total number of unit cells in the 
crystal, respectively. JeI!t(O) instead of Jeg{ is used in 
what follows. 

To study the exciton spectrum, it is sufficient to 
consider the two-particle retarded double-time Green's 
function 

«OC;l(t)a.,.(t); OC!l(t')a.us(t'») . 

8 !-. N. Ovander. Fiz. Tverd. Tela 3,2394 (1961)[English trans!.: 
SovIet Phys.-Solid State 3,1737 (1962)]. 
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The retarded Green's function for the operators A(t) 
and B(t') is defined as4 

«A(t); B(t'») = -iO(t - t')([A(t), B(t')Ln ), 

where 

(U) = Q-I Tr [U exp (-{JJe)]; Q = Tr exp (-{JJe), 

{J = (KBT)-I, 

KB is Boltzmann's constant, T the absolute temper­
ature, and Je is the total Hamiltonian. The value of 'f) 
is taken to be either + 1 or -1 depending upon 
considerations of convenience, O(t) is the step function 

O(t) =0, t<O; O(t) = 1, t>O, 

and the operators A(t) and B(t') are expressed in the 
Heisenberg representation 

A(t) = exp (iJet)A(O) exp (-iJet). 

The equation of motion for the Fourier transform of 
the Green's function «A(t); B(t'»)(OJ) is given by5 

1 
w«A(t); B(t'»)(OJ) = - ([A(t), B(t)L~) 

27T 
+ «[A(t), Je]_; B(t'»)(w)' (6) 

In what follows we omit the subscript w for the sake 
of convenience. 

Using the Hamiltonian (1), the equation of motion 
(6) with 'f} = 1 for the Fourier transform of the 
Green's function «cx/

t cxt ; cx t cxg », and the following 
1 2 gl 2 

decoupling procedure for the higher-order Green's 
functions: 

«CX~l cx;, CX/.IX,,; lX!lOCg.» 

~ (oci,lXt .)« OC;lOC,,; OC:lOCg.» - (1X~2IX/')« OC~lOC'3; ocJlocg.» 
+ (OC~llXf')« CX~.OCf3; OC~1IXg2» - (1X~1IXf3)«OC:.OCf'; lX~lOCg.» 

(7) 

which is equivalent to the Hartree-Fock self­
consistent field approximation,6 we derive the fol­
lowing expression: 

W«OC~lOC,.; OCdlOCg.» = 2
1
7T «OC;lOCg2)b'2gl - (lXg~OCfl)bfrga) 

+ I F(fd)«OC~lOCf; OCJllXg.» 
f 

- I F(f.!I)«OC~IX/.; CXJllXg.» 
I 

+ I [(f2.!'1 V 1/,1") - <Jd'i V II".!)] 
1,1',1" 

• N. N. Bogolyubov and S. V. Tyablikov, Dok!. Akad. Nauk 
SSSR 126, 53 (1959) [English trans!.: Soviet Phys.-Doklady 4, 
589 (1959)]. 

6 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English trans!.: 
Soviet Phys.-Usp. 3, 320 (1960)]. 

• S. V. Tyablikov and V. L. Bonch-Bruevich, Advan. Phys. 11, 
317 (1962). 

(8) 

where 

F(ft!2) == (III L /12) + I [(fI,!'1 V 112.!") 
rf" 

- (f1,!'1 V 1f".!2)](IX~.lXr). 
The last two terms on the right-hand side of (8) 
correspond to the electron-photon interaction. Thus 
the expression (8) describes a two-particle excitation 
spectrum including retardation effects. We note here 
that by using the approximation (7), we have neglected 
pairing of electrons of the superconducting type, 
(OC/lOC/,) and (CX}lOC}.), because they are not of interest 
for our problem. 

If we neglect the last two terms on the right-hand 
side of (8) and set 11 == (s, i, (/1), h == (SI' j, (/2), i and 
j being the states of the electron and the hole, respec­
tively, then the resulting equation for the Green's 
function 

describes the exciton spectrum without retardation. 
In particular, if S = SI, i.e., the electron and the hole 
are tightly bound at the same lattice site, the resulting 
equation for «ocliO'llXs;0'2; 1X1.;.0' .. 1Xs'i'0'.» will correspond 
to the spectrum of single «(/1 = (/2) or triple (0'1 ¢ 0'2) 
Frenkel exciton. If, on the other hand, S ¢ SI' then 
one obtains the corresponding spectrum of the Mott­
type exciton. The spectra of single Frenkel and Mott 
type excitons have been discussed in this way by 
Dzyub7 at finite temperatures. Thus, if we introduce 
the compound operators bs; = ocloO'llXsoO'l and b!; = 
oc t. IX ,and use (8) and its complex conjugate, we "a1 SOat :J 

may calculate the excitation and average energy 
corresponding to the Hamiltonian Jeo• Therefore, we 
write the Hamiltonian Jeo in the form 

(0) III wIV 
JeO = Je + Jeint + ~int, (9) 

where Je(O) represents the bare or mechanical exciton 
spectrum of a molecular crystal correct to the order 
N-i and is given by 

Je(O) = (Jeo) + I EP(k)bZ(k)bp(k), (10) 
k,1' 

7 I. P. Dzyub, Dok!. Acad. Nauk SSSR 130, 1241 (1960) [English 
trans!.: Soviet Phys.-Doklady S, 125 (1959)]; Zh. Eksperim. i Teor. 
Fiz. 39, 610 (1960) [English trans!.: Soviet Phys.-JETP 12, 429 
(1961)]. 
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where E,,(k) is the excitation energy of the ,uth exciton 
band with wavevector k. Here I' is a compound index 
that denotes the exciton band, the corresponding 
molecular term and the kind of mode, transverse 
(,u.l = I, 2) or longitudinal (,ull = 3). In (10) k is a 
wavevector in the first Brillouin zone. Effects resulting 
from configuration mixing of different states may also 
be included in the expression for E,,(k).1.8 The 
operators b,.(k) and b!(k) satisfy the commutation 
relation 

[b,.(k), b~.(k')J_ = [no(k) - n,,(k)J~"""~kk" 
where 

no(k) == (ocJ(k)~(k» and n,.(k) == (oc~(k)oc,,(k» 
are the occupation numbers of the unperturbed 
initial and final state, respectively. (Jeo) in (10) is the 
average energy resulting from the direct short- and 
long-range electron-hole pair interactions including 
configuration interaction; at zero temperature, it 
corresponds to the ground state energy arising from 
the zero-point fluctuations of the excitation field as 
has been pointed out by Hopfield9 and Anderson.10 

Expressions for (Jeo) have been given in the literature. 1 

In (9) Jel1il and Je"tn~ are higher-order terms pro­
portional to N-! and N-l, respectively, and express 
scattering processes. For example, if the exchange 
interaction is neglected, then Je~~l takes the form3,ll 

Jefil = N-! ~ Uo"",,..,,,(k - q) 
k,q 

",,,',,," t t 
X b""(k)b,,,(q)b,.(k - q) + C.c., (11) 

where 

Uo"",,,,...(k - q) = ~ (sO, sl,u"1 V.81 lsI', Sl,u') 
81 ';'8 

X u",,(k)u:,(q)u:(k - q) exp riCk - q)(f81 - f8)J, 

and the u's and v's are the amplitudes of the canonical 
transformation which diagonalize the unperturbed 
part of the Hamiltonian, Jew>. Since the v amplitudes 
are much smaller than the u's,1.3 they have been 
omitted in (11). Explicit expressions for the u's and 
v's have been given elsewhere.1- 3 The expression for 
Jer~ contains four operators but its explicit form 
is not given here. 

3. GREEN'S FUNCTIONS FOR THE OPTICAL 
EXCITON AND PHOTON FIELD 

The Hamiltonian Jel!l is expressed now in the 
representation where Jew> is diagonal, i.e., 

(12) 
8 V. M. Agranovich, Fiz. Tverd. Tela 3, 811 (1961) [English trans!.: 

Soviet Phys.-Solid State 3,592 (1961)]. 
8 J. J. Hopfield, Phys. Rev. 112, 1555 (1958). 

10 P. W. Anderson, Concepts in Solids (W. A. Benjamin, Inc., 
New York, 1964), p. 147. 

11 L. N. Ovander, Usp. Fiz. Nauk 86, 3 (1965) [English trans!': 
Soviet Phys.-Usp. 8, 337 (1965)]. 

where 

Jelnt = iWfJ ~ j:,,(k, ),)[E,..(k)]! b,,(k)fJ;.(k), (13) 
2 k,;',,.. ck 

Je lIt = iw fJ '" jt (q ),) (Ek_q", ,k,..)! 
In ! £" k,..,k-q,..' , 

N k,q,;' cq 
p.,p.' 

X b:(k)b,..,(k - q)fJ;.(q), (14) 

b,.(k) == b,.( -k) - b~(k), 

and the coupling constants are given by 

fl,,(k,)') = (~m )! ~ (eq;.. P:,,)E!(k) 
e as ~ 

X [u"ik)t:(k)] exp (ik. ru ), (15) 

1 (2m)! ~ fk,..,k-q,..,(q,),) = e2aS ~ (eq;.. P,..,..,) 

X E:-q,.."k,..U:~(k)u,..,~(k - q) exp (iq • fD~)' (16) 

Ek-q"",k,.. == E,...(k - q) - E,..(k). 

P:,.. and P:,..' are the dipole moment operators of the 
molecule DOC for the allowed transitions 0 --I' and 
I' -- 1", respectively. In (14) we have kept only the u's 
while contributions from terms proportional to the 
v amplitudes have been neglected. The Hamiltonians 
Jernt and Jefit describe dispersion and scattering of 
the electromagnetic waves, respectively. 

We introduce the retarded Green's function 

G,..(k; w) == «A,..(k); A:(k») 

_ j( b,.(k) ). t \ 
= '\ b~( -k) ,[b,..(k)b,..( -k)Jf' 

and using (6), (9), (10), and (12), we obtain the equation 
of motion for G,..(k; w): 

[&w - E,..(k)]G,..(k; w) 

= .£ (nkO - nk,..) + «B;.(k, 1'); A~(k») 
27T 

+ «rq;.(k - q,,u'); A;(k») + «V:!; A~(k»), (17) 

where we have made use of the following notation: 

B;.(k, It) == - iwp (nkO - nk,..) ~ft,..(k,),) 
2 ;. 

X [Eik)J!( P;.(k»), (18a) 
ck -P;.(k) 

rq . .(k - q,,u') == (nkO - nk,..) iW; ~ f:,..,k-q,...(q,),) 
N q).,/l' 

X (Ek-q,..',k,..)!( b",'~k - q)p).~q»), (18b) 
cq -b,...(k - q).B'iq) 
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In (17), the term proportional to N-1 has been omitted. 
Similarly, the equation of motion for the Green's 
function «BA(k, ,,); A!(k») is given by 

«BA(k, ,,); A!(k») 

_ w! (n _ n "ii;fo,.(k, )')E,.(k)asO,.(k; w) 
-2 kO k,,)k (2 2k2 2) p,A W - C - wl1 

where 
+ «C(qu1' k - qu'); A!(k»), (19) 

2 

C(qu1' k - q,,') = wt (nkO - nk,,) 2 f:,.{k,).) 
N qA,"l'" 

Substitution of (19) into (17) leads to 

OWl-1(k).- w)O (k' w) = 1.. (n - n ) 
" ' '" 21T kO k" 

+ «r qA(k - q, ,,') + C( qu1 , k - q,,') + V~~; A!Ck») 

(21) 

(22) 

In the same way, we derive the equation of motion 
for the photon Green's function 

DA(k; w) == «Pik); Pl(k») 
in the form 

2 
(01-1 1TWp ( ) 

Dol. (k; w)Dik; w) = 1 + Nt nko - nk" 

X 2 ft,.{k, ).)f!",(q).,)(E,,(k)Ek-q""k")! 
G,A',,, ckcq 

X [ (~ «b".(k - q)PAq); P1ck») 
E"k -w 

1 t nt nt ] + E,.(k) + w «b,,{k - q)pAq); pik») 

+ 21Tiwl1 "ii; ft (k ).)(Ek-fl""G"l)! 
N t k, G"lok-G'" , k 

(l~Jll)1l C 

t nt 21Tiw,,! 
X «b"l(-q)b".(k - q); PA(k») + -!- "'ifo,.{k,).) 

N " 
X [Eik)J![ 1 «o,a.fJ. at(k») T w _ E,.{k) k,G' Pol. 

1 ~a.{Jt at() ] + w + Ep(k) «U-k,-G; Pol. k» , (23) 

where 

DiOl- 1(k; w) 

= (1T/ck)[w 2 
- c2k2 

- w! + exik, w)E!(k)], (24) 

and exA(k, w) is the frequency-dependent polarizability 
with polarization). defined by 

exik, w) = w!(nkO - nk,,) "'i fo,.(k, ).)/[E!(k) - w2
]. 

A,,, 

(25) 
4. DISPERSION 

To study the polariton (dressed exciton) spectrum, 
we have to neglect the Green's functions that appeared 
on the right-hand side of (21), i.e., 

0101- 1(U; w)0101(k; w) = 1(nko - nkll)/21T. (26) 

Taking the diagonal and nondiagonal elements of 
(26), we have, respectively, 

[c 2k 2 + w! - w2 
- exik, w)E!(k)]G1°1(k; w) 

= (nkO - nkll)/21T 

[
c

2
k2 + w2 

- w2 
] 

X " + lexik, w)E,.(k) , 
w - E,.{k) 

[c 2k2 + w; - w2 
- exik, w)E!(k)]G101(k; w) 

(27) 

= (nkO - nkll)/21T X tex..{k, w)E,.(k), (28) 
where 

and 
G101(k; w) == «bik); b!(k»)(OI 

G101(k; w) == «b!C -k); b!(k»)(OI 

are the unperturbed single-particle retarded Green's 
functions. The longitudinal excitons are not coupled 
with the radiation field; therefore, 

1 
G~I~(k; w) = (nko - nkll)/21T , 

w - EIlIICk) (29) 

G~l(k; w) = O. 

For the transverse excitons, taking into account the 
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degeneracy with respect to ;., we have from (27) and 
(28) 

[(e 2k2 + w! - ( 2)tSu - ot(k, wmtiE!(k)]G~~~p.l (k; w) 

= (nko - nk,.) 
21T 

[
e2k! + w2 

- w
2 

] 
X :II tSiJ + Iot(k, W)1]iiEp(k) , 

w - E,.(k) 
(30) 

[(e 2k2 + w! - ( 2)tSu - ot(k. w)1]ijE!(k)]~~~~p.l (k; w) 

(nkO - nkp) = Iot(k, w)1]iJE,.(k), (31) 
21T 

(36) 

X w
2 
~~(k, w) , (37) (

d 2 }-1 
dw (l)=(l)p .. (k) 

with 1]ii = tSi ; - k ikJ/k
2 and i,j = 1,2. The energy of 

excitation is obtained from the poles of (30) or (31), where wpl(k) is the pth root of the secular equation 

i.e., from the zeros of the determinant, w2 - e2k2 - w! + oc .. (k, w)E!(k) = O. (38) 

lI(e2k2 + w! - ( 2)tSi:/ - ot(k, w)1'}ijE!(k) II = 0, (32a) 

which leads to the following equation: 

(e l k2 + w! - ( 2)2 - (e2k 2 + w! - WS:>(OCll + o(22) 

X E!(k) + (ot11ot22 - ot~2)E!(k) = 0, (32b) 

with the notation otij == otli(k, w) == oc(k, W)1]ii and 
OCii == otii' Using the sum rule developed in Ref. 2, 
Eq. (32b) may be written as 

[e2k 2 _ wS~!(k, w)][e2k2 
- wS~':(k. w)] = 0, (33) 

where 

~!(k, w) = 1 + I( ot11 + o(22) 

± l[(ocu - ocsJ2 + 4ot:2]t (34) 

is the index of refraction of optical waves in the 
crystal. Thus, the poles of the Green's function given 
by the roots of (33) determine the dispersion of the 
electromagnetic waves in a molecular crystal. The 
expressions (32b) and (34), apart from the factor 
(nkO - nkp) that appears in (25) and is of the order 
of unity, are identical with those derived by Agrano­
vich2 ; we refer to his paper for details where expres­
sions for ~1(k, w) are given for crystals of definite 
symmetry. 

Using (27), its complex conjugate, and (28), we 
derive the corresponding spectral functions in the 
usual way1.5 and, integrating over wand taking the 
limit at zero temperature, we obtain the following 
expressions for the distribution functions: 

(bZ(k)b,.(k)}~O) 

( ) 
w! ~ jOp(k, l) 

=nkO-nkp-k 2 
4 p ... ,p [Ep(k) + wp .. (k)] 

( 
E (k») (dwi )-1 X -1'- -2 ~~(k, w) , (35) 
wpik) dw (l)=(l)P"oo 

In the limit where wp .. (k) = Ep(k), the expressions 
(35), (36), and (37) are reduced to those of the bare 
exciton spectrum, i.e., 

and 
<b!(k)bp(k»~O) = <bp(k)bp( _k»~O) = 0 

<bp(k)bZ(k»~O) = (nkO - nk,.). 
The factor 

in the expressions for the distribution functions 
represents the admixture of the field oscillation to 
each normal mode.ls 

The photon Green's function in the zero approxi­
mation is obtained by neglecting the last three terms 
on the right-hand side of (23), i.e., 

DiO)(k; w) = (ek/1T)[w2~!(k, w) - e2k2]}-t, (39) 

which has the same poles as G~O)(k; w). We also have 

«p (k)' pt(k»)(O) = ~ w + ck - w
2
ot..{k, w)/2ck 

.. ,.. 2 2" (k) sk2 ' 1T W 1]). , w - c 
(40) 

(41) 

From (39), (40), and (41), we derive the distribution 
functions: 

(p!(k)P..{k»~O) = I [ek - W p..{k)]2 
p 4ckwp .. (k) 

X ~ ~!(k, w) , (42) (
d 2 )-1 
dw to=to "p(k) 

18 U. Fano, Phys. Rev. 103, 1202 (1956). 
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([P.,(k), pl(k)l-)~O) = ~ (dW: 1}~(k, W»)-l . (46) 
p dw w=wp .. (k) 

In the absence of dispersion, i.e., when ~~(k, w) = 1, 
then W P .. (k) = ck, 

<Pl(k)Pik»~O) = <Pik)Pi _k»~O) = 0, 

<p..{k)pl(k»~O) = (Pl(k)P .. (k»~O) = 1. 

It is interesting to note here that if one makes use 
of Bogolyubov's canonical transformation to diago­
nalize the Hamiltonian JeO + Jelnt + Jegl(O) + Jeph , as 
was done in Refs. 2 and 3, it is easy to show that the 
amplitudes uI'P(k), vI'P(k), up .. (k), and vpik) of the 
canonical transformation are related to the distri­
bution functions at zero temperature by 

(b,.{k)b!(k»~O) = IU"p(k)12, 

<b!(k)b,.(k»~O) = Iv"P(k)12, 

(P .,(k)pl(k»~O) = IUp .. (kW, 

(P1<k)P .. (k»~O) = IVp.,(k)12, 

(b,,(k)b,.( _k»~O) = IU"p(k)v"P(k)l, 

(P..{k)P.,( _k»~O) = IUp.,(k)vp..{k)l. 

5. GROUND-STATE ENERGY 

(47a) 

(47b) 

(47c) 

The ground-state energy of a molecular crystal, 
correct to the order N-t, i.e., neglecting contributions 
from Jef~t, Jegl , and Je~, is given by 

(~>~O) = (Jeo>o + ~ E,,(k)(b!(k)b,.(k»~O) 
k,,, 

+ ~ ck(Pl(k)Pik»~O) 
k," 

+ iW21 ~ f!,.(k, A)[E"(k)]t 
2 k,",,, ck 

X ([b,.( -k) - b!(k)]P1(k»~O) 

Using the expression for the Green's function 

iW221 ~ ft,.{k, A)[E"{kk)]t«b!(k) - b,.{ -k); Pl(k»)(O) 
k,",,, c 

= 2- ~ lX.,(k, w)E!(k) (49) 
217 k w2~~(k, w) _ c2p' 

we derive the corresponding expression for the 
distribution function 

iW221 I f:,.{k, A)[E"{kk)]\[b"( -k) - b!(k)]P1<k»~O) 
k,",,, c 

Substituting (35), (42), and (50), into (48) and re-
arranging, we find 

(51) 

with W pik) given by the roots of the secular equa­
tion (38). The formula (51) gives the ground-state 
energy of a molecular crystal in a closed form exact 
to the order N-t. The polarization of the medium 
resulting from the radiation field of atoms or molecules 
in the crystal has been fully taken into account in (51). 
Both the second and third term on the right-hand 
side of (51) describe the fluctuations of the polar­
ization field in the medium; in the absence of disper­
sion, i.e., when 1} .. (k, w) = 1, ck = wp.,(k) and both 
terms disappear. In the static case, when W P .. (k) = 0, 
(51) becomes 

(~)~O) = (Jeo)o + 1 ~ E,.(k)(1J~(!, 0) - 1), (52) 

where the second term on the right-hand side of (52) 
gives the local field correction to the energy of 
excitation resulting from the static polarization field. 
In (52), ~~(k, 0) is now the static dielectric constant 
of the medium. (Jeo)o is given byl 

(Jeo)o = 1 ~ [-fl.p. + E,.{k)] (53) 
k,,, 

and fl." is the excitation energy of an isolated molecule. 
Substitution of (53) into (52) yields 

(~)~O) = 1 ~ [-fl. + E,.(k)]. (54) 
k,,, p. ~~(k, 0) 

+ w!/4 ~ lk <Pl(k)P..(k»~O). 
k," c 

Thus, the effect of the static local polarization field is 
(48) to reduce the energy of excitation by a factor IM~(k, 0). 
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If the density of a crystal is small, N/V « 1, then 
one may expand all terms in (51) in power series in 
the density and the result is an infinite sequence of 
terms that corresponds to an expansion in perturbation 
theory for the ground-state energy including retard­
ation. When sums are taken over k, the first non­
vanishing retarded term turns out to be proportional 
to e4 and R-7 for intermolecular distances R » c/~", 
a result which is in agreement with one found in the 
literature.13.14 This is, of course, a small contribution 
to the binding energy of the crystal. But, in the 
opposite limit of large densities or large polariz­
abilities, one has to compute (51) for a crystal to find 
its binding energy. In this case, it is not obvious at 
first sight to what extent the last two terms of (51) 

18 H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948). 
14 C. Mavroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962). 
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contribute to the binding energy of the crystal unless 
an actual computation is performed. In deriving (51), 
we have made no assumption about the strength of 
the interaction and thus our formalism is more useful 
for the case where a perturbation expansion is not 
applicable. The expression (51) will be used in 
the future to compute binding energies of molecular 
crystals. 

In our calculation, we have neglected higher-order 
effects which are expressed by the Green's functions 
that appear in the right-hand side of (21) and (23) 
for the exciton and photon field, respectively. They 
describe scattering processes and we shall deal with 
them in later publications. 
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I. INTRODUCTION 
A S is well known, the interaction of electromagnetic 

.l"\.. waves with crystalline matter can be treated 
either phenomenologically or microscopically. In the 
first, the characteristic properties of the medium 
remain undetermined but they are included in the 
dielectric permeability that appears as a parameter 
in the theory and may be derived from the experiment. 
The mathematical simplicity and the usefulness in 
explaining experimental data are the main points 
that make this method of great value. 

The microscopic theory, on the other hand, consists 
of diagonalizing the total Hamiltonian of the system, 
crystal plus electromagnetic field. Its mathematical 
formulation is much more complicated than that of 
the phenomenological method but, in the final 
result, all the properties of the medium are revealed 
and properly explained. The advantage of this 
method is that it gives full physical insight into what 
happens in the crystal when the electromagnetic 
field acts upon it and answers the question for the 
importance of the interactions involved. The 
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conventional perturbation theory, which is applicable 
for the interaction of the electromagnetic field with 
a rarefied gas, is not valid in the case of interaction 
with a condensed medium. This is so because, although 
for certain frequencies the effect ofthe electromagnetic 
field on the medium may be regarded as a small 
perturbation, the reciprocal effect of the condensed 
medium on the electromagnetic field cannot be 
regarded as weak and accounts for the deviations that 
occurred from its behavior in vacuum. Thus, for an 
accurate description of the scattering of electro­
magnetic waves in crystals, the scattering amplitudes 
must be expressed in terms of quantities that have 
been calculated exactly in the zero approximation. 

In an other paper,! which we refer to here as I, 
the crystal Hamiltonian for a molecular crystal plus 
the Hamiltonian for the electromagnetic field has been 
diagonalized exactly in the zero approximation and 
expressions for the excitation spectrum, index of 
refraction, and distribution functions for the exciton 
and photon field, respectively, as well as for the 
ground state energy of the crystal have been developed 
and discussed. The calculation is based on the tight­
binding approximation, where the photons of the 
electromagnetic field are acting upon electron-hole 
pairs that are tightly bound at the lattice sites. Such a 
model is appropriate for describing the excitation 
spectrum of a molecular crystal. 

The present study, which is a continuation of I, is 
concerned with the scattering of electromagnetic 
waves in molecular crystals. The theory is developed 
in Sec. II, where the Dyson equation is derived for 
the exciton and photon field, respectively, and the 
corresponding Green's Junctions have been expressed 
in terms of the polarization operators. Formulas for 
the exciton Green's functions are obtained by con­
sidering the polarization operator in the first approxi­
mation that corresponds to the physical process 
where an exciton decays into two excitons. The 
polarization operator for the photon field has been 
expressed in terms of the exciton Green's functions. 
The results obtained in the zero approximation are in 
agreement with those found in I. 

In Sec. III the theory is applied to the physical 
process, where a dressed exciton (k, #), with wave­
vector k in the #th excitation band, decays into two 
excitons: a bare exciton (k - q, #') and a dressed 
one (q, #1) with wavevectors k - q and q in the #'th 
and #lth excitation bands, respectively. All formulas 
derived in the zero approximation are now renormal­
ized to take account of the interactions. Expressions 

1 C. Mavroyannis, J. Math. Phys. 8, 1515 (1967). 

are derived for the renormalized energy of excitation 
and the exciton and photon Green's functions, 
respectively. The expression for the perturbed index 
of refraction consists of three terms: the usual linear 
polarizability, the Raman polarizability tensor, and 
a cooperative polarizability arising from the corre­
lation of the radiation field with the intermolecular 
interactions in the crystal and proportional to the 
sixth power of the electronic charge. In these ex­
pressions, quantities referring to the excitons (k, #) 
and (q, #1), (k - q, #') are correct in the first and 
zero approximation, respectively, with the dispersion 
for the dressed exciton (q, #1) taken into account 
explicitly. 

The spectral intensity for the photon field is 
evaluated (by considering the imaginary part of the 
photon Green's function in the first approximation) 
and the photon excitation spectrum is discussed. 
Formulas are developed for the energy shift and 
spectral width corresponding to the process of 
resonance Raman scattering. The resonance processes, 
occurring when either two excitons are created or one 
exciton is created and the other is absorbed by a single 
photon, are studied and expressions for their energy 
shifts and spectral widths are established. It is found 
that the spectral widths for the processes in question 
depend on the polarizabilities and the spontaneous 
emission probabilities for the transitions under 
consideration. 

A theory of the dielectric permeability for a 
molecular crystal has been developed in Sec. IV, 
where a general relation between the dielectric 
permeability, the polarization operator of the system, 
and the photon Green's function is established. It is 
shown that, if only the linear term in the polarization 
operator is retained, the relation becomes identical 
with that derived by Dzyaloshinskii et a[.2 by means 
of the diagram technique. There is also a term 
proportional to the square of the polarization 
operator which, in the final result, accounts for the 
difference between the index of refraction and the 
dielectric permeability of the crystal. The transverse 
and longitudinal dielectric permeabilities of the 
crystal have been calculated in the zero and first 
approximation, respectively. It is shown that the 
expression for the imaginary part of the transverse 
dielectric permeability in the first approximation 
describes, under the same conditions, the same 
excitation spectrum as that given by the spectral 
intensity for the photon field. 

2 I. Yeo Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Advan. 
Phys. 10, 165 (1965); A. A. Abrikosov, L. P. Gorkov, and I. Yeo 
Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical 
Physics (Pergamon Press, Ltd., London 1965), 2nd ed., p. 260. 
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Finally, in Sec. V, the total Hamiltonian of the 
crystal is averaged in the first approximation. Con­
tributions to the binding energy of the crystal arising 
from the dispersion and scattering of the polarization 
waves at finite temperatures are calculated and 
discussed. They have been expressed in terms of 
the index of refraction and the excitation energies 
of both the bare and dressed exciton (k, ,u). 

The effects on the physical processes of the exciton­
phonon interaction and the scattering by impurities 
discussed here will be the subject of a later publication, 
where the temperature dependence of the dielectric 
permeability is investigated as well. 

D.THEORY 

and annihilation operators for the exciton and photon 
field, respectively. The photon operators satisfy Bose 
statistics while the exciton operators satisfy the 
commutation relation 

[bik), bZ,(k')]_ = (nkO - nklt)~,bltlt" 

where nkO == <ot.!:ocx..o) and nklt == <ot.!:ltcx..lt ) are the 
occupation numbers for the hole (valence band) and 
for the electron in the (k, ,u) excitation band, respec­
tively. The quantity <Jeo) is the average energy due to 
direct electron-hole pair interactions correct to the 
order N-t, where N is the total number of unit cells 
in the crystal; its expression is given elsewhere.3 In 
(3}-(8) the coupling constants are given by 

The total Hamiltonian for a molecular crystal, t 
where the molecules are rigidly attached to the f:lt(k, A) = ( ~m ) '2 (eu . P~It)E!(k) 
lattice sites, has been given in I in the form e as a 

X [ulta(k) + vlta(k)] exp (ik • fna), (9) 
Je = Jeo + Jeph + Jefnt + JeMt + JeI~~(O), 

where 
(1) 

.1eo = (Jeo) + '2 Eik)b:(k)blt(k) + Jegl + Jelit, 
k,lt (2) 

(3) 

Je~~t(O) = W4!'2 Ik P1(k)P;.(k), (4) 
k," C 

Je~nt = iW
2

" '2 [foik' ~Eik)Jt bik)P;.(k), (5) 
k,).,1t C 

X b:(k)blt,(k - q)p;.(q) (6) 

Je:!! = liNt '2 U~:,1t'1t1(k - q)bik)b:1(q) 
k,Q,1I 

1t,1t',ltl 
X b:.ck - q) + C.c., (7) 

IV 2 t 
Je1nt = - '2 U=~,,1t11t1,(k - k')bik) 

N k:k',Q,CI: 
p,p ,Phlll ,{J 

X bIt1(k')bZ,(q)b,u;(q')bk+Q,k'+Q" (8) 

and 

- _ t 
blt(k) = bi -k) - bik) 

P;.(k) == P;.(k) + PI( -k), Ii == 1. 

Eik) is the energy of excitation of the bare exciton 
(k, ,u), k is a wavevector in the first Brillouin zone, and 
,u is a compound index that indicates the exciton 
band, the corresponding molecular term and the kind 
of mode, transverse (,a .1.) or longitudinal (,all)' The 
quantities b!(k), blt(k) and Pl(k), P;.(k) are the creation 

t (2m)t a t fklt,k-QIt,(q, A) = e2aS ~ (eQ).. PItIt,)Ek-4It',klt 

X u:a<k)ult'a(k - q) exp (iq • fna), 

UOIt,It'1t1(k - q) = '2 <sO, s1#1 V'81Is,u', S1#1) 
'1,0, 

X uik)u:,(q)ult,(k - q) 

(10) 

X exp riCk - q) • (r. - f S1)]' (11) 

Ek-Qll',klt == EIt,(k - q) - Eik ). 

The u's and v's are the amplitudes of the canonical 
transformation that diagonalize the unperturbed 
part of the Hamiltonian. In (6}-(8) we have retained 
only the u's while the v's, being much smaller than 
the u's, have been neglected. The lattice sites where 
the molecules 0( and P are located are 5 == DO( and 
51 == mp; S and a indicate the number of electrons 
and molecules in the unit cell, respectively. In the 
formulas (1)-(11) we have used the same notation as 
in I, where details are given. We have in.eluded here 
the expression (8), which was omitted in I, where the 
factor of 2 arises from the transformation of electron 
operators to the corresponding exciton operators; 
i.e., if O(!, and 0(." are the electron operators for the 
states f and I'(f ¥= 1'), respectively, then O(!'O('f' = 
2b!,b.f' with b." = 0(;00(,," In (1) we have retained 
only Je[~l(O) and neglected the higher-order terms 
which give rise to photon-photon scattering processes 
because these terms are important only in the x-ray 
region of frequencies.' 

• C. Mavroyannis, J. Chern. Phys. 42, 1772 (1965). 
• L. N. Ovander, Fiz. Tverd. Tela 3, 2394 (1961) [English trans!.: 

Soviet Phys.-Solid State 3, 1737 (1962»). 
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The equation of motion for the retarded Green's 
function 

Gik; 00) == «Aik); A!(k») 

==!( bik) ); (bt(k)b (-k»" 
"b!(-k) Il Il f 

has been derived in I in the form 

[ocoo - EIl(k) - 2/N(nkO - nkll);,Il',/lU:e',Il'iq) 

X (nk-<lO - nk-<ll',)]Gik; 00) 

= (I/21T)(nko - nkl') + «B(k, /-,); A!(k») 

where 

+ «rq;.(k - q, /-,'); AJ(k») + «V"k~; A!(k») 

+ «W:~k',q,q,;AJ(k»), (12) 

B(k, /-,) == - ioop (nkO - nkll) 
2 

x ~ [foik, A)EI'(k)]l( Pik) ), 
f ck -P;.(k) (13) 

r Q).(k - q, /-,') 

== iOO; (nkO - nkl') ! [AI',k-<l/l,(q, A)Ek-qjl'.kl'/ci 
N q,;',I" 

X ( bll~(k - q)P;.~q»), (14a) 
-bl',(k - q)Piq) 

f,1Z/I = (nkO - nkl')( Ok~ ) (14b) 
k,q - Ni O~/lt' 

-k,-Q. 

Ok~ == ! ([U~e"I'li -q) + U~:"I'lll(k)]bJl( -q) 
q,ll',lll,/I 

+ u~e'I"lll(k - q)bl'l(q)}bll,(k - q), (14c) 

_ 2. ( )( Wk~',q.q' ) Wk,k',q,q' = nkO - nkl' WIZ/lt ' 
N -k.-k' .q_,_q' 

W:!t,.q,q' == ! [u:e',I'll'/k - k') 
k',Q.,Q',/l 
1l'.1II-1'1' 

+ UIl'Il,I'll'l.(q - k')] 

(14d) 

x b!,(q)blll(k')blll,(q')I5q+k,q'+k', (14e) 

oc = (1 0), 1= (1 0). 
o -1 0 1 

In (12), we have included the term resulting from 
JefiYt. The equation of motion for the Green's 
function «B(k, /-,); At(k») is given by 

«B(k, /-,); A!(k») 

_ 00: ( _ ) ~ foik, A)Eik) ~ G (k' "') 
- nkO nkll,t;., 2 2 2 2 0'3 I' ,,,,, 

2 1l';'(OO - c k - OOfJ) 

+ «C(CLUt, k - ~'); A!(k»), (15) 

where 
2 

C(~l' k - ~') == (nkO - nkll) :! 
x ! [foik, A)fqlll,k-<lll'( -k, A)Eik)Ek-<ll",ql'i 

Q,l,JlhP.' 

X (oo~ _ c2k 2 _ oo:)-l( b!{-q)bll'(k - q) ), 
-blll(-q)bll,(k - q) 

( 1 -1) 83 = , (16) 
-1 1 

Substitution of (15) into (12) yields the following 
equation: 

a(ol-l(k A- oo)a (k' 00) 
" " P' 

= :1T (nkO -nkll) + «rq,,,(k - q,/-,') + C(~l' k - ~') 

where 
+ f:! + W:!t',q,q'; AJ(k»), (17) 

a<Ol-l(k A' 00) 
Il " 

_ A _ E (k) _ oo!( _ ) ~ foik, A)Eik) ~ 
- otoo Il nkO nkl',t;., 2 2 2 2 0'8 

2 1l';'(OO - c k - OOp ) 

- 2. (nkO - nkll) ! U:e',Il'Il(q)(nk-<lO - nk_ql") (18) 
N q,Il',/I 

is the unperturbed Green's function for the exciton 
spectrum. The last term on the right-hand side of (18) 
describes the direct interaction between the bare 
excitons (k, /-,) and (k - q, /-,'). To proceed further, 
we have to consider the equations of motion for the 
Green's functions that appear on the right-hand side 
of (17), which are found to be 

«rq,,(k - q, /-,'); A!(k»)G~O)-l(k, A; 00) 

= «rq;.(k - q, /-,'); r;,Ak - q', /-,") 

+ ct(q'/-'~, k - q', /-,") + f:~! + W:~: .. ,q",ql'»' (19) 
«C(~l' k - ~'); A!(k»)G~Ol-l(k, A; 00) 

= «C(~l' k - ~'); ct(q'/-'~, k - q'/-,") 

+ r:';.,(k - q',/-,") + f:~! + Wk~:",q",ql'»' (20) 
«Vk~q; A!(k»)G~O)-l(k, A; 00) 

= «f:!; f:~! + r:,Ak - q'/-,") 

+ ct(q'/-,', k - q'/-,") + Wk~:",q",ql'»' (21) 

«W:~',q,Q'; A!(k»)a10l- l(k, A; 00) 

= 2~ ([Wk~k'.q,q" A!(k)]_) 

+ «W:!t',q,q'; W:~:",q .. ,ql' + r~, ).,(k - q', /-,") 

+ ct(q'/-'~, k - q'/-,") + V:~q~». (22) 
In deriving (19)-(22), we have made the assumption 
that the average values of the single operators (b t(k», 
(bll(k», (PI(k», and (P).(k» are equal to zero. 

Substituting expressions (19)-(22) into (17), we 



                                                                                                                                    

1526 C. MA VROY ANNIS 

derive Dyson's equation 

G,.(k; w) 

= G1°'(k, A; w) + G1°'(k, it; w)P1(k; w)G1°'(k, it; w) 

= G1°'(k, A; w) + G!O'(k, A; w)P(k; w)G,.(k; w), 
(23) 

where 

PI(k; w) = ( 277' )2{«rq...(k - q, fJ') 
(nkO - nk,.) 

+ C(qlJl' k - qIJ') + V:.! + W:~',q,q.; 
rJ,".(k - q', fJ") + ct(q'fJ', k - q'fJ") 

+ Vk~q~ + W~:".q".ql'» 

+ (2
1
77') <[Wk~k',q.q., A~(k)]_)}, (24) 

and the polarization operator, P(k; w), is given by 

Then (23) may be written as 

[G10H(k, A; w) - P(k; w)]G,.(k; w) 

= (nkO - nk,.)I/277'. (26) 

In general, the polarization operator is a complex 
quantity and may be taken as 

P(k; w) = ReP(k; w) + iImP(k; w), (27) 

where 

_ Re PI(k; w) +G!O'(k, A; w}{[Re PI(k; W)]2 + [1m PI(k; W)]2} 

Re P(k; w) = [1 + G!O'(k; it; w) Re PI(k; W)]2 + [G!O'(k, A; w) 1m PI(k; W)]2 ' 
(28) 

_ ImP1(k; w) 
1m P(k' w)- (29) 

, - [1 + G1°'(k, A; w) Re PI(k; W)]2 + [G!O'(k, it; w) 1m PI(k; W)]2 

We may now distinguish two types of spectra: If 
w2 = w~(k) are the roots of the equation 

1+ G!O'(k, A; w) Re PI(k; w) = 0, (30) 

then, in the neighborhood of these frequencies 
w2 ~ w~(k), the function 1m P(k; w) is a Lorentzian 
line if ReP1(k; w) and ImP1(k; w) vary slowly with 
w. At w2 = w~(k), (28) and (29) are reduced to 

Re P[k; wr(k») = G10H [k, A; wrCk)], (31) 

1m P-l[k; wr(k») = G1°'[k, A; wr(k») 

1m P1[k; wrCk»)G!O'[k, A; wr(k»), (32) 

respectively. Substitution of (31) and (32) into (26) 
yields 

(33) 
while 

1m G,.[k; wr(k») 

= G!O'[k, A; wr(k») 1m P1[k; w,(k»)G1°'[k, A; w,(k»). 

(34) 

Then, iflmP1[k; wik)]« w~(k), the system resonates 
at frequencies w 2 = w~(k). The spectrum of (34) 
corresponds to the strong coupling case and could be 
attributed to the spectrum of localized or trapped 
excitons. In the limit when ImP1(k; w) ~ 0, then the 
expression (29) becomes a delta function, i.e., 

1m P(k; w) ~ 77'(5[1 + G!O'(k, A; w)P1(k; w»). (35) 

The second type of spectrum that is of interest to 
us is that of free exciton which occurs at frequencies 

w, where 
1 + G!O)(k; A; w)P1(k; w) ¢ O. (36) 

When (36) holds, we expand the denominator in (25) in 
a power series of the coupling constant and, retaining 
the first nonvanishing term, we have 

P(k; w) ~ P~l)(k; w), (37) 
where 

P~l)(k; w) = [( 277' )J{<(rq;.(k - q, fJ') 
nkO - nk,. 

+ C(qlJl, k - qIJ') + V:! + Wk~k.,q,q.; 
r!.;..(k - q', fJ") + ct(q'fJ{, k - q'fJ") 

+ ,1-apt + wapt »(0) v k,Q' k,k" ,Q" ,QII 

+ 2~ <[Wk~k'q.q" A~(k»)jO)}. (38) 

The superscript (0) means that the Green's functions 
must be evaluated in the zero approximation, i.e., 
disregarding the interaction terms in the total Hamil­
tonian but including dispersion. Taking the diagonal, 
G11)(k; w) == «b,.(k); b!(k»)(l), and nondiagonal, 
G~t)(k; w) == «b!( - k); b !(k»)(t), matrix elements of 
(26), we find 

G~l)(k; w) = (nko ;:. nk,.)[w + E,.(k) + Pk,.(-w») 

x {[ w - Pk,.(w) -2Pk"( -W)r 
- B~~(W>[E,.(k) + Pk,.(w) +2Pk,.(-W) - p~,.(W)Jrl, 

(39) 
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G~I)(k; w) = _ (n kO - nk/l) p~iw) 
27T 

X {[ W - Pk/l(w) -2Pki - W)r 
- e~~(W)[ Eik) + Pki

w
) +2 Pkp( -w) - p~iW)Jrl, 

(40) 
where 

~~(w) = Eik ) + Pkiw) + Pki -w) + p~iw), 
2 

(41) 

2P~/l(w) = Pkiw) + Pk / -w), (42) 

P (±w) = w; (n _ n ) ~ fop(k, A)Ep(k) 
k/l 2 kO k/l "" (2 2k2 2) /l," W - C - wl' 

+ 2 (nkO - nk/l) L U~!"/l'/l(q) 
N Q,/l',fI 

X (nk-qO - nk-q/l') + P~~(±w), (43) 

P (±w) = _ w; (n _ n ) '" foik, A)Eik ) 
k/l 2 kO k/l "" (2 2k2 2) /l," W - C - wl' 

+ 2 (nkO - nk/l) ! U~!'.P'p(q) 
N Q,/l',fI 

A(1) 
X (nk- qO - nk-Q/l') + Pk/l(±w). (44) 

The quantities P~~(±w) and P~~)(±w) are the 
diagonal and nondiagonal elements of (38), respec­
tively. ·Using (39) and (40), we derive an expression 
for the Green's function 

g11l (k;w) == G11
) (k;w) + G11l (k;-w) 

in the form 

g11)(k; w) 

- G11l (k;w) - G~) (k;-w) 

= (nko : nk/l) ~~(w){[ w - Pk/w) -2 Pki -W)r 
- ~~(W>[Eik) + Pk..(w) +2 Pk/l( -w) - p~iW)Jrl. 

(45) 

The Green's functions (39), (40), and (45) have the 
same poles that give the energies of excitation for the 
perturbed energy spectrum. 

The equation of motion for the photon Green's 
function Du(w) == «Pik); PI(k») is easily derived 
by means of the Hamiltonian (1) as 

Dk;,{w) = D~O:)(w) + D~O:)(w)Ilu (w)D~~O)(w) 
= D~~O)(w) + D~OJ)(w) fikiw)Du(w), (46) 

where D~~)(w) is the unperturbed Green's function in 
the absence of dispersion given by 

D~~O)(w) = (Ck/7T)(W2 - c2k 2 
- w;r\ (47) 

and the function Ilu (w) is equal to 

Ilu (w) = (:;) {w; ~fo/l(k, A)E/l(k)g/k; w) + ~f 
x L [fop(k, A)fq/ll>k-Q/l.( -k, A)E,,(k)Ek_Q"',Q"l]! 

q,P.',llhlJ. 

x [«bik) - b~( -k); b~.(k - q)b"l( -q») 

+ «b",(k - q)b!l( -q); b!(k) - b/l( -k»)] 

4w2 

+ Nl' L /q/lbk-Q/l.( -k, A)Ek-Q"',QI'l 
q,"b" 

x «b".(k - q)b!l( -q); b!.(k - q)b/l1( -q»)}. (48) 

The polarization operator ITk;,( w) and the function 
Ilu(w) are related by 

fiu (w) = ilk.< (w)[1 + D~~)(w) Ilu (w)r1 (49) 
or 

Ilu (w) = [1 - fiu(w)D~~O)(W)]-1 ITu (w) 

= TIk). (w)[1 + Du(w) fiu (w)]. (50) 

In the zero approximation [i.e., retaining only the 
first terms in the expressions (43) and (44)} we have, 
from (45), 

g~O)(k; w) = (n kO - nk ,,) 

7T 

(w 2 
_ c2k 2 

- w 2)E (k) 
x 'P " (51) 

[w 2 
_ E!(k)][W21}~(k, w) - c2k 2] , 

where 1}~(k, w) is the square of the unperturbed index 
of refraction defined by 

1}~(k, w) = 1 + ~;.(k, w), (52a) 
and 

2 '" fop(k, A) ) 
~;.(k, w) = w'P(nko - nk/l) "" 2 2 (52b 

",,, [E,,(k) - w ] 

is the frequency- and wavevector-dependent polariz­
ability with polarization A. In the absence of dispersion, 
i.e., when ~"<k, w) R:i 0, Eq. (51) is reduced to 

g~~~(k; w) = [(nkO - nk,,)/7T]E,,(k)[w2 
- E!(k)j\ 

(52c) 

which describes the bare exciton spectrum. Sub­
stituting (51) into (48) and retaining only the first 
term on the right-hand side of (48), we obtain 

Il~~(w) = -(7T/ck)W2[1}~(k, w) -1}~] 

X (w 2 
- c2k 2 

- w;)[w21}~(k, w) - c2k2]-1, (53) 
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with 

i]~ = 1 - (nko - nk,.)ro!/ro2
• 

When Eq. (53) is inserted into (49), the expression for 
the polarization operator in the zero approximation 
turns out to be 

II~~ (ro) = - C:)ro2[i]~(k, ro) - i]~]. (54) 

This relation shows that the polarization operator is 
entirely determined by the properties of the medium. 
Substituting (54) into (46), we have 

D~~(ro) = (Ck/1T)[ro2i]~(k, ro) - c2k2rl. (55) 

The Green's function derived here for the exciton and 
photon field, respectively, in the zero approximation 
are in agreement with those obtained in I, where the 
unperturbed excitation spectrum has been discussed. 
A combination of (51), (52c), (54), and (55) yields 

g(O)(k' ro) 
/l ' = 1 + rr- (0) (ro)D (O)(ro) (56) 
(O)(k' ) kA k)" g/l,b ,ro 

which indicates that the ratio of the exciton Green's 
functions with and without dispersion taken into 
account depends on the polarization operator of the 
medium and the photon Green's function. 

m. SCATTERING 

We here evaluate the Green's functions for the 
exciton and photon field given by (45) and (46), 

respectively, for the process where the dressed exciton 
(k, Il) decays into a bare exciton (k - q, Il') and a 
dressed one (q, A'). For the bare exciton (k - q, Il'), 
the oscillator strength Io/l,(k - q) for the transition 
o -->- Il' is not significant and is taken equal to zero. 
Then, using the fact that in the complex ro plane the 
relations p(I)(_ro) = p(1)(ro) and p(I)(-ro) = p(1)(ro) 

b ~ b b 
hold, we evaluate the Green's functions that appear 
on the right-hand side of (38) in the zero approxi­
mation by means of the Hamiltonian (1). Then, 
substituting the result into (45), we obtain 

(l)(k ) (nko - nk/l) 
g/l ; ro = 

1T 

(ro 2 _ c2k 2 _ ro 2)&(1)(ro) 
X 1) It/l . (57) 

[ro 2 
- &~,.(ro)][ro2';j~(k, ro) - c2k 2

] 

In the absence of dispersion for the exciton (k, Il), 
expression (57) becomes 

g~~~(k; ro) = [(nkO - nk/l)/1T]&~~(ro)[ro2 - ~,.(ro)]-\ 
(58) 

which corresponds to the bare exciton spectrum. In 
expressions (57) and (58) we have taken 

&;,.(ro) == &~~(ro)&~~(ro), 
where &k/l( ro) is now the perturbed energy of excitation 
of the bare exciton (k, Il), and &~~(ro), &~~(ro) are 
given by 

~~(ro) = E,.(k) + 4/N(nkO - nk/l) ! U=~"/l,,.(q)(nk-qO - nk-ll/l') 
q,/l"P 

+ (nkO ~ nk/l) ! IU;:'/l'/ll,(k _ q) + U;:'/lI/l.(q)1
2

(ro - Ek_~' - Eq/lT
l 

q,/l',/lI'P 

X (nqO - nq/l1)(nk- qo - nk-Q/l') + roN! (nkO - nk/l) ! I[A/l,k-q/l.(q, A')Ek-Q/l',ki 
Q,/l',/lIoA',P 

+ ![U~e"/lI,.( -q) + 2U~e"/l/lI(k) + U~eIo/l,,.(k - q) + U~e'/l'/lI(k - q) + U~e'/lI/l,(q)J 
2 Ek- q/l',q/ll - ro Ek-q/l' + Eq/ll - ro 

X [fO/ll(q, A')Eq/l}(nqO - nq/l1)r D!~~(k - q, Il'; ro) (59) 

and 

$O'(~!(ro) = Eu(k) + (nkO - nk/l) ~ 1 U"P (k q) U"P ()1 2 
"I<~ ~ ~ O/l,/l'/l1 - + 0/l,/l1/l' q 

N q,/l',/lloP 

X (ro - Ek-Q/l' - EQ/l1)-1(nqO - nq/ll)(nk-qO - nk-q/l') + (nkO - nk/l) ro! ! l[fk/l,k-Q/l,(q, A')Ek-Q/l'.k/l]! 
N q,/l'/lIoA.',P 

+ ~[u~e"/ll,.( -q) - U~eIo/l'/l(k - q) + U~e'/l'/lJk - q) + U~e'/ll/l.(q)J 
2 Ek-Q/l',q/ll - ro Ek-q/l' + EQ/ll - ro 

X [fO/ll( q, A')E~}( nqO - nQ/l1) r D!~(k - q, Il'; ro), (60) 

where 
(61) 
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done in I with the result that In deriving (59) and (60), we have neglected terms 
proportional to the distribution function (b! (q)b

P1
(q» 

because their contributions are negligibly s~all, The 
Green's function fJ~9)(k - q, p,'; w) is easily evaluated 
by using the unperturbed Hamiltonian; we find 

<P1,(q)PAq»~O' = I [ eq(q)] [ddW: 1j~(q, W)]-l , 
p WpA' W C:O=C:OpA'(q) 

9':(O'(k _ q , • ) = (nk--ao - nk--ap') 
VqA' ,,u ,W 

(eq) 

X [(W - Ek-<lpyry~,(q, W - Ek-Q/l') - c2qllrl 

X «W - Ek_QIl,)<P1,(q)PA,(q»(0) 

+ eq([fJAq) - fJ1.( -q)]PA·(q)/O) 

+ . "" [fOPl(q, )..')Eap1eq]t 
lW!/l k 2 II 

PI (W - Ek_qp') - EqPl 

(63a) 

iW!/l I [!OPl(q; )..')EqP11 eq]tEqpl 

x {(w - Ek-<lp,)([bp1(q) - b!l( _q)]P},(q)/O, 
1'1 

x ([bp.(q) + b!l( -q)]PA,(q»~O) 

+ EqPl([bpl(q) + b!l( -q)]PAq»(O)}). (62) = I !XA,[q, W
P
A,(q)]E:P1 [dW: 1j!.(q, W)]-l ,(63d) 

p dw m=C:OpJl.'(q) 

The distribution functions in (62) are calculated at 
zero temperature by making use of the corresponding 
Green's functions in the zero approximation as was 

where w~iq) is the pth root of the secular equation 

w21j!,(q, w) - c2q2 = O. (64) 

Substitution of (63a)-(63d) into (62) yields 

fJ!~~(k - q,,u'; w) = (nk--aO - nk_ap')[(w - Ek_QP,)21j~,(q, W - Ek_qp') - e2q2rl I {W - Ek-<IP' + wpAq) 
p 

!XAq, wpA,(q»E:Pl [dw2 2 J-1 

- ( E )2 E2 [w - Ek- qp' - wpA,(q)]}ljWpA'(q) -d 2 'l'JAq, W) . (65) 
W - k-<lp' - qPl W m=c:opy'(q) 

Thus, the dispersion of the photon (q, A') is fully of three contributions: the first is the radiative 
included in expression (65). Let us now examine the interaction between two excitons (k,,u) and (k - q, ,u') 
physical meaning of each term on the right-hand side through the exchange of the photon (q, A'), while 
of (59). The first term Ep(k), which is the largest of all, the remaining two are of higher order in the electronic 
is the energy of excitation of the bare exciton (k, ,u) charge and describe the cooperative effect arising from 
including the electron-hole pair interactions in the the correlation of the intermolecular interactions 
zero approximation. The second term indicates the with the radiation field where either the exciton 
instantaneous interaction between two bare excitons (q, ,ul) is created and the other (k - q, ,u/) is 
(k, ,u) and (k - q, ,u'), The third term corresponds to absorbed or both excitons are created or absorbed. 
the instantaneous interaction leading to the creation It is clear that under normal circumstances the second, 
or absorption of two bare excitons (q, ,ul) and third and fourth terms on the right-hand side of (59) 
(k - q, ,u/) simultaneously; it includes both coherent give a small correction to the real energy Ep(k) but 
and incoherent processes. The fourth term consists they may be of importance in the case of resonance. 

The imaginary part of (59) is given by 

(n - n ) 
1m j1(l)(W) = 7T kO kl' "" IUIt/l, (k _ q) + Ua/l ,(q)12 

"'kp N k OP.P PI 0p.PlP 
G.P'.Pl/i 

X (nqO - nQPl)(nk-qO - nk_qp,)<5(W - Ek-<lp' - EGl'l) 

+ W! (nkO - nl(p) 1m I I [fkP.k-<lP.(q)..')Ek-<IP,.kP]t 
N q.I' .. P',).'./i 

+ ![U~:"PIP( -q) + 2U~:'.PPl(k) + U~:"P'I'(k - q) + 
2 Ek-Q/l'.QPl - W 

x [!OPl(q, A')EQIli(nqo - nqpl)12fJ!~(k - q,,u'; w). 

U~!,p'pik - q) + U~!'PIP,(q)J 
Ek-Q/l' + EqPl - W 

(66) 
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are the renormalized energies of excitation correct to 
the first approximation. 

In expression (57), ij~(k, (0) is the square of the 
perturbed index of refraction defined by 

ij~(k, (0) ~ 1 + lXi1)(k, (0) - 1X~~(q, A', (0) + flu(w), 

(67) 
where lXi1)(k, (0) is the frequency and wavevector 
dependent polarizability expressed in terms of the 
renormalized exciton energies, i.e., 

lXi1)(k, (0) = (nkO - nkll)w! .2foik, A)/(fiiw) - (02). 
Il,A 

(68) 

The first term on the right-hand side of (66) is different 
from zero when £0 = EOIlI + Ek-QIl" The first con­
trihution from the second term is the radiative one 
which, when the sum over q is taken in the limit of 
1m n~ ,( q, £0 - Ek-QIl') --+- 0, is equal to the spontaneous 
emission probability (in energy units) for the transition 
I' --+- 1", in the dipole approximation, while the 
remaining ones give small contributions when 
£0 = Ek- Oll' ± EOIlI ' Of course, the expression for 
1m &i~(w) must be compared with the corresponding 
terms arising from the coupling of intermolecular 
forces with the phonon field, but at very low temper­
atures both effects could be of equal importance. A 
similar discussion holds for the terms appearing in 
the expression for &(2)(£0) Thus &(1)(£0) and &(2)(£0) kll' 'kll kll 

The quantities 1X~21(q, A', (0) and fJu(w) are the non­
linear polarizabilities given by the following expres­
sions: 

1X~~(q, A', (0) = £ON! ~ [~~~«k»] I(nko - nkll)[f~ik, A)fCIl,k-QIl,(q, A')Ek-QIl',kll/Eik)JI[&kiw) - (w)r1 

0,1l1,1l ,1l1,/I "kll £0 

+ (noo - nOlll)[fClll(q, A')f:ll },k-OIl.( -k, A)EGIlJEk-GIl',olli(w - E k-QIl',QIl1)-1 

f I (k A) [U"/I, (-q) - U,,(1 ,(k - q) 
+ 1( _ )( _ ) Oil' Oil ,1l11l 01l1,1l1l 

Jr n kO nkll noO nOM 
[&ki (0) - £oJ Ek-QIl' ,Oil 1 - £0 

+ U:t,Il'1l1(k - q) + UOIl'1l11l,(q)] [fOlllq, AI)Eolll] I 12D(~!(k _ q, 1"; (0) 
EOlll + Ek-QIl' - £0 EIl(k) 

(69) 

and 

fl ( ) - -.!. ( ) '" fI (k') 01l,1l'1l1 - - 01l,1l11l' £0 2 I [U,,(1 (k q) U"/I (q)J 
U £0 - n kO - nkll "'"' Oil' A 

2N 0,).,1l}'1l1,1l',/I &kiw) - £0 

+ [U:t,lllll,(q) + u~t'Il'1l1(k - q)JfI (k A)/2 (noo - nOIl1)(nk-oO - nk-Oll') 

E E Oil' C(2)( )(E E ) 
0111 + k-qll' + £0 0kll £0 Gill + k-Qjl' 

£02 1 [U ,,(I (k q) + U «/I (q)J + -.!. (nkO - n
kll

) .2 fill(k, A) 01l,1l'1l1 - 01l,1l11l' 
4N 0,).,1l,1l',1l1,/I ~iw) - £0 

_ [U:t,1l11l,(q) + u:t,Il'1l1(k - q)J fI (k A)12 (noo - nOIl1)(nk-00 - nk- qll,) (70) 
EQIl1 + Ek_QIl' ± £0 Oil' 8~~(w)(EQIl1 + Ek-QIl') • 

In deriving (67) we have made use ofthel-sum rule in method has been used by Jortner and Rice6 to discuss 
the limit k --+- 0 in order to eliminate terms pro- the cooperative exciton states in molecular crystals. 
portional to £0-2. The first two terms in (69) give the In expressions (69) and (70), the excitation energies 
Raman polarizability tensor while the third term is a for the exciton (k,,u) and for the excitons (q,,u1) and 
correlation effect of higher order in the electronic (k - q, 1") are correct in the first and zero approxi­
charge. flu(w) is a cooperative polarizability, pro- mation, respectively. The dispersion of the photon 
portional to the sixth power in the electronic charge, (q, A') in (69) is expressed by the function D~~,(k - q, 
arising from the correlation of intermolecular inter- 1"; (0). Since 1X~21(q, A', (0) and fJu(w) are both 
actions with the radiation field which results in functions of £0, they are applicable to such phenomena 
pwducing double exciton states. The transition as that of resonances occurring in the region of 
probability that leads to double excitation of a pair frequencies of either the incoming or the scattered 
of atoms by a single photon has been considered by radiation. 
Dexter,S who employed the first-order corrections in We now calculate the photon Green's function, 
perturbation theory induced by the electronic inter- Du(w), in the first approximation. Substituting the 
actions to the zero-order wavefunctions. The same expression for g~I)(k; (0) given by (57) into (48) and 

• D. L. Dexter, Phys. Rev. 126, 1962 (1962). • J. Jortner and S. A. Rice, J. Chern. Phys. 44, 3364 (1966). 
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evaluating the remaining Green's functions that 
appear on the right-hand side of (48) by means of (19) 
in the same approximation as it was done for 
g~I)(k; w), we find the quantity for rrrl(w): 

IT~11 (w) = (!!...) [1 - w2 [ij~(k, w) -1}~] J 
ck [w2ij~(k, w) - c2k2] 

X {-w2[ij~(k, w) -1}~n. (71) 

Substitution of (71) into (49) gives the expression for 
the polarization operator in the form 

fr~~(w) = - C:)w2[ij~(k, w) -1}~], (72) 

and, from (46), we derive the following expression for 
the photon Green's function: 

D~Ww) = (Ck/1T)[W2ij~(k, w) - c2k2rl. (73) 

Comparison of (72) and (73) with (54) and (55) shows 
that the polarization operator and the photon Green's 
function in the first approximation are just the 
corresponding unperturbed ones renormalized be­
cause of the interactions. Similarly, combining (72), 
(73), (57), and (50), we obtain the relation 

g~l)(k; w) = 1 + rr-(1) (w)D(U(w) (74) 
(l)(k' ) k., k." 

g/l,b ,w 

which corresponds to the expression (56) for the same 
relation in the zero approximation. 

Knowing the Green's function for the photon 
field, we can calculate the corresponding spectral 
intensity by the relation7 

J~Ww) 
= 2 1m D~~(w)(1 - ef/°Tl 

(
2Ck) W2 1m ij~(k, w)(ef/w - 1)-1 

= -:;; [w2 Reij~(k, w) - c2k2]2 + [w2 1m ij~(k, ~W' 
(75) 

where we have taken 

ij~(kw) = Re ij~(k, w) + i 1m ij~(k, w). 

Here {J = (kB T)-I, where KB is Boltzmann's constant 
and T the absolute temperature. Using the relation 

we rewrite (75) as 

J~Ww) = (2Ck) ~ [dW2 Re ij~(k, W)J-1 
1T p dw2 W=wpA(k) 

X Ykiw)(ef/w - 1)-1 ,(78) 
[w2 - w!ik )]2 + y: .. (w) 

where Yu(w) is equal to 

Yu(w) = w2 1m ij~(k, w) 

X ~ ..!£.2 Re ij~(k, w) . [
d 2 J-1 

p dw w=wpA(k) 
(79) 

As 1m ij~(k, w) goes to zero, the spectral intensity 
J~y( w) tends to a delta-shape distribution, i.e., 

J~~(w) = 2ck ~ [dW: Re ij~(k, W)J-
1 

p dw w=wp.,(k) 

X b[w2 
- w!lk)](ef/w - 1)-\ 

for 1m ij~(k, w) -+ O. (80) 

In the limiting case when 1m ij~(k, w) may be con­
sidered to be very small but finite, 1m ij~(k, w) « 1, 
the function (78) has· a steep maximum at some value 
w2 R:J w~ik), provided that d 1m ij~(k, w)Jdw2 « 1. In 
such a case the center of an absorption line described 
by the function (78) will appear Lorentzian, while the 
wings may not. If we take into account that at 
w2 "" w~ik) the function 1m ij~(k, w) varies slowly 
with w2 and we take Yu(w) ~ Yu[wpA(k)], then (78) 
becomes 

J~Ww) R:J (2Ck) ~ [dw: Re ij~(k, W)J-
1 

1T p dw W=WA(k) 

yu[wplk)](ef/w ..!. 1)-1 (81) 
x 2 2 2 2 • 

[w - wplk)] + yu[wplk)] 

The function (75) or (78) describes the behavior of the 
photon excitation spectrum in the whole range of 
frequencies w, while (81) is restricted to those in the 
neighborhood of w2 R:J w~.,(k). The function (81) is a 
Lorentzian line with maximum at w2 ~ w~ik); the 
square of the energy shift is equal to 

w~ik){Re ij~[k, wp.,(k)] - I} 

w2 Re ij~(k, w) - c2k2 

= ~ [w2 - w!lk)] [dW: Re ij~(k, W)J _ 
p dw W=WpA(k) , 

and the spectral width is of order of magnitude of 
,)\[wp.,(k)] = I Yk[wpik)]Jwp.,(k) I in energy units. The 

(76) energy of excitation w~.,(k) is determined by the 
equation 

where w~).(k) is the pth root of the secular equation 

w2 Re ij~(k, w) - c2k2 = 0, (77) 

7 V. L. Bonch-Bruevich and S. V. Tyablikov, Green's Function 
Method in Statistical Mechanics (North-Holland Publishing Com­
pany, Amsterdam, 1962), p. 24. 

w!lk) Re ij~[k, wplk)] - c2k 2 = 0, (82) 

provided that 1m ijUk, wp.,(k)] « 1. 
Let us consider the case of resonance Raman 

scattering that is observed when the frequency of the 
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incident radiation falls in an absorption band.s We 
describe the process where the frequency of the 
incident radiation ck is in the neighborhood of the 
absorption band (k, f-t), while the frequency of 
the scattered radiation is in the transparent region of 
the crystal. In such a process, the energies &~~(w) 
and &:"2)(W), given by the expressions (59) and (60), 
respectively, are real. Then taking the imaginary part 
of (67), we find that the expression for 1m 1j~(k, w) is 

1m ij~(k, w) = 1m (W;) ! !ol'(k, )')EIl(k)8i~( w). (83) 
w2 Il,). [&t.( w) - ( 2

) 

The spectral width of the absorption band for 
resonance Raman scattering in energy units is of the 
order of 

YIr"fwp,,(k)] = 1T[~J ! !oll(k, A)Eik)8i~[wp,,(k)] 
wp,.{k) JJ,).,P 

X b{8:,.[wp,,(k)] - w!ik)} 

X W
2 

Reij2(k, W) , (85) 
[

d 2 J-1 

dw ro=wp ).(Ir) 

with 8~~[wp.t(k)] given by expression (59) with 
w = w p.t(k). Expression (85) gives the electronic 
contribution to the spectral width, and at very low 
temperatures it could be comparable with the contri­

In deriving (83), we have retained only the largest bution arising from the coupling of intermolecular 
term. Substituting (83) into (79), we get interactions with the phonon field. The energy of 

excitation w:;.(k) is determined by Eq. (82), with 
Re ig[k, wp).(k)] obtained by taking the real part of 
expression (67). In the case of exact resonance, terms 

(84) having a principal value may be taken equal to zero. 
Then Re ~f[k, wp.t(k)] turns out to be 

Re ~1[k, wp,,(k)] = 1 - w~ ! '~0(~k») I(nqo - nql't)[!OI'I(q, A')!~lolr-~'( -k, A)EqIlJEIr_~',q"lJ! N q,IlI,).,). wp). 

X [wp;.(k) - Ek.-il"',ilI'J -lr 15!~[k - qp.'; wpik)] + w;/N(nko - nk/J) 

x q'l'l.tI",lIlf!/J(k, ),)[Uo=~I"JJ1(k - q) + UO=fl'll'·(q)]/[EIr- IIIl• + EliI" - wp.\(k)]1 2 

X (nqO - n~l)(nk-qO - nk_q/J,)/~~I{wpik)](E~l + Ek-<lJJ')' (86) 

The second and third term on the right-hand side of 
(86) will cause a small shift to the energy of the 
incoming radiation. For an approximate evaluation 
of (86), one may replace w!;,(k) by c2k 2• 

We now consider the resonance that occurs when 
w = E + Ek ' , corresponding to the process ql'l -qJJ , 
where two excitons (q{-tl) and (k - q, f-t) are created 
simultaneously by a single photon. Such a process 
may be also regarded as the decay of a dressed 
exciton into two excitons. 9 Taking the imaginary part 
of (67) for the process in question and retaining only 
the largest terms and using (79), we have 

Yk.J.(w) = 1m {OC111(k, w)Eik)s:.~(w) + w2w;/N 

X Z (nqO - nql'.)!OJJ1(q, ).')(Eq",JEk-qlJ',qlJl) 
a,A-',lll 

(87) 

• L. N. Ovander, Fiz. Tverd. Tela 4, 1471 (1962) [English transl.; 
Soviet Phys.-Solid State 4, 1081 (1962)1. 

• L. N. Ovander, Fiz. Tverd. Tela 4, 294 (/962) (English transl.; 
Soviet Phys.-Solid State 4,212 (1962)]. 

where 

OCk.J.(qf-tl' k - qf-t',w) 
= w! ! !~I,k-QJA -k, ).)/(E:-OI",OI'I - (

2
) (88) 

1l',A. 

is the frequency and wavevector dependent polariz­
ability corresponding to the transition (q, f-t1)-+ 
(k - g, f-t'). For the process under consideration, 
Yk;'(W), given by (87), is also a shape function. The 
calculation is facilitated if we take only the real part 
of &~I'(w) in the denominator of the first term on the 
right-hand side of (87) while in the expression for the 
function 151~)(k - q, f-t'; w) we take the limit when 

Im ~~,(q, w - ~_QP') -+ O. 

Using these approximations, we obtain from (87) the 
following expression for the spectral width: 

yu[wpik)] ~ {ocill[k, wpik)][Eik)Jwp;.{k)J 

X 1m 8:!1[wp;.(k)] + wp.,(k)w!/N ! (noo - n
OP1

) 

Q,Jll,A' 

X !ol'/q, A')(EQIlJEk-QJJ',QJJI)OCU[qp.1' k - qp.', wp..{k)J 

X 1m 15~~[k - q, f-t'; Wp;.(k)]} 

[
d 2 J-1 

X Z w
2 
Re~~(k, w) , 

p dw ro=wpj(k) 
(89) 



                                                                                                                                    

SCATTERING OF WAVES IN MOLECULAR CRYSTALS 1533 

where 

1m D!~~[k - q, p/; wpA(k)] 

~ 1T(nk-40 - nk-fU&') I [wp,;(k) - Ek-fU&' + Wp'A,(q)] 
p' 

x W;,1{q)[dW: 1]~.(q, W)]-l 
dw W=Wp' A,(q) 

x ~([wp},(k) - Ek-(lp,]21]i,[q, wp},(k) - Ek-ql"] - c2q2} 

(90) 

in the limit when 1m 1]l,[q, wp},(k) - Ek-4p'] -- O. In 
the derivation of (90), only the first term in the 
expression (65) has been retained. The energy of 
excitation wp},(k) is determined by the equation 

W!;.(k){ 1 + Oti1)[k, wp},(k)] [ 1 + lIN 

x I lu~t.I"I'Jk - q) + u~t.Pll'.(q)12 
q.l'bl",P Ep(k)(EqPl + Ek_ql") 

x (nqO - nQP1)(nk-qI'1 - nk-ql")]} - c2
k

2 = 0, (91) 

which is derived by taking the real part of (67), 
equating to zero all terms having a principal value, 
and employing (82). The second and the third term on 
the left-hand side of (91) will cause an energy shift 
which, apart from the very small third term, is 
entirely determined by the frequency and wavevector 
dependent polarizability. From (91) we see that, apart 
from very small corrections, the energy of excitation 
wp},(k) is equal to the unperturbed energy of excitation 
of the dressed exciton (k, 11,) derived in I. In (89), the 
expression for 1m f;~~[wp;.(k)] is given by 

1m f;i~[wp,;(k)] 

~ w!/N(nko - nkl') I l[fkl'.k-<lI',(q,Jl')Ek-qp',ki 
q,Pl,Il',l',/1 

+ ![U~t"l'li -q) + 2u~t"PI'1(k)_ + u:elol"ik - q)] 
2 Ek-<lI".Ql'l - wpA(k) 

x [fOPl(q, Jl')Eql'} (nqO - nqp1)1
2 

X ImD!?l,[k - q,,u';wp;.(k)] 

+ 1T(nko - nkJ I IU:!,P'Pl(k - q) + U:!.l'lP'(q)1
2 

Q,.ul.Il',fJ 

x (nQO - nQl'l)(nk-qo - nk-ql") 

X ~[wp;.(k) - Ek-<ll" - Eqp1]. (92) 

To evaluate (92), the sum over q is replaced by an 
integral then, after averaging over angles of q, summing 
over polarizations and integrating over q, we find in 

the dipole approximation 

1m ~~[wp;.(k)] 

~ 4j3c
3(nkO - nkP)(nk-<l'O - nk_Q'p') I IPI'I',1 2 

JJ',P 

x E:-Q'P',kp Iwp;.(k) - Ek_q'p,llukpI2Iuk_q'p,12 

x {Re rj;.,[q', WP;.(k) - Ek_Q,p'] + 1]}',rq, wp,},,(q')]} 

x [dW: 1]~(q', W)]-l + O(e'), (93) 
dw (l)=wp'A,(Q') 

where (cq')2 is given by the equations 

[wp;.(k) - Ek-<l'I',]2 Re rj~[q', wp;.(k) - Ek_q,I"] 

= (cq,)2 = w!'A,(q')1]i,[q', wp,Aq)]. (94) 

In deriving (93), we have retained only the first term 
on the right-hand side of (92), which is proportional 
to the square of the electronic charge e2• The 
remaining terms are of higher order in e arising from 
intermolecular interactions, are easily evaluated, and 
may be important for crystals having large transition 
dipole moments. Expression (93) is the sponta­
neous emission probability in energy units for the 
transition ,u -- ,u' expressed in terms of energies which 
are correct in the zero approximation; effects arising 
from the dispersion of the photon (q, Jl') are included 
as well. In the same way, we can evaluate the second 
term on the right-hand side of (89). Then, taking into 
account (93), we derive an expression for the spectral 
width: 

Expression (95a) for Yu[wpA(k)] gives the spectral 
width at the maximum energy wp;.(k), and may be 
regarded as corresponding to the process where a 
dressed exciton (k,,u) with energy wP;.(k) creates two 
excitons, a dressed (q', ,u1) and a bare (k, - q', ,u'), 
with energies w p' A'( q') and Ek-q,I'" respectively. It is 
easily seen from the whole calculation that the 
expression for Yk},[wp},(k)] holds also for the reverse 
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process, where two excitons recombine into one. From 
(95a) we can see that the spectral width Yk;.[wp".{k)] 
depends on the values of the polarizabilities and 
spontaneous emission probabilities of the states in 
question. The higher-order terms in the electronic 
charge that have been disregarded in (95a) result from 
the correlation of the intermolecular interactions with 
the radiation field. Their contribution to the spectral 
width is much smaller than that of the radiative terms 
considered in (95a), and they should be taken into 
consideration only when their magnitude is signifi­
cant-as could be the case for crystals having large 
transition dipole moments. 

In the same fashion, one can study the resonance 
occurring when w = ±(E

qJl1 
- Ek _

qJl
,), which corre­

sponds to the process where the exciton (q, fll) is 
created while the exciton (k - q, fl') is absorbed (and 
vice versa) by a single photon. The spectral width for 
such a process is given by expression (95a) if we 
replace the polarizability OCk;.[q'fll, k - q'fl', wp..{k)] 
in the second term on the right-hand side of (95a) by 
its principal value. The energy of excitation wp".{k) 
for the process in question is determined by the 
equation 

w;;.(k){l + ociu[k, wp;.(k)] + Pu[wp;.(k)]} - c2k2 = 0, 

(95b) 

if integrals having a principal value are disregarded. 
Thus, we see that, in this case, the first term on the 
right-hand side of (95a) gives practically the spectral 
width at the maximum energy wp;.(k), given by (95b). 
We should note here that, in the derivation of (86), 
(91), and (95b), terms having a principal value have 
been disregarded; this is justifiable only in the case of 
exact resonance, but for energies near resonance these 
terms should be also included in the corresponding 
expressions. 

In the limiting case when 1m ij~(k, w) ~ 0, the 
spectral intensity J~~(w) becomes a delta function 
given by (80), and the energy of excitation is determined 
by equation (77), with Re ij~(k, w) obtained from 
the expression (67), which is now real. For such a 
process, ~~(q, A', w) and PkA(w) may be interpreted 
as the probability amplitudes for Raman scattering 
and double excitation, respectively, and they may be 
utilized for the evaluation of the intensities of the 
scattered radiation for the processes in question. 

IV. DIELECTRIC PERMEABILITY OF 
MOLECULAR CRYSTALS 

We perform here a calculation for the dielectric 
permeability of a molecular crystal. As is well known, 
the passage of electromagnetic waves through di-

electric media is characterized by a complex dielectric 
permeability tensor 

Eij(k, w) = Re Eij(k, w) + ilm Ei;(k, w), 

which is related to the complex electrical conductivity 
tensor, 

by 
E;;(k, w) = 15;; + (4rrijw)(1;;(k, w). (96) 

Thus, in order to find the expression for Eij(k, w), we 
need to calculate the complex conductivity tensor. 

The electrical conductivity tensor is given bylO 

(1ilk, w) = i L+a'" dtO( t)e-ik
'
fn« 

x ([j!"p(xo), p!«(x~)l-)e;Olt, (97) 

where jinp(xo) and P~«(x~) are the i and j components 
of the current density and dipole moment operators 
of the molecules (mp) and (noc) at time xo and x~, 
respectively; k is the wavevector of the external field 
and 0(/) is the usual step function. Integrating (97) by 
parts and using the relation 

n« 
we have 

( 
1. 0 Ok 

(1;; k, w) = -- ([j:"p(t), P!it)l-)e-> 'fn« 
W 

where the quantity «jinP(t);j~it'»)(Ol) is the Fourier 
transform of the "current--current" retarded double 
time Green's function defined10 by (see, for instance, I) 

«(j~P(t); j!,,(t'») = - iO(t - t')([j~P(t), j!a<t')]). 

If we now express in (98) the current and momentum 
operators in the second quantization representation, 
take the term of the conductivity tensor that corre­
sponds to the interband transitions, and, by means of 
(2), express the operators in the representation where 
Jeo is diagonal, then substitution of the result into 
(96) yields the following relation: 

w
2
[Eilk, w) - n!,I5;;] = - e:) ITk,ii (w)l5i ;, (99) 

where the expression for ITk,ij(W) is given by (48) with 
the exception that, instead of the directions of polar­
ization 1.(1. = flJ.. = 1,2), we have the components 
i,j(i,j = 1,2,3). The relation (99) corresponds to the 
normal waves, and, since the normal waves in any 

10 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.: 
Soviet Phys.-Usp. 3, 320 (1960)]; see also Ref. 7, p. 107. 
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direction are either transverse or longitudinal, the 
expression for nk,iw) includes both kinds of waves. 
Using (50), we may rewrite (99) in the form 

W
2[E.lk, w) -1}~~ii] 

= - (~) TIk,i.I(W)[1 + TIk'ii(W)Dk'i;(W)]~ii' (100) 

This is an exact formula for the model under con­
sideration, relating the dielectric permeability tensor 
to the polarization operator and the Green's 
function for the photon field. If we retain only the 
linear term in the polarization operator on the right­
hand side of (100) and replace w by ilwnl, the 
resulting expression for E(k, i IWn!) is identical (apart 
from w; which is also included in the polarization 
operator and cancelled in the final result) to that 
derived by Dzyaloshinskii et al. 2 using the diagram 
technique. Formula (100) is applicable for any 
isotropic crystal (anisotropic effects could also be 
included) for which the tight binding picture is 
justifiable, where the photons of the electromagnetic 
field act on electron-hole pairs that are tightly bound 
at the lattice sites. 

In the first approximation, the expression for 
nk,iw)~.:/ is given by (71), i.e., 

n (1). (w)~. = (!!...){1 _ w2[1j~(k, w) -1}~]} 
k,.:/ 0:/ k [ 2 -2(k) 2k2] c W'YJ;. ,w - c 

X {-w2[1j~(k, w) -1}~]}. (101) 

If scattering effects are disregarded and only dispersion 
is considered, (101) becomes 

n(O) ( )~ _ (!!...) {I w
2
[1}!(k, w) -1}~] } 

k,ii W i:I - ck - [w21}~(k, w) _ c2k2] 

X {-w2[1}~(k, w) -1J~]}. (102) 

In Formulas (101) and (102), i = j = A = 1,2 denote 
the transverse components perpendicular to the 
direction of propagaty,n, while i = j = 3 is the 
longitudinal one. Substituting (101) or (102) into (99) 
and separating the transverse and longitudinal 
components, we have, respectively, the following. 
Transverse: 

2[ -2(k ) A2 ]2 
E(l) (k w) = ;r2(k w) _ w 'YJ;. ,w - 'YJ00 (103) 
;',J., .,;., [2-2(k) 2k2] , w'YJ;. ,w - c 

or 
2[ A2(k ) A2 ]2 

ETh) (k w) = ->l2(k w) _ w 'YJ). , w - 'YJ00 . (104) 
;',J., .,;., [2A2(k) 2k2] , w'YJ;. ,w - c 

Longitudinal: 

ElI1)(k, w) = 1]1~)2(k, w) = 1 + 1(111)(k, w), (105) 
or 

(106) 

In (103) and (104), the notation El~ J. (k, w) == El1i (k, w) 
has been introduced. The perturbed and unperturbed 
longitudinal polarizabilities are defined by 

1X11l)(k, w) = (nkO - nk,,)w! ~ fo,.(k)/[&:,,"(w) - w2
], 

"II (107) 
and 

IXII(k, w) = (nkO - nk,,)w! ~ fo,,(k)/[E!II(k) - w2
], 

"II (108) 
respectively. In (107), 

eLII(w) == e~~II(w)Bi~II(w), 
where &k"ll(w) is the perturbed energy of the longi­
tudinal exciton (k, #1\) and e~ll (w), t;~2) (w) are given 

"II "II 
by the longitudinal parts of expressions (59) and 
(60), respectively. Expression (106) is in agreement 
with that found by Agranovich and Ginzburg.ll The 
frequencies of the longitudinal waves are obtained by 
equating to zero the right-hand side of (105) or (106). 

Using the results of I, one can easily prove that, for 
real 1}~(k, w), the following relation holds: 

(7T/ck)D~~-1(W)/W2 

= 1}~(k, w) - c2k2
/W

2 

= {I + ~ 2 w!;,(~) (dW: 1J~(k, W)f1 }-1 
p W - wp;,(k) dw Jw=cop;.(k) 

(109) 
or 

A2 c2k2 

'YJ;,(k, w) =-
w2 

{ 
W2 ;,(k) (dw2 )-1 }-1 + 1 + ~ 2 P 2 -2 1J!(k, w) , 

p w - wp;,(k) dw w=cop;.(k) 

(110) 

where w~;.Ck) is the pth root of the secular equation 

w21}~(k, w) - c2k2 = O. (111) 

It can easily be shown that the formula (110) is 
identical to that derived by Agranovich and Konobeev12 

for the unperturbed part of the dielectric permeability. 
Expression (110) is also valid when scattering is 
taken into account, provided that 1J~(k, w) in (110) 
and (111) is replaced by the real part of 1j~(k, w) and 
wpik) by wpik). The last term on the right-hand side 
of (103) or (104) is a second-order correction, arising 
from the term which is proportional to the square of 
the polarization operator and accounting for the 

11 V. M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nauk 77, 663 
(1962) [English trans\.: Soviet Phys.-Usp. 5, 675 (1963)]. 

12 V. M. Agranovich and Yu. V. Konobeev, Fiz. Tverd. Tela 5, 
2544 (1963) [English trans\.: Soviet Phys.-Solid State 5, 1858 
(1964)]. 
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difference between the square of the index of re­
fraction and the dielectric permeability. We write the 
expression for €~l,)-L (k, w) as 

€~~i(k, w) = Re €l~i(k, w) + i 1m El~i(k, w), (112) 
where Re E~l)-L (k, w) is the real part of the expression 
(103) while the imaginary part of €~l)-L (k, w) is given 
by 

1m El~i(k, w) 

= (w2 - c2k2 - W!)2/W2(1T/ck) 1m D~Ww) 

w2 

w 2 1m 17~(k, w) 
X --------------~~~----------

[w2 Re 17~(k, w) - c2k 2]2 + [w2 1m ij~(k, W)]2 
(113) 

In the limiting case when 1m ij~(k, w) «1 and 
dIm ij~(k, w)/dw2 « 1, the spectrum described by 
(113) is the same under the same conditions as that of 
the spectral intensity for the photon field J~l)(w), 
determined by either (75) or (78). The most useful 
application of formula (100) is the case when the 
exciton-phonon interaction is included in the ex­
pression for the polarization operator and photon 
Green's function. This will be the subject of a later 
publication, where the temperature dependence of the 
dielectric permeability will be discussed. 

v. AVERAGE ENERGY OF THE CRYSTALS 

The average energy of the crystal in the first 
approximation, where scattering effects are included, 
is obtained by averaging the total Hamiltonian, i.e., 

(Je)(l) = (Jeo) + ! Eik)(bZ(k)bp(k»(I) 
p,t 

+ (JePh + Jem(O) + Jelnt + JeMt + JeMl + Jel~> (I), 
(114) 

where 

(Jeph)(I) = ! ck(tJl(k)tJik»(I), (115) 
t," 

(Jei;~I)(I) = l/Nt! (b:Ck)O:! + O~':_qbik»(l), 
t,p (119) 

(Jei~Wl) = 2/N! U:!',p,iq)(nt-qO - nt_Qjt') 
q,p:,p 

X (bZ(k)bik) + bik)bZ(k) 

+ bZ(k)bZ( -k) + bi -k)bik»(I), (120) 

The single-particle Green's functions G~l)(k; w) and 
G~I)(k; w) are obtained from (39) and (40), respec­
tively, as 

A(I) )/ Gp (k; w) = (nto - ntp 21T 

X {(W
2 

- c
2
k

2 
- w!)[w

2 
- &i~2(W)] _ 1}_1_ 

[w2 - &:iW)][W2ij~(k, w) - c2k 2] 2~~(w)' 

(122) 

while the Green's function «bp(k); /J .. (k»)(l) is easily 
evaluated by means of (15) and (20): 

iWv/22 [fop(k, A)Eik)/ck]t«bik); /Jik»)(I) 
t,p," 

'" W2[17~(k, w) - 1] + w! = t1T £., • (123) 
t," [w2ij~(k, w) - c2k2] 

The photon Green's functions D~~(w) and 

«tJ;.(k); tJl(k»)(I) 

are given by expressions (73) and 

«tJ ik); tJl(k»)(1) 

(Jel~N°)P) =w!/4 ! l/ck<ftl(k)/Jik»(I), (116) 
t," t respectively. 

(Jefnt)(ll = tiwv ! [foik, A)Eik)/ck] To evaluate the distribution functions that appear 
k,J.,p _ in the expression (114)-(120) we need to know the 

x (bp(k)/J;.(k» (1) , (117) corresponding expressions for the Green's functions 
(Jei~~) (I) = iWv/N!! [ftp,k-qp.(q, A)Ek_qp',tP/cq]! in the first approximation. Thus, using (121)-(124) 

k,q/ _ and the expressions for (118) and (119) that were 
X (bp(k)bp,(k - q)tJiq) obtained by calculating (19) and (21), respectively, we 

+ b!,(k - q)b .. (k)/J!(q»(I), (118) , " h ~ ~.. find the expressIOn Jor t e average energy: 

(Je)(ll = (Jeo) + 1/1T 2 f+oo dw 1m 2_~1 - eP
CO

)-12 2 (W[W + ck + (w2 
- c2k2 - w!)/(w - ~p(w»] 

t.P -00 [w 1];.(k, w) - c k ] 
(2 2k2 2) + W - C - Wv {Eik)[w _ t(&!~(w) + &!~(w»]/[w - ~iw)] - ~p(w)} 

w + ~p(w) 
- t{W2[17~(k, w) - 1] + w!}{[1 - EI'(k)/~iW)]}). (125) 
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To carry out the integration over w in (125), we assume that w is far from any of the absorption 
frequencies of the crystal, which means that 1j~(k, w) is real. Employing the relation 

21m 2 2 1 2 2 = 2 [dW: 1j~(k, W)]-l [_TT_J 
[w 1j;.(k, w) - c k ] p dw ",=cop.\(k) wp...{k) 

x {<5[w - wp...{k)] - <5[w + wp...{k)]}, (126) 

where w~..(k) is the pth root of the secular equation (77), we integrate over W with the result 

(Je)(1) = (Jeo) + t 2 ({1 + ni~[wp;.(k)]}[wp;.(k) coth !t1wp;.(k) - Ek,,] + (Ek" - ck»[dW: 1j~(k, W)]-l _ 
k,p dw "'=Wp;' (k) 

+ t 2 ni~[Wp;.(k)1{ [Ek" - E,.(k)][l + wp;.(k) coth tfJWp;.(k)J - {E,.(k)(Ei~ + Ei~) - Ek,,[E,,(k) + ~,,]} 
k,p 2Ek" 

X coth tfJwp.ik)/2Wp;.(k») [dW: 1j~(k, W)J-
1 

• (127) 
dw ",=wp;.(k) 

ni1l[wp;.(k)] = -(Ck/TT) fi~!) [wp;.(k)]/E~" - w:;.(k). 

(128) 

The quantity fii1l[wp..(k)] is the polarization operator 
given by expression (77) with w 2 = w!..(k); the 
notation Ek" == Ek,,[wp..(k)] has been introduced. 

In order to identify the terms appearing on the 
right-hand side of (127), we refer to the zero approxi­
mation which occurs when we disregard scattering, 
i e when E = E(l) = E(2) - E (k) and .. , k" kp kl' " 

1j~[k, wp..(k)] -nUk, wp).(k)]. 

In this case the last term on the right-hand side of 
(127) goes to zero. Using the fact that 

1 + nii[wp;.(k)] = [dW: n~(k'W)J ' 
dw "'="'p;.(k) 

we obtain 

(Je)(O) = (Jeo) + t 2 (wp;.(k) coth tfJwp;.(k) - E,.(k) 
k.p 

+ [E,.(k) - ck]{l + ni~[wp;.(k)]}-l). (129) 

This is the average energy of the crystal where the 
dispersion of the electromagnetic waves is included 
explicitly. In the limit when fJ - 00, Expression (129) 

--------------------------------------
is reduced to that of the ground state energy 

(Je)~O) = (Jeo)o + t 2 (wp;.(k) - E,,(k) 
kp 

+ [E,.(k) - ck]{l + n~~)[wp;.(k)]}-l). (130) 
Expression (130) is identical to that derived in I 
for the ground state energy of the crystal when only 
dispersion of the polarization waves is considered. 
Comparing Expression (127) with that of (129), we 
see that the second term on the right-hand side of 
(127) is the renormalized energy of interaction 
corresponding to the last term of (129) when scat­
tering is neglected, while the last term of (127) depends 
on the difference Ek/l - E,,(k), and is therefore much 
smaller than the second. In the limit when fJ - 00, 

(Je)~l) gives the ground state energy of the crystal. 
Thus, the second and last term on the right-hand 

side of (127) give contributions to the average binding 
energy of a molecular crystal arising from the 
dispersion and scattering of the polarization waves as 
well as from exciton-exciton interactions at finite 
temperatures. They are correct in the first approxi­
mation where terms proportional to N-l are included 
and are expressed in terms of such quantities as the 
polarization operator (or the index of refraction) and 
the energies of excitation of both the dressed and bare 
exciton (k,I-'). The discussion of the importance of 
these terms for actual crystals will be postponed until 
numerical calculations are performed; this will be 
the subject of a later publication. 
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A trial wavefunction of superconducting type is postulated for the ground state of a system of N 
positive and N negative charges with Coulomb interactions in the absence of any exclusion principle. 
The ground-state bihding energy is rigorously proved to be greater than ANt R y, where A is an absolute 
constant. Results of earlier perturbation-theoretic calculations for an infinite system are confirmed. The 
author, with A. Lenard, has previously proved that the exclusion principle, holding for particles with 
one sign of charge only, is a sufficient condition for the stability of matter; the present paper shows that 
the exclusion principle is also necessary for stability. 

I. INTRODUCTION 

"WE take a piece of metal. Or a stone. When we 
think about it, we are astonished that this 

quantity of matter should occupy so large a volume. 
Admittedly, the molecules are packed tightly together, 
and likewise the atoms within each molecule. But why 
are the atoms themselves so big? 

"Consider for example the Bohr model of an atom 
of lead. Why do so few of the 82 electrons run in the 
orbits close to the nucleus? The attraction of the 82 
positive charges in the nucleus is so strong. Many more 
of the 82 electrons could be concentrated into the 
inner orbits, before their mutual repulsion would 
become too large. What prevents the atom from 
collapsing in this way? Answer: only the Pauli 
principle, 'No two electrons in the same state.' That 
is why atoms are so unnecessarily big, and why metal 
and stone are so bulky. 

"You must admit, Pauli, that if you would only 
partially repeal your prohibition, you could relieve 
many of our practical worries, for example the traffic 
problem on our streets." 

These words were addressed by Paul Ehrenfest to 
Pauli in 1931 on the occasion of the award of the 
Lorentz medaP We have been unable to find in the 
literature of the 1920's and 1930's any more exact 
calculation of what would happen to matter if the 
exclusion principle were abolished. In the present 
paper we demonstrate that the effects would be even 
more drastic than those envisaged by Ehrenfest. We 
show that not only individual atoms but matter in 
bulk would collapse into a condensed high-density 
phase. The assembly of any two macroscopic objects 

1 P. Ehrenfest, Collected Scientific, Papers M. J. Klein, Ed. 
(North-Holland Publishing Company, Amsterdam, 1959), p. 617. 
The address appeared originally in Vers!. Akad. Amsterdam 40, 
121 (1931). The author is indebted to Dr. H. B. G. Casimir for this 
reference. 

would release energy comparable to that of an 
atomic bomb. It is thus fortunate that Pauli was 
unwilling to comply with Ehrenfest's well-intentioned 
proposal. 

As a simple model to illustrate the nature of the 
problem, we consider a system of N positive and N 
negative charges, all having equal mass m and equal 
magnitude of the charge e. The Hamiltonian of this 
system is 

2N 2 2 

H = 1 ..!!J.. + 11 e u,u i , 

i=12m ;<i IXi - Xii 
(1) 

where Xi' Pi are position and momentum of particle 
number j, and Uj = ± 1 accordingly as the particle has 
positive or negative charge. We suppose that the 
system obeys the rules of nonrelativistic quantum 
mechanics without any exclusion principle. We find 
a wavefunction which we conjecture to be a good 
approximation to the ground state, and for which the 
expectation value of H can be calculated exactly. This 
leads to a rigorous proof of the following statement, 
which was announced earlier2 in a tentative way. 

Theorem: The ground-state energy EN of the 
Hamiltonian (1) satisfies the inequality 

EN < -AINt Ry, Ry = (me4j21i'1.), (2) 

where Al is an absolute constant. 

The binding energy of a macroscopic number of 
charges (N'"-' 1023), according to Eq. (2), would be at 
least of the order of 1032 Ry or I megaton. 

Real matter differs from the model (1) in many 
respects. First, the masses of nuclei and electrons are 
not equal. This difference does not weaken our 
conclusion, because Eq. (2) will continue to hold as 
long as all particles have masses not less than the value 
m which can be taken to be the electron mass. Second, 
nuclei and electrons have different charges. This 

• F. J. Dyson and A. Lenard, J. Math. Phys. 8,423 (1967). 
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difference also does not weaken our conclusion, 
although the details are rather more complicated if 
the charges are unequal. Provided that the over-all 
system is approximately neutral, Eq. (2) will hold for 
unequal charges if each charge is not less than the 
electron charge e. Third, real matter contains many 
effects, such as nuclear forces and the finite sizes of 
nuclei, which are not represented in the model. These 
differences again do not really weaken our argument. 
If in a piece of real matter the exclusion principle 
ceased to operate, the matter would collapse to a 
density so high that nuclear forces would become 
dominant. Instead of Eq. (2), the energy available in 
nuclear reactions would determine the over-all 
binding. In particular, any material containing 
hydrogen would be a nuclear explosive. Thus our 
theorem, although mathematically exact only for a 
simple model, shows quite generally that matter 
without the exclusion principle is unstable. 

The result (2) is not unexpected, if one looks at 
perturbation-theory calculations which have been 
made of the ground-state energy of a Bose gas with 
Coulomb interactions.3 These calculations have 
always considered an infinite uniform system or a 
system in a box with periodic boundary conditions. 
They give an energy per particle 

(3) 

where p is the number of particles per unit volume, a 
is the Bohr radius, and A2 is another absolute con­
stant. If one assumes that Eq. (3) also holds in some 
approximate sense for a finite system of 2N particles, 
then the binding energy of the finite system will be 
proportional to Nt. However, the step from Eq. (3) 
to the finite system is not rigorous, and Eq. (3) itself 
is only the leading term in a perturbation series. The 
series in inverse powers of [pa3]!, of which two terms 
have been calculated,3 mayor may not converge, and 
the perturbation calculations give no control of the 
error in Eq. (3). As a by-product of our study of 
the finite system, we recover the formula (3) for the 
ground-state energy of the infinite uniform system, 
thus verifying that our wavefunction preserves the 
essential features ofthe perturbation-theory treatment. 

In our earlier paper,2 we proved the lower bound 

(4) 

8 L. L. Foldy, Phys. Rev. 124, 649 (1961); M. Girardeau and R. 
Arnowitt, ibid. 113, 755 (1959); M. Girardeau, ibid. 117, 1809 
(1962); W. H. Bassichis and L. L. Foldy, ibid. 133, A935 (1964); 
W. H. Bassichis, ibid. 134, A543 (1964); J. M. Stephen, Proc. Phys. 
Soc. (London) 79, 994 (1962); D. K. Lee and E. Feenberg, Phys. Rev. 
137, A731 (1965); D. Wright, ibid. 143, 91 (1966); E. H. Lieb, 
ibid. 130,2518 (1963); E. H. Lieb and A. Y. Sakakura, ibid. 133, 
A899 (1964). 

which complements Eq. (2). The results of the present 
paper make it extremely plausible that Eq. (4) actually 
holds with t replaced by t. There is reason to 
hope that our trial wavefunction is simultaneously 
simple enough and accurate enough, so that it may be 
made the basis of a rigorous proof of an improved 
lower bound. But the problem of the lower bound is 
not discussed further in this paper. 

There is one philosophical question which is in 
some sense related to Eq. (2). Suppose that there 
existed in nature a weakly interacting charged boson 
(WCB). Then we could construct from N positive 
and N negative bosons a state with energy satisfying 
Eq. (2). For large enough N, the binding energy 
proportional to Nt would appear to outweigh the 
rest-energy 2Nmc2 necessary to create the particles 
from the vacuum. The vacuum would be unstable and 
the world as we know it could not exist. Thus we may 
claim that our theorem to some extent explains the 
observed fact that WCB do not exist in nature. This 
argument is unfortunately defective because the 
densities required to make 

EN + 2Nmc2 < 0 (5) 

are so high that the nonrelativistic Hamiltonian (1) is 
inadequate; the stability question ought to be studied 
within the framework of a fully relativistic theory. A 
relativistic treatment cannot at present be made 
rigorous since there exists no fully rigorous relativistic 
quantum electrodynamics. Our "explanation" for the 
nonexistence of WCB remains only suggestive and 
heuristic, not mathematically compelling. Still, it is a 
striking fact that the known charged bosons, for 
example the pion and the deuteron, all have strong 
interactions which, at high densities, would over­
whelm their Coulomb binding energy. 

n. DIMENSIONAL ARGUMENT 

Before beginning the exact analysis, it is useful to 
explain qualitatively by an elementary argument the 
origin of the t power in Eq. (2). The ground-state 
wavefunction of a system of 2N charges will involve 
two lengths, the over-all diameter A of the system 
and the range A. of two-particle correlations. The 
total energy EN will be a sum of three parts, 

(6) 

EKl being the kinetic energy of the over-all wave 
packet, EK2 being the kinetic energy of short-range 
correlations, and Eo being the Coulomb energy. 

Disregarding numerical factors of the order of 
unity, we have 

(7) 



                                                                                                                                    

1540 FREEMAN J. DYSON 

The Coulomb energy of the mean charge distribution 
is zero since the system is, on the average, everywhere 
neutral. Therefore Eo arises only from the short-range 
correlations, which produce around each charge a 
charge cloud containing one unit of charge of the 
opposite sign distributed over a region of size A. The 
interaction of each charge with its charge cloud 
produces an energy of the order (-e2/A), while the 
self-energy of the charge cloud is positive but only 
half as great. Again discarding a numerical factor, we 
have 

Eo = -N(e2/A). (8) 

Finally we must estimate EKZ ' which requires a rather 
more careful discussion. The charge cloud around 
each charge is produced by a cooperation of all the 
particles which are within a volume of the order of Aa• 

The number of these particles is 
v = N(AfA)a. (9) 

To produce the net excess or deficiency of one unit of 
charge within the cloud, each of v single-particle 
wavefunctions must be increased or decreased by a 
factor [l ± v-Ill in passing from the edge to the center 
of the cloud. This distortion of the wavefunctions 
produces a kinetic energy of the order of 

(/jz/m) I (grad tp)/tplz ~ (/jz/m)(vA)-Z (10) 

for each particle in each cloud. Altogether then, 
EK2 = Nv(/jz/m)(vA)-Z = (/jzM/mA5). (11) 

Choosing A to minimize the sum of Eqs. (7) and 
(11), we find 

A = NtA, EKI + EK2 = Nt(/j2/mA2). (12) 

Then, choosing A to minimize the sum of Eq. (8) and 
(12), 

(13) 

This argument shows that the decisive factor in 
making matter without exclusion principle unstable 
is the cooperative effect of many particles in screening 
each other. The char~e cloud around each particle is 
composed not of one or two nearest neighbors, but of 
a large number v 1'..1 Nt of slightly distorted wave­
functions. This enables the charge clouds to be 
produced with a very small expenditure of kinetic 
energy. The exclusion principle makes matter stable 
by forbidding such a cooperation of many particles 
with small momentum. 

m. DEFINITION OF WA VEFUNCTIONS 

Let tp",(x) be any complete orthonormal sequence of 
real functions of the single space point x. A "kinetic 
energy" integral is defined by 

T", = (/jz/2m) f'vtp",(X)'Z dax, (14) 

and an "exchange Coulomb energy" integral by 

e",p = eZf f tp",(X) tpp(x) tp",(y) tpp(Y) Ix - yl-l dax daY· 

(15) 

It is convenient to label each particle with a space 
coordinate X; and a charge coordinate u;. Each Xi is a 
3-vector, and each u; takes the values ± 1 to indicate 
whether the particle is positive or negative. A sym­
metric two-particle wavefunction is given by 

G(X1' u1, XI' uz) 

= Aotpo(X1)tpo(xz) - u1UZ !A",tp..{X1)tp..{xz). (16) 
",>0 

This is intended to represent a pair of particles which 
are mainly distributed independently in the one­
particle state 11'0, but have a short-range correlation 
which is repulsive for like charges and attractive for 
unlike charges. 

Our basic wavefunction for a 2N-particle system is 

'YZNCX1' U1,"', XZN' U2N) 
N 

=!I1 G(XPI;_l, UpZi-1, XpZi' upz;), (17) 
P ;=1 

where P is any permutation of the integers 1, ... , 2N, 
and, for typographical reasons, we write P2j - 1 
instead of PZ;-l' This wavefunction is similar in form 
to the ground-state wavefunction of the Bardeen­
Cooper-Schrieffer theory of superconductivity.' To 
obtain a BCS wavefunction, we have only to replace 
symmetrization by antisymmetrization and replace 
the charge coordinate by a spin coordinate. The 
state 'Y 2N describes a state in which all the 2N 
particles are correlated in pairs, and each pair has the 
identical wavefunction G. These boson pairs may be 
called "Bogoliubov pairs" 5; they are analogous to 
the Cooper pairs in the theory of superconductivity.6 

The state 'YZN does not have a well-defined total 
charge. It contains components with N+ positive and 
N_ negative particles, where N+ and N_ are any 
integers with 

(18) 
We write 

(19) 

where QN+.N_ is the projection operator for states of 
N+ positive and N_ negative charges. Our trial wave­
function for the ground state of the Hamiltonian 
(1) is then <DN,N' 

• J. Bardeen, L. N. Cooper, and I. R. Schrieffer, Phys. Rev. 108, 
1175 (1957). 

6 N. N. BogoIiubov, J. Phys. (USSR) 11, 23 (1947). 
• L. N. Cooper, Phys. Rev. 104, 1189 (1956); M. R. Schafroth, 

ibid. 96, 1442 (1954). 
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To make the calculations simple, it is convenient to 
consider a state of indefinite particle number, namely, 

(20) 

with 
WN = (zjI6)N«2N) !)-l(N !)-2. (21) 

Here z is a positive real parameter, and 'F(z) contains 
components with all possible values of N+ and N_ such 
that (N+ + N_) is even. Since H commutes with N+ 
and N_, the expectation values are related by 

H(z) = (M(z)jN(z», (22) 

M(z) = ('F(z), H'F(z» = 2, wNn2NH 2N , (23) 
N 

N( z) = 1'F(z)12 = 2, WNn2N' (24) 
N 

n2NH2N = ('F2N' H'Y2N) 

= 2, leD .. ,2N_nI
2 H .. ,2N-n, (25) .. 

n2N = 1'Y2N12 = 2, leDn,2N_nI
2
• (26) 

n 

Here H(z) , H2N and H n ,2N-n are the expectation 
values of H in the states 'F(z) , 'F2N and eDn,2N-n' The 
Rayleigh-Ritz principle asserts that the ground-state 
energy EN of Eq. (2) satisfies 

EN~ HN,N' 

IV. CALCULATION OF EXPECTATION VALUES 

We begin by calculating the normalization integral 
n2N defined by Eq. (26). From this the expectation 
value of the Hamiltonian can be deduced rather easily. 
By virtue of Eq. (17), the normalization integral 
becomes 

n2N= t ~ r . J daXl ... daX2N 

N 

X 2, ... 2, II {G(x P2i-l , U P2i-l , X P2i , U P2i) 
Ul U2N ;=1 

X G(XQ2i-l, UQ2i-l' XQ21' uQ2i)}. (27) 

The symbols P and Q denote independent per­
mutations of the indices (1,"', 2N). For any 
particular choice of P and Q, the integral on the right 
of Eq. (27) will break up into a product of cyclic 
factors of the form 

Ki =j- . J dYl ..• dY2i 

X 2, ... 2, {If G(Yk' Vk , Yk+1 , Vk+1)} 
"1 "21 k=l 

are connected in pairs by the kernels Gin Eq. (27). 
Thus, 

n2N = t 'P(h){U (Ki)h/}, (29) 

where hi is the number of cycles of length 2j, the sum 
extends over all integers (hI,"', hN) consistent 
with the condition 

(30) 

and 'P(h) is the number of pairs of permutations 
(P, Q) which give rise to the pattern of cycles 
specified by the h; . 

The evaluation of 'P(h) is a familiar problem of 
combinatorics. In fact, 'P(h) is a product of three 
factors, 'P', 'P", and 'PI/I, where 

'P' = (2N)! II {«2j)!rhl(hi!)-1} (31) 
; 

is the number of ways of grouping 2N indices into the 
cycles of given lengths, then 

'P" = II {(2j) !j(2j) }hl (32) 
; 

is the number of ways of arranging the indices in each 
group in cyclic order, and 

'P'" = (N!)222N (33) 

is the number of ways of choosing the labels P2i- 1 , 

P21 , Q2i-l, Q2i for the consecutive pairs of indices 
within each cycle. Thus, 

'P(h) = (2N)! (N!)222N II {(2j)-h/(h;!rl}, (34) 
i 

which, with Eq. (29), completes the evaluation of n2N' 

The utility of the composite state 'F(z), defined by 
Eq. (20) and (21), is now apparent. The normalization 
integral for this state, by Eq. (24), (29), and (34), is 

N(z) = 2, II - ---: (h;!)-l = exp [fez)] { (
Z)ihl (K ')hl } 

h' 4 2J (35) 

with 

fez) = i (~)i(K~). 
;=1 4 2J 

(36) 

The summation over N has disappeared by virtue of 
Eq. (30). Since K j is just the trace of the 2j-fold 
iterated kernel G2i, Eq. (36) may be written 

fez) = -t Tr log [1 - tzG2], 

and Eq. (35) becomes 

N(z) = .6.-1, 

(37) 

(38) 

X G(Y2i' V2i , Yl, VI)' (28) where.6. is the Fredholm determinant of the kernel 

Each factor Ki arises from a cycle of 2j indices which G2. 
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With the particular choice of kernel given by Eq. 
(16), 

'" 
is independent of the charge coordinates, and 

K j = 221 ~ A!i. 
'" 

Equations (36) and (38) then give 

fez) = - t ~ log (1 - zA!), (40) 
'" 

N(z) = IT (1 - zA!r1. (41) 
'" 

We take z smaller than the smallest of the 1.;;2, so that 
the series (36) converges absolutely. The mean 
particle number in the state 'Y(z) is 

with 

A(z) = (~2NWNn2N) / (~ WNn2N) 

= 2zN-l(dN/dz) 

= 2z(df/dz) 

= ~ n"" (42) 
'" 

(43) 

We now calculate the expectation value H(z) given 
by Eqs. (22) and (23). The Hamiltonian H is a sum of 
kinetic and Coulomb terms, and M(z) splits corre­
spondingly into a kinetic part M K and a Coulomb 
part Ma. The quantity (H2N)Kn2N is obtained from 
n2N according to Eq. (27) by applying the operation 

(1i2/2m) ~ IVk l2 (44) 
k 

to the integrand, with one gradient operator Vk acting 
upon each of the two G kernels which contain the 
coordinate Xk • When the integral (H2N)K is divided 
into cyclic factors as in Eq. (29), the gradient 
operators appear in each factor K, in turn. As a result 
we have 

(H2N)Kn2N = ~ (L/%K,»n2N' (45) 

with 
j 

Li = 2j r . J dYI ... dY2j 

X ~ ..• ~ {rt G(Yk, Vk , Yk+l, Vk+l)} 
VI V2j J=2 

X (1i2/2m)('\1IG(Y2j, V2" YI' VI) 

,VIG(YI,VI ,Y2,V2»' (46) 

By virtue of Eq. (16) and the orthogonality of the 
1p",(x), this becomes 

(47) 

with T", given by Eq. (14). When Eq. (45) is multiplied 

by WN and summed over N, the result is 
MK(z) = ~ (Ll%Ki»N(z) 

j 

= N(z) ~ (Ll%Ki»f(z), 
; 

MK(z) = N(z) ~ (Z/4)i(Li/2j) 
j 

= N(z) ~ ~ zi).!iT", 
j '" 

= N(z) ~ T",n", (48) 
'" 

with n", given by Eq. (42). This result is physically 
reasonable, since the kinetic energy is an additive 
property of single particles. 

In a similar way, we now consider the Coulomb 
energy (H2N)an2N, which is obtained from n2N 
according to Eq. (27) by inserting the factor 

~ e2uiu j IXi - x,l-l 

i< i 
(49) 

into the integrand. When the integral is factorized into 
cycles, two cases arise. Either the points (Xi' Xj) belong 
to different cycles or to the same cycle. In the first 
case the summation over the charge coordinates 
within either cycle gives zero. This expresses the 
physical fact that the Coulomb energy of the average 
charge distribution vanishes. The surviving Coulomb 
terms then factorize just as do the kinetic energy terms, 
and in analogy with Eq. (48), we obtain 

MaCz) = ~ (Cl%Ki»N(z) 
i 

= N(z) ~ (z/4)i(Ci/2j), (50) 
with i 

C i = 2j r . -J dXl ..• dX2i 
2i 

xL' .. ~(te2) ~ IXI - xkl-l UlUk 
ttl U2J k=2 

X rtfG(Xz,UZ,XZ+1,Ul+l)}G(X2j,U2i,Xl,Ul)' (51) 

When the kernel G from Eq. (16) is substituted into 
Eq. (51), we obtain a sum of Coulomb exchange 
integrals e",p given by Eq. (15). The sum over the 
charge coordinates gives a vanishing coefficient to e",p 

if ()(, fJ are either both zero or both nonzero. We are 
then left with 

2j 
Cj = 2j' 22j ~ e",o~( _A",)k-lA~i+l-k. (52) 

",>0 k=2 

Substituting this into Eq. (50) and using Eq. (43), we 
find 

Ma(z) = -N(z) ~ e",o(noA", + n"'Ao) 
",>0 A", + 1.0 

= N(z) ~ e",o(non", - [non..(no + 1)(n", + 1)]1). 
",>0 (53) 
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Combining this with Eq. (48), we have for the ex­
pectation value of the energy in the state 'fez) the 
exact expression 

H(z) = I T"n" .. 
+ I e"o(~on" - [non,.(no + l)(n" + 1)]*). (54) 

.. >0 

The remarkably simple way in which the Coulomb 
energy appears in Eq. (54) is the main reason for our 
choice of trial wavefunction. 

V. MINIMUM-ENERGY STATES 

Let us hold the 'P..(x), z, and no fixed, and vary the 
A .. for IX > 0 so as to make the energy H(z) a minimum. 
There is a unique minimum, which occurs at 

A .. = z-l e-9' .. , nIl = [e2lJl .. - 1]-1, (55) 

with the exponent fP" given by 

cosh fP" = [noCno + 1)]-l[no + (T .. /e .. o)], fP .. > O. 

(56) 
The minimum of H(z) is then 

H(no) = Tono - t[no(no + 1)]1 I e"oe-9'a 
11>0 

= Tono - I I [T" + noe .. o 
11>0 

- (T! + 2T .. noe .. o - noe!o)l], (57) 

while the corresponding mean particle number is, from 
Eq. (42), 

A(no) = no + I I [(Ta + noello) 
11>0 

X (T! + 2T"noe .. o - noe!o)-l - 1]. (58) 

From Eq. (57) and (58) it is easy to chart the relation 
between energy and particle numbers for any particular 
choice of the 'P,,(x). 

In particular, we may consider the case ofa Coulomb 
system in a finite box of side L with periodic boundary 
conditions, and use for 'P .. (x) the plane-wave states 

'Pix) = L-~ exp [(27Ti/L)(j' x)], (59) 

where j = (h ,j2 ,js) is a triplet of integers. Strictly 
speaking, the 'PsCx) for j =;6 0 should be taken to be 
sines and cosines rather than running waves, but Eq. 
(59) gives the correct values for the kinetic and 
exchange energies, 

T; = (27T2/i2j2/m£2), 

ejO = (e2/L7Tp). 

(60) 

(61) 

We find then from Eqs. (57) and (58), 

[H(no)/no] = -(2/7T)[87TPoW]tJRy, (63) 

[p/po] = 1 + (2/7T)[87TpoOS]-tJ', (64) 
with 

J = LX> dx[x4 + 1 - X
2
(X

4 + 2)1], (65) 

J' = LX> dx[(x4 + 1)(x4 + 2)-1 - x2
], (66) 

J = (2i /5)[r(l)r(1)/r(!)] = 0.81 ... , (67) 

J' = (2-i /3)[r(l)r(!)/r(1)] = 0.52' . '. (68) 

These results exactly coincide with the leading terms 
of the perturbation-theory calculations,3 which are 
valid in the limit when PollS and pa3 are large. 

In one respect we have gone beyond the pertur­
bation-theory results. Since Eqs. (63) and (64) are 
exact for our particular choice of wavefunction, they 
set upper bounds to the energy per particle in the true 
ground state. Now, there is a discrepancy between the 
various calculations of the second term in the pertur­
bation expansion of the ground-state energy. Girar­
deaus obtained a term in log [po03] with a positive 
coefficient, while Lee and Feenberg3 obtained only a 
constant term which has recently been confirmed by 
Brueckner. 7 Our calculation provides additional 
evidence that no positive logarithmic term can exist. 

VI. RIGOROUS UPPER BOUNDS 

To prove a rigorous upper bound of the form (2) 
for a finite system, it is inconvenient to use the 
optimum choice for the parameters A .. given by Eqs. 
(55) and (56). Instead, we make the simple choice 

Ao = I, A. .. = I for IX = 1, ... , Q, (69) 

where Q is an integer to be fixed later, and take A. .. = 0 
for IX > Q. Then Eqs. (41), (42), (43), and (54) give 

no = z(1 - Z)-1, n .. = z(4 - z)-1, IX = I, ... , Q, 

(70) 

N(z) = (1 - z)-l(1 - !zr1Q, (71) 

A(z) = z(1 - Z)-1 + Qz(4 - zr\ (72) 

H(z) = [To - 1 ~ ello}(1 - Z)-1 

+ [~(TII - ie,,0)}(4 - Z)-1. (73) 

We go to the limit of an infinite uniform system of By Eqs. (22), (23), (24), H2N is the coefficient of zN 
density P by letting L _ 00 with in (N(z)H(z», divided by the coefficient of zN in N(z). 

(62) 7 K. A. Brueckner, Phys. Rev. 156, 204 (1967). 
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Now 
N(z)A(z) = 2z(d/dz)N(z) (74) 

has coefficients equal to those of N(z) multiplied by 
2N. Therefore 

H2N = 2N[ To - 1 ~ e .. oJ 
+ PN[~ (T .. + l(Q - 2)e .. o) - QTo} (75) 

where PN is the ratio of the coefficients of ZN in 
(z(4 - z)-lN(z» and N(z). For large Nand Q we have 
approximately P N = 1-; it is easy to prove rigorously 
for all Nand Q that 

PN < 1. (76) 

Hence Eq. (75) implies that 

H 2N < f T .. + (2N - Q{ To - 1 ~ e .. o 1 (77) 

For the theorem, we are interested not in H 2N , which 
is the average energy of a mixture of states of different 
charge, but in H N,N which is the energy of a pure 
state of charge zero. It is highly plausible that 

H n ,2N-n ~ HN,N, n = 0, 1, ... ,2N, (78) 

so that the neutral state has the lowest energy of all 
states of 2N particles. If Eq. (78) were true, then by 
Eqs. (25) and (26) 

negative. We need the T" to be as small and the e .. o to 
be as large as possible. Fortunately, these two 
requirements work in the same direction, since T .. 
and e .. o are approximately reciprocals of each other. 
There is a strict inequality 

e,.{Jt"{J > 417e2(r "{J)2, (84) 
where 

' .. {J = f( V',,(x)V'{J(X»2 dax, (85) 

t,,{J = JIv(V'''(X)V'p(X»12 dax. (86) 

Equation (84) follows immediately from Schwarz's 
inequality when the integrals e"{J' r,.{J' t"{J are written 
in terms of the Fourier transform of (V' .. V'{J)' Now, r,,{J 
is just a measure of the mean density of particles, 
while ta{J is closely related to (Ta + T{J)' so that 
Eq. (84) gives an inverse relationship between eaO and 
T". We must therefore choose the V',,(x) to make the 
T .. as small as possible for a given over-all particle 
density. 

Guided by the heuristic argument of Sec. II, we 
choose a length A which fixes the mean particle 
density, and write 

V';(X) = (~tllsin[Cnj~x~J (87) 

(79) for points x within the cube 
However, we have not proved Eq. (78) and therefore 
we do not make use of it. Instead we use the fact that 
the ground-state energy EN+ N- of a system of N+ 
positive and N_ negative charges is a decreasing 
function of both N+ and N_. The decreasing property 
follows from the consideration that any added 
particle can be placed infinitely far away from those 
already present without increasing the total energy. 
Also, 

E2N,O = Eo,2N = O. 

Therefore Eq. (25) gives 
2N-l 

(80) 

n2NH 2N ~ L I <l>n,2N-n I 2 
En ,2N-n ~ n2N E2N-l,2N-l, 

n=l 

and so 
(81) 

(82) 

From Eqs. (77) and (82) we see that, whether N is 
even or odd, 

EN < ~ T .. + (N - Q)[ To - ! ~ e .. oJ (83) 

It now remains to choose the functions V' .. (x) so 
as to make the right side of Eq. (83) large and 

o < x~ < L, f-t = 1,2,3, (88) 

with V'j(x) = 0 outside the cube. The indexj represents 
a triplet of strictly positive integers. We then have 

Tj = t,172j2(/i2/mA2). (89) 

Instead of j we may use the index (x, which labels the 
triplets j in increasing order of p. Equations (84)-(87) 
give 

(90) 

(91) 

e .. oT .. ~ (417/3) (eW/mAS). (92) 

Without any attempt to find the best numerical 
coefficients, we write 

p S 6(Xf for (X ~ 1, (93) 

and deduce from Eqs. (89) and (92) 

~ T .. S 317
2Qt

(m:2) , (94) 

f e .. o ~ (.i.) Q1(e2/A). 
1 917 

(95) 
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Assembling Eqs. (83), (89), (94), and (95), we find 

EN < 31T2(!N + Qt)(1i2/mA2) 

- (4/271T)(N - Q)Ql(e2/A). (96) 

It is of interest to compare this estimate (96) with 
the considerations of Sec. II. The physical meaning 
of the estimate is somewhat obscured by the use of 
Eq. (84) to avoid a direct but tedious calculation of 
the e .. o. The physical basis of Eq. (95) is the fact that 

where 

~ e .. o = e2ff g(x, y) Ix - yl-1 dax daY, (97) 

Q 

g(x, y) = 1flo(x)'Po(Y) ~ 'P .. (x)'P..{Y) (98) 
I 

is a measure of the short-range two-particle correlations 
in the wavefunction (17). If we introduce the corre­
lation length 

A = Q-tA, (99) 

then the function g(x, y) has a sharp peak of mag­
nitude (A.A)-a extending over the volume Ix - yl f"o.J A. 
The right side of Eq. (97) will be of the order (e2/A), 
which agrees with Eq. (95). Thus the three terms on 
the right of Eq. (96) correspond exactly to the three 
terms of Eq. (6), whose magnitudes were estimated 
in Eqs. (7), (11), and (8). The precise inequality (96) 
fully confirms the correctness of the earlier heuristic 
argument. 

To complete the proof of Eq. (2), we take in Eq. 
(96) Q = (!N)!. This gives 

EN < 31T2NW/mA2) - (l81T)-lN!(e2/A). (l00) 

Finally we take 

A = 1081TaN-t(1i2/me2), (101) 

and Eq. (100) becomes 

EN < - [19441T4]-lNt Ry, (102) 

which proves the theo~m. 

vn. CONCLUDING REMARKS 

It would be easy to obtain a more reasonable 
numerical coefficient in Eq. (102). We know that for 
all N 

EN < -!NRy, (103) 

because N separated positronium atoms form a 
possible state of N positive and N negative charges. 

On the other hand, for large N we can use much better 
numerical estimates than Eqs. (76), (93), (94), (95). 
The combination of Eq. (103) for small N with 
improved estimates for large N will give a coefficient 
in Eq. (102) which is not enormously less than unity. 

More interesting than making piecemeal improve­
ments is the determination of the best possible 
coefficient Al in Eq. (2). A plausible conjecture is that 
( - AJ should be the minimum of the quantity 

Q(q;) = f IVq;(xW dax - (2/1T)(81T)iJ f'q;(X),t dax, 

(104) 
minimized over all functions q;(x) with 

f lq;(x)12 dax = 1, (105) 

the coefficient J being given by Eq. (65). This con­
jecture results from a Thomas-Fermi type of approxi­
mation, in which it is assumed that the total energy is 
a sum of kinetic and correlation energies, the corre­
lation energy being a function only of the local density 
according to the perturbation-theory formula (63). 
The minimization of Q(q;) will give a nonlinear 
equation for q;(x) , similar to the Thomas-Fermi 
equation, which could be solved numerically once 
and for all. The minimizing 1q;(x)12 will give the shape 
of the density distribution in the ground state of 2N 
particles. We conjecture that this recipe will give the 
best possible coefficient Al in our theorem, at least 
in the limit N --+ 00. We have no idea at present how 
the conjecture might be proved. 

The main part ofthe work of this paper (particularly 
Secs. III and IV) does not require a Coulomb inter­
action, but would apply to a system of bosons with 
any two-particle interaction bilinear in the charges, 
provided that there is no hard core. For example, if 
the Coulomb potential in Eq. (1) were replaced by a 
potential 

VCr) = ern, 0 < n < 2, (106) 

then the ground-state energy EN would satisfy 

EN < _AN(IO-an)/(IO-5n). 
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. It is shown t~t K ~ t.uo for a system of fermions. K is <~/2m>, and .uo is the Fermi energy of an 
Ideal gas of fermIons of the same mass, and at the same denSity, as the system under consideration. 

THIS paper derives a rigorous lower bound for the 
mean kinetic energy of a one component system of 

fermions in thermal equilibrium. The analogous 
result for bosons is seen to be trivial. 

The system under consideration has a Hamil­
tonian given by 

N p2 
Ho = !_i + V. 

i=12mO 

(1) 

The potential V is completely arbitrary, except for 
the requirement that the partition function, 

Z = Tr [exp (-f3H)] 

exists. For the purposes of the proof we consider a 
comparison system with Hamiltonian 

N p~ 
H = ! -' + V. (2) 

i=12m 

The potentials V of Eqs. (1) and (2) are the same, and 
we require that 0 < m < mo. We further define 

N p~ 

HI = H - Ho =! -' , (3) 
i=12m l 

mIl = m-l _ mol. (3a) 

That is, HI is the Hamiltonian of an ideal gas of 
particles with mass ml • 

Let F(H, (3) denote the Helmholtz free energy of a 
system with Hamiltonian H and temperature T; 
f3 = (kT)-I. Then the inequality of Gibbsl and 
Bogoliubov2 states that 

F(Ho, (3) + (H - Ho)o ~ F(H, (3), (4) 

where the brackets denote a thermal average with 
respect to the statistical operator of Ho. In addition, 
there is an inequality recently derived by Falk3 which 

• Supported by a National Science Foundation Grant GP·6002. 
1 J. W. Gibbs, The Collected Works (Yale University Press, 

New Haven, Connecticut, 1948), Vol. II, p. 131, Theorem III. 
Naturally, Gibb's proof is only for classical systems. 

• N. N. Bogoliubov (unpublished); cited in footnote 4 of V. V. 
Tolmachev, Dokl. Akad. Nauk SSSR 134, 1324 (1960) [English 
transl.: Soviet Phys.-Dokl. 5, 984 (1961)]. 

a H. Falk, J. Math. Phys. 7, 977 (1966). (Penultimate equation, 
first column, p. 978, with y = 0.) 

states that 

F(H, (3) ~ F(Ho, 2(3) + F(HI , 2(3). (5) 

Since we know from thermodynamics that 

the entropy, F must be an increasing function of f3. 
Hence 

F(Ho, 2(3) ~ F(Ho, (3). (6) 

Combining (4), (5), and (6), we can eliminate all 
mention of F(H, (3) and conclude that 

(7) 

F(HI' 2(3) is the Helmholtz function of an ideal gas of 
mass ml at a temperature t T. Now 

(H - Ho)o = (mo/ml)NK, 

where K = (P2/2mo)o. Hence 

K ~ (ml/moN)F(HI' 2(3). 

(8) 

(9) 

Equation (9) is a general result, independent of the 
statistics obeyed by the particles. For the bose case, 
however, the free energy of the ideal gas is always 
negative; since H - Ho is a positive semidefinite 
operator, Eq. (9) does not teach us anything. We 
henceforth confine ourselves to the Fermi case. 

The auxiliary mass m can be chosen to be arbitrarily 
small; hence ml can be made arbitrarily small. 
Therefore, at any finite temperature and any positive 
density, the ideal gas described by HI can be made 
extremely degenerate, so that F(Hl' 2(3) can be 
replaced by (I)Npl' Here PI is the Fermi energy of an 
ideal gas of mass mi' Furthermore, since the Fermi 
energy is given by 

P = (h2/8m)(3N/1TO)f, (10) 

where 0 is the volume of the system, we have 

(ml/mO)pl = Po, (11) 

where Po is the Fermi energy of an ideal gas of mass 

1546 
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mo. Our final result is, then 

(12) 

where "'0 is the Fermi energy of an ideal Fermi gas of 
particles of the same mass and at the same density 
as the system under consideration. 

The result (12) is somewhat reminiscent of the 
Hugenholtz-van Hove theorem.4 It is less powerful 
since it is an inequality. On the other hand, it is not 
restricted to zero temperature, and, being independent 
of the nature of the forces, will also be valid when the 

, N. M. Hugenholtz and L. van Hove, Physica 24, 363 (1958). 

JOURNAL OF MATHEMATICAL PHYSICS 

forces can produce bound states not accessible by 
perturbation theory, as in superconductors. 

We give one example. For liquid He3 , the zero­
point kinetic energy has been estimated to be of the 
order of 60 cal/mole,5 although this is probably 
somewhat high. The right-hand side of our inequality 
is 5.8 cal/mole. In this case, the lower bound does not 
yield much of practical interest, but this is perhaps too 
much to expect for an estimate which utilizes ab­
solutely no information about the dynamics of the 
system. 

6 F. London, Superftuids, (John Wiley & Sons, Inc., New York, 
1954), Vol. II, p. 165. 
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Empty Space-Times Algebraically Special on a Given World 
Line or Hypersurface 

C. D. CoLLINSON 
Department of Applied Mathematics, University of Hull, Hull, England 

(Received 9 December 1966) 

The null.tetrad fo~alism o~ Newman a~d Penr.ose is used to investigate empty space-times which 
are algebraically special on a given world hne. It IS found that, when the world line is timelike the 
spa~-time admits a congruence which is geodesic and shear-free on the world line. A similar res~lt is 
obtamed for those empty space-times which are algebraically special on a given space like hypersurface. 

1. INTRODUCTION 

THE four null directions corresponding to the 
vectors Pi satisfyirig the equation 

P[iC']k![mPn]pkp! = 0 

are called principal null directions of the Weyl tensor. 
Space-times for which two or more principal null 
directions coincide are algebraically special and the 
vector Pi corresponding to the repeated principal null 
direction satisfies the equation 

C'k![mPn]pkp ! = O. 

An important geometrical characteristic of alge­
braically special empty space-times is that the repeated 
principal null direction is geodesic and shear-free.1 

The purpose of this paper is to investigate those 
empty space-times which are algebraically special on 
a given submanifold. The following two theorems are 
proved. 

1 A. Lichnerowicz, Compt. Rend. 246, 893 (1958). 

Theorem 1: Let V be a locally empty space-time 
(with C5 metric) which is algebraically special but not 
flat on a given world line W. Let 1 be a principal null 
direction of the curvature tensor which, on W, points 
in the repeated principal null direction. Then: 

(a) if W is null, 1 is shear-free on W; 
(b) if W is timelike, 1 is geodesic and shear-free 

on W. 

Theorem 2: Let V be a locally empty space-time 
(with C5 metric) which is algebraically special but not 
flat on a given spacelike hypersurface S. Let I be a 
principal null direction of the curvature tensor which, 
on S, points in the repeated principal null direction. 
Then I is geodesic and shear-free on S. 

2. NOTATION 

Newman and Penrose2 introduce at each point of 
space-time a tetrad of null vectors Ii, ni, mi, and fiji 

2 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
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satisfying the orthonormaIity conditions and Penrose is used here, namely 

lin, = -mimi = 1, limi = nim, = mim, = O. (2.1) 

The propagation of the tetrad is specified by certain 
linear combinations of the (complex) Ricci rotation 
coefficients, a called the spin coefficients. The spin 
coefficients 7", IC, p, and (1, introduced by the equation 

I,;,m' = 7"/, + ICn, - pm, - ami' 

are closely related to the geometry of the null con­
gruence defined by the tetrad vector Ii. In particular 
the congruence is geodesic if IC = 0, and shear-free if 
a = 0.' 

The Weyl tensor of a space-time is specified by five 
complex tetrad components "Po, "PI' "P2, "Pa, and "P,. 
The empty space-time Bianchi identities can then be 
written 

Dlpl - 5"Po = - 31C"P2 + [2£ + 4p)"P1 

- [-17 + 41X)"Po, (2.2) 

DIps - 5"PI = - 21C"Pa + 3 P"P2 

- [-217 + 21X)"P1 - A"Po, (2.3) 

D"Pa - 5"P2 = -IC"P, - [2£ - 2p )"Ps 

+ 317"P2 - 2A"PI' (2.4) 

D"P, - 5"Pa = -[4£ - p)"P, 

+ [477 + 21X)"Pa - 3A"P2' (2.5) 

ll"Po - lJ"Pl = [4y - .u)"Po 

- [47" + 2P)"Pl + 3a"P2' (2.6) 

ll"Pl - lJ"P2 = 'JI1fo + [2y - 2.u)"Pl 

- 37"'IjJ2 + 2a"Ps, (2.7) 

ll"P2 - lJ"Pa = 2'J11fl - 3.u"P2 

+ [-27" + 2P)"Pa + a"P" (2.8) 

ll"Pa - lJ"P, = 3'J11f2 - [2y + 4.u)"Pa 

+ [-7" + 4Pl"P,. (2.9) 

Here D, ll, and lJ are the intrinsic derivatives defined 
by 

D,p = ,p .Ii, ll,p = ,p ini, and lJ,p = ,p imi. . , , 

The intrinsic derivatives do not commute. In particular, 

lJD - DlJ = (oc + P - ';;)D + ICll 

- (1S - (p + £ - i)lJ. (2.l0) 

Only one of the field equations developed by Newman 

a L. P. Eisenhart. Riemannian Geometry (princeton University 
Press. Princeton, New Jersey. 1925). 

, R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961). 

Da - lJlC = (p + p)(1 + (3£ - i)a 

- (7" -.;; + oc + 3P)1C + "Po' (2.11) 

When space-time admits a preferred direction 
corresponding to a (normalized) vector Vi the tetrad 
vectors Ii and ni can be chosen so that 

(2.12) 

where c is + 1, -1, or 0 according as Vi is timelike, 
spacelike, or null. A short calculation shows that those 
tetrad transformations which leave invariant the 
orthonormality conditions (2.1) and the vector (2.12) 
are 

(2.13) 

and Ii' = A(/i + aani + ami + ami), 

ni
' = A(ni + c2aali - cami - cami), 

mi' = A(mi - ca2mi - cali + ani) 

with A = (1 + cati)-l. (2.14) 

Under (2.14) the tetrad components of the Weyl 
tensor transform as follows: 

N , 

I. NCica)N-1"P; = A2-N I. 'C1a1"Pl' 
1=0 I=N 

for N = 0, ... ,4. (2.15) 

Using this transformation the tetrad vector Ii can be 
chosen to correspond to a principal null direction of 
the Weyl tensor. With this choice "Po = O. If the space­
time is algebraically special, the tetrad vector Ii can be 
chosen to correspond to the repeated principal null 
direction and then "Po = "Pl = O. 

3. PROOF OF THEOREM 1 

Let the vector (2.12) be tangent to the given world 
line W. Let P be an arbitrary point on W. A given 
function,p is zero at all points of Wonly if the function 
and its derivatives in the direction ni + eli are zero at 
point P. In terms of intrinsic derivatives 

,p !:: (ll + cD),p ~ (ll + CD)2,p !:: 0, 

where!:: denotes equality at P. Since P is chosen 
arbitrarily on W the equality 

,p!::0 
implies 

(ll + cD),p ,t;, (ll + cD)2,p !:: O. 

This last remark saves a lot of calculation, although 
the results can also be obtained analytically. 

Choosing the tetrad vector Ii to correspond to a 
principal null direction of the Weyl tensor which, on 
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W, points in the repeated principal null direction 
yields 

"1'0 = 0, (3.1) 

"1'1 ~ (.1. + CD)"I'1 ~ (~ + CD)2"1'l ~ O. (3.2) 

Under (2.13) "1'1 transforms as 

"I'~ = eO' "1'1 . 

This transformation can therefore be used to make 

"1'1 = if1' (3.3) 

Obtaining rSD"I'l and DrS"I'1 from (2.2) and (2.6), 
substituting into the commutator (2.10), using Eqs. 
(2.3), (2.7), and (2.11) to eliminate DfJ'2' {)"I'2. and 
Da - ()K, respectively, and putting "1'0 = 0 gives 

4ad"l'l - 4K~"I'1 + 2"1'1 [ -5"1'1 - 2~K + 26a 

+ K(tOy + 2'9 - 2ft) + a(-lOoc - 27' + 2P)] = O. 
(3.4) 

From Eq. (3.3) 

J"I'1 = ({)"I'J. 

and this can be eliminated using (2.6). Also 

.1."1'1 = (~ + CD)"I'l - CDfJ'l = (~ + CD)"I'l - C(D"I'l), 

and (D"I'l) can be eliminated using (2.2). Equation 
(3.4) then becomes 

-12(aii' + CKK}ip2 - 4K(~ + CD)"I'l + "I'1F = 0, 

(3.5) 
where F is a function, not necessarily zero. 

Equation (3.5) can be used to prove 

ajj + CKK ~ O. 

The method is by reductio ad adsurdum. Suppose 
hereafter that 

second derivatives commute at P. Differentiating (3.5) 
now gives 

-12(ajj + CKK)Dif2 ~ 4KD(.1. + CD)"I'l 
p P 
= 4K(.1. + cD)D"I'l = O. 

Hence 

Similarly, 

and so 

p 
D"I's = O. 

p p ~ P 
.1."1'2 = {)"I'2 = 0"l'll = 0, 

(3.8) 

(3.9) 

(~ + cD)DfJ'2 £: (~ + CD)~"I'2 £: (~ + CD){)"I'2 

£: (~ + cD)d"l'2 £: O. (3.10) 

Substituting (3.8) and (3.9) into (2.3) and (2.7) yields 
p p 

K"I's = a"l's = O. 

Hence, since both K and a cannot vanish at P, 
p 

"1'3 = O. 

Differentiating (2.2) and using (3.8) and (3.9) gives 

DD"I'l ~ ~D"I'l £: lJD"I'l £: O. (3.11) 

Differentiating (3.5) twice now gives 

-t2(aij + CKK)DDifs 

£: 4KDD(~ + CD)"I'l 

£: 4KD(~ + cD)D"I'l + D (first derivatives of "1'1) 

£: 4KD(.1. + cD)D"I'1 + first derivatives of D"I'1 

£: 4KD(~ + cD)D"I'1' (3.12) 

Substituting (2.2) into the right-hand side of (3.12) 
gives 

-12(ajj + CKK)DDif2!:.. -12KIlD(.1. + CD)"I'2 

£: -12K2(~ + CD)D"I'2 £: O. 
Hence 

From (3.5) 

p 
ajj + CKK :;e O. 

P 
"1'2 = 0 

DDih £: O. 

(3.6) From (2.3) and (2.4) 

and so 
(~ + CD)"I'2 !.. (~ + CD)~2 ~ O. (3.7) 

Substituting (3.6) into (2.2) and (2.6) yields 

D"I'l J; {)"I'1 ~ 0 
and also, from (3.2) and (3.3), 

d"l'l J; ~1 J; O. 
Hence 

(~ + cD)D"I'l ~ (~ + CD){)"I'l J" (d + CD)~"I'l 
,!;. (.1. + CD)J"I'l £: O. 

Since all the first derivatives of "1'1 are zero at P, the 

DDifs £: -2KDifa !::. 2R~4 !::. O. 

Similarly it can be shown that 

JJifa !::. - 2jjJifa !::. 2jj~4 !::. O. 

Since both a and K cannot vanish at P, 

"1', !::. O. 

This contradicts the hypothesis that the space-time 
is not fiat a.t P. Hence 

ajj + CKK !::. O. 

If W is null, c = 0 and therefore a £: O. If W is time­

like, C = 1 and therefore a ~ K !::. O. Since the point 
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P was chosen arbitrarily on W, the theorem is proved. 

4. PROOF OF THEOREM 2 

Let the vector (2.12) be normal to the given hyper­
surface S. Then S is generated by the three real 
tangent vectors 

(ni - ell) l.fi. (m' + mt) I Ji. and i(mi - mt) 1../2. 
The transformation (2.13) can again be used to make 

But from (4.3) and (2.2), 

and so 

Hence 

and again 

AVll ~ Clftpl 1:.. 0, 

p 
ClVla = O. 

p 
VIa = 0, 

P 
~Vl3 = O. (4.8) 

VII = ;Pl' (4.1) Substituting (4.8) into (2.8) gives 

Let P be an arbitrary point of S. Choosing the tetrad 
vector Ii to correspond to a principal null direction 
of the Weyl tensor which, on S, points in the repeated 
principal null direction, now yields 

8V12 !.. ClVl4' 
From (4.6) and (2.3) 

"p P L.lVl2 == C lftpr. = 0 

Vlo = 0, 

Vl1 P (8 - eD)Vll !.. ~Vll P O. 

and so 
(4.2) 

(4.3) or 
and P 

Vl4 = O. 
(8 - cD)'Vll P (8 - CD)&tpl P OSyll 

J:.. ~(8 - CD)1jJl J:.. ~J1jJl = O. 
This contradicts the hypothesis that the space-time 

(4.4) is not flat at P. Hence 

CI ~ O. Following the proof of Theorem I, 

Clli - CKK P O. (4.5) Substituting this into (45), with C = -1. yields 

If C = -1, that is, if the hypersurface Sis timelike, a 
and K both vanish on S. The more interesting case is 
when c = + 1. Equation (2.6), with the conditions 
(4.3), yields 

p 
ClVls == O. 

Suppose hereafter that 
p 

a ¢ O. 
Then 

P 
VIs = O. 

As in the last proof, because P is chosen arbitrarily 
onS, 

and 
P 

&tp2 = O. 

Substituting (4.7) into (2.7) gives 

8V11 ~ 2a1jJa. 

(4.6) 

(4.7) 

K ~ O. 

Since P was chosen arbitrarily on S, the theorem is 
proved. 

5. REMARKS 

The methods employed here can be used to investi­
gate space-times algebraically special on a given two­
dimensional submanifold M. The only technical 
difficulty is that both normals to the submanifold 
cannot be given a simple canonical form. For this reason 
an unknown complex function appears in the work. 
The analysis gives no indication that the congruence 
I should he geodesic and shear-free on M, except in 
the trivial case when M contains a timelike world line. 
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An. associative algebra of continuous operators in a rigged Hilbert space, which contains the en­
velopmg algebra of the Poincare group and gives rise to a discrete mass spectrum, is studied. In 
Appendix B some general results on the representation of Lie algebras in a rigged Hilbert space are 
denved. 

1. INTRODUCTION 

A TTEMPTS to combine the Poincare group ~ with 
.l"\.. an intrinsic symmetry group to obtain a mass 
formula as a property of an enveloping algebra 6(G) 
of a large group G, containing ~ and the intrinsic 
symmetry group, have been unsuccessful. According to 
O'Raifeartaigh's theorem,l the momentum operators 
P p can not be in the Lie algebra of such a group G. 
Therefore, keeping the general concept of the dynam­
ical group approach,2 but dropping the restriction to 
an enveloping algebra 6(G) of a group G, might 
overcome the difficulties. The first attempt in this 
direction has been undertaken by Werle,3 who sug­
gested using an algebra that is not an enveloping 
algebra of a group. 

In a recent work4 it has been suggested to describe 
a physical system by an algebra .:It; C L(e/» of con­
tinuous operators in a rigged Hilbert space 

e/> c :Ie c e/>x. 
In the frame of this program we want to try to 
construct an associative algebra .:It; containing the 
enveloping algebra of the Poincare group 6(~) 
and giving rise to a mass formula. That this associative 
algebra .:It; cannot be the enveloping algebra of a Lie 
group is a consequence of the O'Raifeartaigh 
theorem,l which is valid for enveloping algebras of 
continuous operators in a rigged Hilbert space.4 

2. DEFINING RELATIONS OF THE ALGEBRA 

In the present work we study a simple model to learn 
about the mathematical problems involved; in a 

• Supported in part by the U.S. National Science Foundation 
and the U.S. Atomic Energy Commission. 

1 L. O'Raifeartaigh, Phys. Rev. Letters 14, 332 (1965). 
2 (a) A. O. Barut, in Proceedings of Seminar on High Energy 

PhYSiCS, Trieste (1965) (IAEA, Vienna), and references therein; 
A. Bohm, in Proceedings of Seminar on Elementary Particle Physics, 
Boulder, Colorado (1966) and references therein. (b) N. Mukunda, 
L. O'Raifeartaigh, and E. C. G. Sudarshan, Phys. Letters 19, 322 
(1965). 

3 J. Werle, preprint I.C./65/48, Trieste (1965). 
• C. M. Andersen, A. Bohm, and A. M. Bouncristiani, "Rigged 

Hilbert Space and Mathematical Description of Physical Systems," 
Boulder Lectures, Mathematical Methods (1966). 

forthcoming work we will consider a more realistic 
case, and compare the results with experimental data. 
Our model, in which the (noncompact) intrinsic 
"noninvariance" group2b is SL(2, c) and the intrinsic 
symmetry group is SU(2), will provide a generalization 
of the mathematical structure of the rotator model.4- 6 

The physical interpretation, however, will be different; 
i.e., the generators of the algebra will represent 
different physical observables. The associative algebra 
.:It; , as the mathematical image of this model, is 
generated by 

Pp.' Lp... M, ft, 'P = 0,1,2,3, 

Ii' F;, i= 1,2,3, 
(1) 

in which the multiplication is defined by the relations? 

[LilY' Lpa] 

M2 = Pp.pll, [PIl ' Py] = 0, 

[Pp, Lp..J = i(gp.pPy - gypPp.), 

= i(gp.pLya + gyaLp.p - gp.uLyp - gypLp.u), (2) 

[Ii,Ij]=iEdIk' (3) 

[Ii' F j ] =iE;lFk, [Fi , F j] ='-iE;llk, (4) 

[Lp.y, Ii] = 0, [Lp.y, Fi] = 0, (5) 

[Pp., Ii] =0, (6) 

[MPI' , FiM ] = ibEl!{Ik' FI}Pp., (7) 

(8) 

[b is a universal constant of the dimension (MeV)2; 
in the units we use, Ii = c = 1.] We see that the 
subalgebra generated by P Il' Lllv is the enveloping 
algebra of the Poincare group 6(~), so that Pp., LI'Y' 
and M have the usual physical interpretation. The 
subalgebra generated by Ii is the enveloping algebra 
of SU(2), which we want to call the isospin of our 
model; the subalgebra generated by Ii' F; is 

5 A. O. Barut and A. Bohm, Phys. Rev. 139, 1107 (1965). 
• A. Bohm, Nuovo Cimento 43, 665 (1966). 
7 Notation [A, BJ = AB - BA; {A, B} = AB + BA. 
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&(8L(2, c», so that the Fi are the step operators 
transforming the different isospin states into each other. 

We always want to assume that M2 is a positive 
operator; i.e., (j, M2J) ~ m~(j,f), m~ > 0 for every 
f of the representation space, which is a physical 
assumption excluding zero-mass particles from our 
consideration. As we see later, this assumption 
amounts to an appropriate choice of the irreducible 
component of A, describing our physical system, and 
is always possible. 

3. LIMIT OF ZERO-COUPLING CONSTANT 

In addition to the above properties, A goes into 
the enveloping algebra of the direct product :r x 
8L(2, c) if the coupling constant b -- O. To prove 
this, it is sufficient to show that 

[PI' ' Fi ] -- 0 for b -- O. 

For b -- 0, (7) goes into 

MPI'Fi - FiMPI' = 0, 

which together with (8) gives 

{PI" [M, Fi ]} = 0, 

which can only be fulfilled if 

[M,Fi ] = o. 

(9a) 

(9b) 

(9c) 

(12) is an immediate consequence of (13). The operator 
of the spin component 

S = rep) ry = ra _ ro P 
a 3 M M M(M + Po) 3 

also belongs to this system of commuting operators 
because of relations (5) and (6). 

The Casimir operators of 8L(2, c) 

tl=F2-I2,I·F 

are also already invariant operators of A. That tl 
and I· F commute with LI'Y follows from relation 
(5); we still have to show that 

[PI" tl] = [PI" F2] = 0 (14) 
and 

[PI" FiJi] = O. (15) 

Proof of (14). From (10) we obtain, using (13), 

[PI" Fi]E' = [M, Fi]E'(PI'/M), 
which is 

PI'FiE' - F.E'PI' - Fi[PI' , Fi ] 

= (MFiE' - FiPM - Fi[M, pi])(PI'/M). 

Again using (10), we obtain 

(16) 
From (21) 

From this we obtain 

[PI" Fi ] = 0 

because of the equation 

[MI, Fi ] = ibEikl{lk, F/}, 

(9d) which is derived later, it follows that 

[M2, FiE'] = ibEikl{{/\ FI}, pi}. 

[PI' ' Fi]M = [M, Fi]PI' ' (10) Using 

which is an immediate consequence of relation (8). 

4. SYSTEM OF COMMUTING OPERATORS 

We want to find an appropriate complete system 
of commuting operators (CSCO). Since we assume 
that the physically preparable states are eigenstates 
of 13 and 12, we choose the CSCO such that 13 and 
12 belong to it. The spin operator 

{{/k' FI}, Fi } = {lk, {FI' Fi }} + (<5:<5kl - 15,,15;)/ .. 

which follows from relation (4), we obtain 

[M2, FiFi] = ibEikl{lk{FI, Fi}} = O. 

Therefore [M, FiP] = 0, and (14) follows from (16). 

Proofof(15). From (13) we obtain 

[MPI',Fi] = {PI" [M,Fi ]} (17) 

r ( P) lr r r and from (7), (8), and (6), = - PpP - I' ", " = tE"yp"P'I!Jtl (11) 

is already an invariant operator of A. To prove this, 
it remains to be shown that 

[r, Fi ] = O. 

From relation (8) we obtain 

[P,,/M, Fi ] = 0, 

(12) 

(13) 

an equation "derived" before by Werle,a.s Equation 

[MP" , Fi]Ji = ibfi:ikl{//C, FI}Ji(P,,/M) = 0 (18) 

because fi:ik/{/\ £l}/i = 0 as a consequence of (4). 
Thus we obtain from (17) and (18) 

{PI" [M, Fit]} = 0 
or 

(19) 

From (10) follows 

[P", FJi] = [M, Fi]/i(PI'/M), 
8 Equation (8) is only another way of writing this relation of 

Werle. and therefore from (19) we obtain (15). 
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It follows in particular from (14) and (15) that MI 
commutes with Cl and I· F, so that M2 belongs to 
the system of commuting operators 

F2_12, I.F, la, II, Sa. (20) 

However, MB is not an invariant operator of A 
because 

[M2, Fi) = ib&ikl{lk, FI} #= O. (21) 

Proof of (21). From (7) we obtain 

ib&ikl{lk,F'}(Pp/M) = [MPp, Fi); 

multiplying with Pp/M from the right and using (13), 
we obtain (21). 

Comparing (21) with 

[12, Fi ] = {lk[lk' Fi]} = -iEik/{Ik, FI}, 

we see that the operator 

Z = Mil + blS 

commutes with Fi • 

[Z, Fi ) = 0, 

(22) 

(23) 

and we see immediately from the relations (6) and (5) 
that Z also commutes with all the other generators of 
A; thus Z is a new invariant operator of A.9 

Following the convention we also adjoin Pi to our 
commuting system; this is possible because of (6). 
Thus our maximal commuting system is given by 

Z,r,Cl=F2-12, F.I, la, P, Sa, Pi' (24) 

where the first four operators are invariant operators 
of A, the eigenvalues of which characterize our 
physical (model) system. 

S. CONSTRUCTION OF THE RIGGED 
HILBERT SPACE 

To obtain the rigged Hilbert space in which A is an 
algebra of continuous operators, we first consider the 
limiting case b -- O. In this case A -- &(~ x SL(2, c). 
We should therefore start with the representation 
space of &(3') and &(SL(2, c). 

We denote by CPI C Jel ~ cpf the rigged Hilbert 
space in which &(3') is an algebra of continuous 
operators. According to Appendix BI and BII~ this 
is indeed a rigged Hilbert space. The topology m CPI 
is given by the countable set of scalar products 

(25) 

where (., .) is the scalar product in JeI , which is the 
usual Hilbert space for an irreducible unitary repre­
sentation of 3', Je(m, s), and ~3' is the Nelson 

• A has been constructed such that Z is an invariant operator. 

operator of 3' ,10 

~ =.!P2+.!plI+N2 +M2 
3' bOb ' 

1 1 
= -! PpPp + -! LpyLpv. (26) 

b p 2 p .v 

In the case we consider here, where M2 is positive, 
~3' is a positive operator, so that ('P~~ 'P) is already 
a system of norms which is obviously equivalent to 
the system of (Bl). 

In CPI c Je(m, s) c cpf one conventionally uses 
the bases Ipi' sa), which are eigenvectors of Pi and Sa 
and elements of cpx and therefore do not represent 
physically preparable states.ll The physical states are 
the antilinear functionals "P E CPI on cpf : 

(27) 

whereI2 

(Sa'Pi I "P) = "P(lPi' sa» = ("P IPisa). 

To make the subsequent considerations clearer, it is 
useful to introduce a basis of elements of CPI (which 
should be chosen adequately to the measurement 
system), though it is for our consideration irrelevant 
and we could as well work with the states IPisa). We 
denote this basis by I~, 1], "sa), and it is 

I~, 1], " sa) = f dp(p) IPisa)<Pisal ~,1], "sa)' (28) 

The irreducible representation space of &(SL(2, c)) 
characterized by (ko, a) has been constructed in Sec. 
IIC of Ref. 4 and is denoted by CPs c Jes c cpf. Then 
we obtain in 

CPI ® CP2 C Jel ® Je2 C (CPI ® CP2)X (29) 

the rigged Hilbert space for &(SL(2c) x 3').la Here 
Jel ® Jell is the completion of the direct product of 
linear spaces ~ ® Jes and CPI ® CPs is the completion of 
the direct product of the linear spaces CPI ® CPs with 
respect to the projective tensor product topology of 
CPI and CPII.la.14 In CP2 we had the basis IIa, I, (ko, a); 
in CPI we have the basis (28); 

IIa, I, ~, 1], {, sa; (ko, a), s, m) 

= I~, 1], "sa) ® 11,13 ) (30) 
10 The factor lIb is just a scale factor of dimension (MeV)-Z 

converting the dimension (MeV) of P into the dimension 1 of II 
andL. 

11 Cf. Sec. lID in Ref. 4. 
11 We consider antilinear rather than linear functionals. The 

usual notation is (1f3PI I tp) = tp(P, 1f3). 
18 K. Maurin and L. Maurin, Studia Math. 13 (1963). 

it Let 9'} E "'1' 9'~ E "'., and "'1 ® "'. 3 9' = L 9'~ ® 9'~; then 
119'1I~1'~. = LIII9'~11~1 IItp~II~J (where 1I~lIp" are the norm~in"'lI) isa 

norm in "'1 ® "'. and th~ projective tensor product "'~ ® "'. is the 
completion of "'1 ® .p. W1th respect to the topology given by these 
norms. 
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is therefore a basis of <PI ® <P2.15 <PI ® <P2 is then the 
completion of the linear envelope of (30) with respect 
to the projective tensor product topology (in particular 
all eigenstates of 12 are in <PI ® <P2)' 

6. RIGGED IDLBERT SPACE OF A 

We should also expect something like this for the 
rigged Hilbert space of A. One physical system is 
described by an irreducible component of A, which 
is characterized by the eigenvalue of the generators of 
the center of A: 

r - 12 = (1 + a2 
- k~)l, 

F . I = koa1, (31) 

r = S(S + 1)1, Z = zl. 

Thus the invariants (ko, a) and s of &(:1' x SL(2, c» 
are also invariants of A. Therefore an irreducible 
component of A contains only one irreducible com­
ponent of &(SL(2, c» characterized by (ko, a) and 
reduces out with respect to &(SUI(2» generated by 
Ii in the same way as &(ko.a)(SL(2, e»: 

00 

Je(ko, a) = :I Jel, (32) 
I=ko 

i.e., A contains every isospin I ~ ko exactly once. As 
s is an invariant of A, it describes only one spin. 
However, m is no longer an invariant. So we should 
expect instead of (29) a direct sum or integral of (29). 
We therefore take instead of Jel the continuous direct 
sum 

~ = fEEl Je(m, s) d(m2
). (33) 

m'>O 
~o>O 

Let us call the corresponding countably Hilbert space 
~I; then we conjecture in an irreducible subspace of 

~I ® <P2 c Jel ® Je2 c (~I ® <P2)X, 

the rigged Hilbert space for a representation of A. 
In Appendix A it is shown that A is an algebra of 

continuous operators in the countably Hilbert space 

(34) 
where 

with 

() = 12 + ~:r = 12 + (l/b)P~ + (1/b)P2 + N2 + M2 
(36) 

and (".) the scalar product in Jel ® Je2 • From the 
definition of the projective tensor product topology 

16 G. Kothe. Topologische Lineare Rliume (Springer-Verlag. Berlin. 
1960). Vol. I. 

one sees that the topologies of q; and q;1 ® <pp. are 
equivalent. 

7. MASS SPECTRUM IN AN IRREDUCIBLE 
REPRESENTATION 

With these preparations it is now easy to reduce A 
into its irreducible components A •.•. (a.le

o
) and find the 

mass spectrum in an irreducible representation space 
ofA. 

We take the expectation value (eigenvalue) of Eq. 
(22) in the states (30) and obtain 

m2 = z -hl(1 + 1). (37) 

For an irreducible component Az ••• (a.ko) ' Z is a number 
characterizing one physical system together with 
s, (ko, a).16 

For the reducible representation space of A, 

Je = (J EE>Je(m, s) d(m~ ® Je(ko, a»), 

f 
(a.ko) 

= EElJe(m, s) d(m
2
) ® t Jefa.ko)' 

= f d(m2
) t EEl(Je(m, s) Je®f".ko»; (38) 

i.e., the direct sums over I and m are independent 
such that, for a given I, Je(m, s) ® JeI is contained in 
Je for any m. In the representation space Je(z, s, ko, a) 
of the irreducible component A •.•. (ko.a) , for a given 
I only that Je(m, s) ® JeI can be contained in 
Je(z, s, ko, a) for which m = mI given by (37). Thus 
reducing Je out with respect to Z we obtain from (38) 
by reordering the direct sums according to (37): 

Je = f dz t EB (Je(mI' s) ® JeI)( •••• ko.a)' 

= J dz EB Je(z, s, ko, a). (39) 

Thus we obtain the canonical triplet of spaces of an 
irreducible component of A •.•. (ko.a): 

<P c Je(z, s, ko, a) c <px , (40) 

where <P is the irreducible subspace of ~ with the same 
topology given by (35). <P is even nuclear, so that 
(40) is the rigged Hilbert space of our system. 
According to theorems by Grothendieck, the direct 
product, the direct sum, and the completion of 
nuclear spaces are again nuclear. By this the nuclearity 
of <P follows from the nuclearity of <PI and <P2' which 
is proved in Appendix Secs. BII and BIll. [It also 
follows directly by Theorem 1 of Ref. 17 if we 
choose (12 + 1) for the operator A in Sec. BII.] 

16 Here we see the confirmation of the statement in Sec. 2; for 
b < O. m2 > 0 in a system characterized by z > O. 

11 J. E. Roberts, Commun. Math. Phys. 3, 98 (1966). 
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Instead of the basis (28) of physical states (which 
we do not completely know) we could also have used 
the conventional basis of generalized eigenstates of the 
maximal commuting system (24) of self-adjoint 
operators in cp c Je c cpx. If we assume that (24) is 
a CSCO, the Dirac spectral theorem applies (cf. 
Sec. 10 of Ref. 4), and we obtain the basis of general­
ized eigenvectors: 

113, I, P,S3; (a, ko), s,). 

The expectation (eigen)value of (22) in this basis 
again gives (37). 

Thus we have found in (40) the rigged Hilbert space 
of an irreducible component of A, which reduces out 
with respect to ~ X SUI(2) [by (39)1 according to18 

cp = ~ 4 (Je(m]> s) @ JeI), (41) 
I~ko 

where the spectrum of m 1 is given by the mass 
formula (37). 

8. FINITE ~SS SPECTRU~ 

Concluding, we remark that we could have chosen 
instead of Je(ko, a) an irreducible representation 
space Je(ko, n) of a nonunitary representation of 
SL(2, c) or a unitary representation of SO(4) (cf. 
Ref. 6), which would have amounted to considering 
SO( 4) as the intrinsic noninvariance group. The only 
difference in the foregoing consideration would have 
been that, instead of (41), we would obtain 

ko+n-l 

cp= ~ (Je(mI,s)®JeI), (42) 
I=ko 

i.e., a finite mass spectrum. In this case too, for b > 0, 
(37) would not lead to unphysical masses and 
describe a spectrum in which the masses decrease with 
increasing isospin. 
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APPENDIX A 

To prove the continuity of A in cp, where the topol­
ogy bt/> is given by the countable set of norms 

(cp, cp)p = (cp, (JPcp), 

1 1 (i\l) 
(J = 12 + - ~ P JJP I' + - ~ LJJvLJJv , 

b I' 2 JJ,v 

18 ® indicates that the limit is to be taken with respect to the 
topology of 4> and is to be contrasted with Je(z, s, ko, a) = 
I: EB Je(mI, s) ® JeI where the limit is being taken with respect to 
the Hilbert space topology. 

we have to show that from 

CPn--O for n-- 00, i.e., (CPn, CPn)p--O 

for every p, (i\2) 
follows 

for every Ai E generators of A-

I. The Continuity of Ii 

From 
(i\3) 

follows 

(IiCPn, IiCPn)p = (IiCP .. , (Jp IiCPn) = (CPn(JPPCPn), 

=::;; (CPn, (JP(JCPn) = (CPn(JJJ+lcpn), 

= (CPn' CPn)p+l' (i\4) 

so that from (J\2) we obtain 

and from 

we obtain 

i.e., II is continuous. In the same way it follows that 
all Ii' i = 1, 2, 3, are continuous. 

ll. Continuity of Fi 

We write 

in the form 

using (22). Then we calculate 

[Fi' (JP]Fi = vt (~) [Fi' (212 + i p~)] 
X Fi(N2 + M2 - i zr-v 

P v (P) (11) 21Z 
= V~OIZ~ 11 IX b(v-al 

X ([Fi' 121Z]P~(v-,,) + 121Z[F" p~(v-")D 

X F(N2 + M2 - t z)1'-: (i\7) 

where we have used the fact that LJJv and Z commute 
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with F;, with 
p2<v-l1.) 

[F. p2<V-I1.)] = _0 __ [F. M2<v-I1.)] , , ° MZ<v-I1.)" , 
pZ<v-l1.) 

= _b<v-I1.)_O_ [F. 12<V-«)] (AS) 
M2<v-l1.) " , 

where we have used (13) and (22). We obtain for 

II ~t ([F; , IZ«]p!<v-l1.) + 12«[F;. p~<v-I1.)])F\ 

II = (P~<V-«)/M2<Y-I1.) 

X ([F;. J211.]Mz<v-l1.) - b<v-I1.)12«[Fi , J2<v-I1.)])Fi, 

II = (P~<Y-«)/M2<'-I1.) 
X ([Fi' 12I1.JFiM 2<v-l1.) + [Fi' 1211.][12<v-«), Fi]b <v-«) 
- b<v-I1.)J2I1.[Fi , J2<v-«)]Fi ). 

In the last step we have again used (22). With 

[F;, J2«j[I2<v-«), F;] = Fi[l2V, Fi] + IZ«[lz<v-I1.), F;]Fi 
+ F;[1211., F i ]J2<v-«), 

which one calculates easily, we obtain 
p2<v-l1.) 

II = _9_- ([F. IZI1.]F;M2<v-«) 
M2<v-«) " 

+ b<v-«)(2Iz«[12<v-«), F;]Fi + Fi[lz" Fi] 

+ F;[12«, F i ]J2<v-«). (A9) 
We now use 

[Fi' pn]Fi = Cn(ko• a)pn 
+ Cn-l(ko, a)}2<n-l) + .. , Co(ko, a). (AIO) 

Here Cm(ko, a) are constants depending on the 
invariants 

FZ - P = (1 + aZ - k o)l, 

F·I = ko, a 1 

(All) 

(AI2) 

of the system. (AIO) can be calculated from the 
commutation relations of SL(2, c): (3), (4), (All),and 
(AI2). Inserting (AIO) into (A9) we obtain 

II = ct Cikoa)121()p~<V-«) 
+ C~a~(ko, a)J2K)b<v-«)(~rv-«), (A13) 

where the new constants av(ko, a) are combinations 
of various C,lko, a). 

Inserting (A13) into (A7) and rearranging the 
three finite sums, we obtain 

where the new constants ev and iiv are combinations 
of the C. and av and binomial coefficients. 

Let cP E 4>; we then obtain from (A14) 

(cp, [F;, ()"]Ficp) 

~ to ev( cP, ()"(NZ + M2 - ~ zf-V cp) 

+ ~/.(CP()V ~:::)(N2 + M2 - ~zrvcp) 
" ~ !, ev( cP, ()"():Il-V cp) 

v=o 

+ i ii (cp()"()<:Il-V) 1 cp). (A1S) 
v=o v M2< ,,-v) 

Here we have used the fact that P, N2, M2, p~ + ~2, 
(1/ b)Z are positive, which follows from the fact that our 
space 4> c :Ie c 4>x is constructed in such a way that it 
reduces into representation spaces of the groups 
SL(2, c) or ff such that the generators are essentially 
self-adjointl9, and from the fact that for our physical 
systems Z has a positive eigenvalue. 20 

As 

Fi()"Fi = ()FiFi + [Fi' ()"]Fi 

we obtain 

(FiCP, ()"Ficp) 

= ()"12 + /X(ko, a)()" + [Fi • ()"]Fi, (A16) 

= (cpFi()"Ficp) ~ (cp, ()<,,+l)cp) + /X(cp, ()"cp) 

" + !, eicp, ()2,,-Vcp) 
v=o 

+ t/v(cp()2"-Vcp)(cp M2<~-V) cp), (A17) 

where 
[cp()2,,-v(1/ M2<,,-v)cp] ~ (cp()2,,-Vcp)[cp(1/ M2)<,,-V)cp] 

has been used. With the aid of (A17) the continuity 
of Fi is easily seen: Let 

CPn -+ 0 for n -+ 00; i.e., 

(CPnCPn)" = (CPn()"CPn) - 0 for every p. (AlS) 
Then 

(Fl CPn' Fl CPn)" = (Fl cp .. ()"Fl CPn) ~ (FiCPn()"Ficpn) 

~ (CPn()<,,+l) CPn) + /X( CPn()" CPn) 

" + !, ev( CPn' ()2:1l-V CPn) 
v=o 
" + !, iiv( CPn' ()2'J1-

v CPn)( CPn , M-2<,,-v) CPn)· 
v=o 

(A19) 

M2 is a continuous operator, as shown in Appendix 
AlII. Since M2 is a positive operator, (M2)-1 is 
defined everywhere in 4>. Thus M2 fulfills the conditions 

111 E. Nelson and W. F. Stinespring, Am. J. Math. 81, 547 (1959). 
20 For b < 0 the argumentation has to be changed a bit by going 

to the absolute value; the result also remains true in this case. 
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of Banach's theorem on the inverse operator21 and 
therefore M-2 is also a continuous operator; i.e., 
from 9?n -4- 0 follows M-2(P-V)9?n -4- O. 

By using (AI8), then it follows from (Al9) that 

(F19?n' F19?n)'P -4- 0 for every p, 

i.e., F1 , and in the same way F2 and Fa are continuous. 

III. Continuity of the Generators of !l' 

To prove the continuity of Pp. in the topology of <P 

given by the scalar products 

(9?, ?p)'P = (9?, ()'P?p) with () = ~:J' + P, 

we calculate 

1(9?PK ()'PP K9?)1 = nt(:) 1(9?PK~~PKI2(j)-n)9?)1 

~ nt(~) IIPK~~PK9?IIIII2(p-n)IPII. 
We use, as in Appendix B, Lemma 6.3 of Ref. 22, 
from which follows 

liP K~~ P K9?11 ~ e II(~ - l)n+l9?II, e = const, (A20) 

so that 

1(9?PK() 7>PK9?)1 

~ eJJ:) :t:(n ~ 1) II~n+l9?IIIII2(7)-n)IPII, 
I( 9?P K()7> P K9?)1 

~ eJo IJ~) (n ~ 1) 1(9?~2(n+l)9?)I! 1IJ2(7)-n)9?II. 

(A2l) 

We have to show that from Ii 9?v II 1J -4- 0 for every p and 

'/I -4- 00 follows IIPK9?vlla -4- 0 for every q. Using (A21), 
we obtain 

for '/1-4-00 because II9?vIl2(n+l)-4-0 for every nand 
because of the continuity of P, which is proved in Sec. 
AI. 

The continuity of Lp.v follows in the same way; 
to prove it one just has to replace P p. by Lp.v in the 
above proof. 

The continuity of M follows from the continuity of 
M2 = Pp.pp. and the commutativity of M and (), and 
the continuity of M-1 follows then from Banach's 
theorem of the inverse operator. 

21 I. M. Gel'rand and G. E. Shilov, Generalized Functions 
(Academic Press Inc., New York, 1967), Vol. II. 

•• E. Nelson, Ann. Math. 70, 572 (1959). 
is We use the notations of Ref. 4. 

APPENDIX B 

I. Continuity of the Enveloping Algebra with 
Respect to the Topology in r/> Given by the 

Nelson Operator 

Let E(G) be the enveloping algebra of the Lie 
group G of linear operators on a linear space 'Y; let 
(".) be the scalar product in 'Y with respect to which 
X E !:(G) (Lie algebra of G) is symmetric; let Je be the 
completion of'Y with respect to the topology given by 
the scalar product (', '). Let Xi be a basis of!:( G) and 
~ = L.X: the Nelson operator; and let <p be the com­
pletion of'Y with respect to the topology given by the 
countable number of compatible scalar products: 

(9?, ?p)1J = (9?, (~ + l)P?p). (Bl) 

Then E(G) is an algebra of continuous operators on 
the countably normed space <p c Je. 

The proof is a simple consequence of a lemma by 
Nelson: <p c Je follows from (', ')7>=0 = (', '). It 
remains to be shown that the generators Xi of E are 
continuous operators. According to theorem of Sec. 
IE of Ref. 4 we have to show that from 9?n -4- 0 with 
respect to b,p' (topology of <p) follows Xi9?n -4- 0 with 
respect to b,p. 

9?n -4- 0 with respect to b,p <=> (9?n, 9?n)'P -4- 0 (B2) 

for every p (cf. Sec. Ie, Ref. 4). Therefore it is to be 
shown that 

for every q. 
From lemma 6.3 of Ref. 22 follows 

for every 9? E'Y and all positive integers q, where k is 
a constant k < 00. From this we obtain 

(Xi 9?n, Xi9?n)a = (9?n' Xi(~ + l)aXi9?n) 
::::;; k(9?na(~ - l)q+19?n) 

i.e., Xi9?n -4- O. 

$0+1 
::::;; ~ ev(9?n(~ + l)v+lIPn) 

v 
$q+1 

~ ~ ev( lPn' 9?n)v+l -4- 0; 
V 

For the triplet <p c Je c <p toX to be a rigged Hilbert 
space it has still to be shown that <p is nuclear. 

The proof of the nuclearity for this general case is 
not known to us. However, in some more special 
cases of physical importance, where G is semisimple 
or G is the Poincare group and Je is a representation 
space of an irreducible unitary representation of G, 
the nuclearity can easily be proved with the aid of a 
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theorem by RobertsI7 and some results on group 
representation dueto Harish-Chandra and Godement. 24 

n. Nuciearity of cp for Semisimpie 
Lie Groups 

Let g - Tg be a unitary irreducible representation 
of the semisimple Lie group G in Je and e/> the count­
ably Hilbert space of I. Then e/> is nuclear and conse­
quently e/> c Je c e/>x, a rigged Hilbert space. 

To prove the nuclearity of e/> we have to show, 
according to Theorem 1 of Ref. 17, that there exists 
an A E E(G) c L(e/» with Ii self-adjoint in Je, whose 
inverse is nuclear. 

Let K be the maximal compact subgroup of G and 
e the second-order Casimir operator. We consider 
A = (e + l)n E E(G), where n is a sufficiently large 
integer. e and en are essentially self-adjoint according 
to a theorem by Nelson and Stinespringl9; conse­
quently A is also essentially self-adjoint. 

It remains to be shown that A-I is nuclear. We first 
remark that it is sufficient to show that A-I is Hilbert­
Schmidt, because the product of two Hilbert-Schmidt 
operators is nuclear so that A2 would then fulfill the 
above conditions. A Hermitian operator B is Hilbert­
Schmidt if B = 'LAkPk , where the projections Pk 
project on finite dimensional spaces Jek and 

'L(IAkl dim Jek)2 < 00. 

Let d be an equivalence class of unitary representa­
tions of K and let Jed denote the subspace of Je which 
transforms according to d when G is restricted to K. 
Then dim Jed < 00 (Harish-Chandra)24 and the irre­
ducible representation d occurs at most (degree of d) 
times in the restriction of g - Tg to K (Go dement )24; 
consequently (dim Jed) =::;; (degree of d)2. From this 
and the fact that the irreducible representation d of 
K is characterized by a finite number of Casimir opera­
tors it follows that dim Jei =::;; N dim Jed{C;) , where Jei 

is the eigenspace of e with eigenvalue Ci and N is a 
number depending upon the number of independent 
Casimir operators of K, i.e., depending upon K. 
Therefore A-I = 'L[l/(ci - l)n]Pi' where Pi projects 

24 E. M. Stein, A Survey of Representations of Non-Compact 
Groups, Proceedings Trieste Seminar (1965) (IAEA Vienna, 1966) 
and references therein. 

on finite dimensional spaces Jei • Further, we calculate 

~ ( 1 n dim Jei )2 =::;; N 2 ~ ( 1 n dim Jed{c.,)2 
i (c; + 1) i (c; + 1) 

=::;; N 2 ~ [ 1 (degree of d(ci»2]
2 

=::;; 00 
i (Ci + l)n 

for sufficiently large n. {Comparing Eqs. (117) and 
(103) of Ref. 25 one finds that [degree of d(ci )] =::;; 
const (c;)m, where m depends upon the number of 
roots of K, i.e., upon K.} This completes the proof of 
the nuclearity of e/>. 

ill. Nuclearity of cp for the Poincare Group 

The proof of Sec. BII depended on the fact that 
dim Jed < 00, which is true for semisimple Lie groups 
but not generally so that for a general Lie group the 
proof of the nuclearity cannot be carried out as in 
Sec. BII. However, in the case that G is the Poincare 
group (or more generally, any inhomogeneous pseudo­
orthogonal group) we can reduce the proof to the 
former case. 

Let H(m, s) be a representation space of a unitary 
irreducible representation of :f. Then the countable 
Hilbert space e/> with the norms given by (B 1) is nuclear. 

To show this, we use the connection between an 
irreducible representation (m, s) of :f and the irre­
ducible representation (oc, s) of SO(4, 1).26 

Let Pin L/Jv be the generators of Em.B(:f); then L/Jv 
and 

B/J = PI' + (A/2m)(PPLp/J + Lp/JPP) E Em,.(:f) 

form a basis of the Lie algebra SO(4, 1) in the irre­
ducible representation 

{oc = [(m 2/A 2) + 9/4 - S(S + I)]!, S} 

of SO(4, 1). The elements Bi and Mi = !&ik!U!(i, k, I = 
1, 2, 3) form a basis of the Lie algebra of the maximal 
compact subgroup SO(4) of SO(4, 1). Therefore the 
second-order Casimir operator B2 + M2 E Em s(~) 
fulfills all the conditions of the operator A in BII, 
which proves the nUclearity of e/>. 

26 G. Racah, "Group Theory and Spectroscopy," Lecture Notes, 
Princeton (1951). 

26 E.g., A. Biihm, Phys. Rev. 145, 1212 (1966). 
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Klein-Gordon Equation for Spinors 

BoON MARx-
Clarkson College of Technology. Potsdam, New York 

(Received 12 October 1966) 

Spinors obeying the Dirac equation also obey the Klein-Gordon equation. but the converse is not 
true. In this paper we make a systematic study of four-component spinors obeying the Klein-Gordon 
equation, with special regard for the additional solutions. The starting point is the Lagrangian density 
I: = ip.JJYJJYv1Ji.v - mlW. and we first develop from it the theory of a classical spinor field. We then 
proceed to the canonical quantization of this field and are confronted by some an~ommutators of 
creation and annihilation operators equal to -1, and the subsequent need for an ind6finite metric in 
Hilbert space. Quantum electrodynamics can be reformulated. and in spite of a modified fermion 
propagator. gradient coupling, and vertices with two photon lines. the amplitude for Compton scat­
tering to order e2 is the usual one. Special problems arising for massless fermions are indicated. and we 
note that the four-fermion point interaction is now renormalizable. Some interesting variations of 
strong interactions also become possible. 

1. INTRODUCTION 

THE usual presentations of the Dirac equation 

(-ia + m)1p(x) = 0 (1) 

involve, directly or indirectly, the factorization of the 
Klein-Gordon equation 

(0 + m2)1p(x) = O. (2) 

It is quite obvious that not all solutions of Eq. (2) 
are solutions of Eq. (1); the purpose of this paper is 
to study the properties and possible relevance for 
physical problems of the discarded solutions. 

In Sec. 2 we deal with the classical theory of a four­
component spin or field (it has the same behavior as 
the Dirac spinor field under Lorentz transformations) 
that has Eq. (2) for its equation of motion. We 
choose an appropriate Lagrangian density, and we 
find the canonical momenta, the conserved quantities, 
and their expansions in terms of plane wave solutions. 
It is observed that the contributions to conserved 
quantities coming from the "anomalous" solutions 
have the opposite sign from those pertaining to the 
"normal" solutions. The separation of the angular 
momentum tensor into spin and orbital parts shows 
some interesting features even when the anomalous 
part is eliminated. 

In Sec. 3 we follow the canonical quantization 
procedure to obtain the anticommutation relations 
for this field. The anomalous solutions again show an 
additional minus sign; therefore an indefinite metric 
in Hilbert space is introduced to avoid contradictions. 
The space of physical states can then be restricted by 

• Present address: Drexel Institute of Technology. Philadelphia. 
Pa. 

means of the Dirac equation applied to the state 
vectors. 

In Sec. 4 we obtain the electromagnetic interaction 
of the field by means of the usual gauge-invariant 
substitution. Although the fermion propagator and 
the vertices are changed, the amplitude for Compton 
scattering in lowest order remains the same. 

In Sec. 5 we present a number of difficulties that 
arise when the mass of the fermion tends to zero. In 
Secs. 6 and 7 we discuss briefly the possible forms of 
weak and strong interactions, respectively. 

Finally, in Sec. 8 we mention some of the open 
questions that can be a subject of further research. 

Conventions to be used throughout this paper are 
that Greek indices run from 0 to 3 and Latin indices 
from 1 to 3, unless otherwise stated; we use the time­
favoring metric, i.e., the nonzero components of the 
metric tensor ~JJV are 

~oo = -~1l = -~22 = -~33 = 1, (3) 

so that the scalar product of two four-vectors is 

a' b = aJJbJJ = aobo - a· b = aobo - a,pk' (4) 

where an explicit representation of the Dirac matrices 
YJJ is used; it is 

Yo= G y = ( 0 0), 
-0 0 

(5) 

where the (1i are the 2 x 2 Pauli matrices, and we add 
the matrix 

(6) 

We write 
(7) 

1559 
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and derivatives are indicated by 

01' = ojoxl' (8) 

or an index f' following a comma. Summation over 
repeated indices is implied, modified according to 
Eq. (4) for Greek subindices, and we set Ii = c = 1. 

2. CLASSICAL SPINOR FIELD 

The factorization of the Klein-Gordon equation 
into 

(9) 

order, since the generalized coordinates are to be 
held fixed at arbitrary values both for the initial and 
the final times.' Other lines of inquiry5 have also led 
to the consideration of both Eqs. (10) where the 
double sign is attached to the mass and the corre­
spondence to particles and antiparticles is made. 
Therefore, there seems to be ample justification for a 
closer examination of the solutions of the Klein­
Gordon equation. 

We can use the projection operators 

p ± = (±ia + m)j2m (19) 
(ia + m)(-d; + m)V' = 0 

shows that either of the equations 
A 

(=Fio + m)V' = 0 
[operating on the vector space of solutions of Eq. 

(10) (2)] to separate any solution into two parts 

could be chosen for the Dirac equation. BogoIiubov 
and Shirkov1 further remark that both are equivalent 
under the unitary transformation of the Dirac matrices 

, -1 
1',. = 1'51',.1'5 = -1',.. (11) 

Nevertheless, when both equations are considered 
simultaneously, they are not equivalent. 

The Lagrangian and Hamiltonian formulations for 
fields obeying the Dirac equation appear unsatis­
factory for various reasons. We can use the Lagran­
gian density 

(12) 
where! 

ip = V'tyo = ip*Yo, (13) 

and vary V' and ip (or V't) independently to get the 
equations of motion. Corresponding to these general­
ized coordinates we have the canonical momenta3 

nlJ! = iV'\ 

nlP=o, 
(14) 

(15) 

a rather unsatisfactory result. A more symmetric 
answer is obtained from 

whence 
nlJ! = tiV't, 

nIP = -tiyoV', 

(17) 

(18) 

but it is still bothersome to have a factor t and to 
again have the momenta as coordinates. The basic 
formulation of a variational problem becomes un­
~lear when we have equations of motion of first 

1 N. N. Bogoliubovand D. V. Shirkov,lntroduction to the Theory 
of Quantized Fields (Interscience Publishers, Inc., New York, 1959), 
Chap. 1, p. 64. 

• A star indicates complex conjugation; a tilde, the transpose; a 
dagger, the conjugate transpose for classical fields and the Hermitian 
conjugate for quantized fields. 

a We omit the spinor indices whenever the meaning is clear. 

V' = rp + X, 

rp=P+V', 

X = P-V', 

so that rp and X obey 

(-ia + m)rp = 0, 

(ia + m)x = O. 

(20) 

(21) 

(22) 

(23) 

(24) 

A Lagrangian density that is a Lorentz scalar and 
gives the equations of motion (2) is' 

!: = ip.,.y,.y.,V'.v - m2ipV'. 

The canonical momenta are now 

nlJ! = ip.,.y,.Yo, 

nIP = YoY.,V' . ." 

which become, by Eqs. (20), (23), and (24), 

nlJ! = jm(~ - i)yo. 

nIP = - imyo( rp - X), 

and the Hamiltonian density is 

(25) 

(26) 

(27) 

(28) 

(29) 

Je = n"'YoYkV'.k + ip.kYkYon lP + nlJ!n lP + m2ipV'. (30) 
Noether's theorem7 gives us the usual tensors that 

obey differential conservation laws. They are 

T,.., = ip • .,'YI'Y;.V'.;. + ip.;.Y;.y,.V' • ., - !:b,.." (31) 

M,..,p = x.,Tl'p - xpT,.., 

+ tie ip.;.y;.y ,.(1.,pV' - ip(1.,py,.y ;.V'.;.), (32) 

(33) 

, This question was first brought to my attention by E. A. Power. 
5 1. Saavedra, Nucl. Phys. 77, 673 (1966). 
• The more immediate choice C = tP.,.'I'.,. - mw was rejected 

because it does not give the same electromagnetic interaction as the 
Dirac equation by the usual gauge-invariant substitution. 

7 E. Noether, Nachr. Ges. Gottingen, Math.-Phys. Kl., p. 235 
(1918); see also Ref. 1, p. 19, Eq. (11), and other books on field 
theory. 
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where 
(34) 

The energy momentum tensor Tpv is not sym­
metric; the symmetrized form8 •9 is 

0 pv = l<Vi.;.Y;.Y.'f'.P + ip.;'Y;'YP"P.v + Vi.pYvY;."P.;. 

+ Vi.vYpY;."P.;. - Vi.;'pY;.Yv"P - Vi.;.vY;.YP"P 

- ViYvY;."P.;.P - ViYpY;."P.;.v) (35) 

= !im(qiyy!p.P + qiyp!p.v - qi.pyy!P - qi.vYp!P 

- XYvX.P - XYpX.y + X.PYvX + X.vYpX)· (36) 

In the latter form, it can be recognized as (2m times) 
the difference of the. symmetrized energy-momentum 
tensors of two Dirac fields !p and x; this is strongly 
reminiscent of the way the vector and the scalar 
fields are combined to form a Lorentz vector field,lo 
where the scalar field also comes in with the "wrong" 
sign.ll Similarly, 

jp = 2m(qiyp!p - XYpX). (37) 

Another form of the conserved current is 

j~ = i(Vi"P.1' - Vi.p"P); (38) 

they are equivalent, since the difference can be 
expressed in the form!,.p.,., with 

(39) 

The asymmetry of Tpy casts serious doubts on the 
usual separation of the angular momentum density 
tensor into orbital and spin parts,12 since then 

L~yp = xyTpp - xpTpy, (40) 

S~yp = li(Vi.;.Y;.YpO'yp"P - ViO'ypYpY;."P.;.) (41) 

are not even conserved. We find that this question is 
best discussed in terms of momentum-space ex-

8 G. Wentzel, Quantum Theory of Fields (lnterscience Publishers, 
Inc., New York. 1949), Appendix I, p. 217. 

• J. Rzewuski, Field Theory (PWN-Polish Scientific Publishers, 
Warsaw, 1964), Part I, Chap. 2, p. 105. 

10 I. Goldberg and E. Marx, Nuovo Cimento (to be published). 
II This is certainly not a new problem; it is present in the electro­

magnetic field, and it has also been discussed for vector fields by T. 
D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962). Negative 
energies appear also in other contexts; see, for instance, A. Pais 
and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950); R. E. Norton, 
J. Math. Phys. 6, 981 (1965). In the theory of quantized fields, the 
same "wrong" sign affects commutators or anticommutators, and 
an indefinite metric is usually introduced in the Hilbert space of 
state vectors to avoid certain inconsistencies due to this sign change. 
Nevertheless, this does not solve the problem of negative values for 
the expectation of the energy (defined in the usual manner, but 
in the space with the indefinite metric); it becomes positive only after 
the subsidiary conditions in the corresponding theory are introduced. 

11 See, for instance, J. M. Jauch and F. Rohrlich, The Theory of 
Photons and Electrons (Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1955), Chap. I, p. 20; Ref. I, pp. 25 and 
80. A different approach to this question is given by J. Hilgevoord 
and E. A. DeKerf, Physica 31, 1002 (1965). 

pansions; they are 

!p(x) = .t I d3p(21T)-i(2E)-i[u(p, .A.)b(p, .A.)e-ill'Q: 

+ v(p, .A.) d*(p, .A.)eill ·",], (42) 

x(x) = .t I d3p(21T)-i(2E)-i[v(p, .A.)f(p, .A.)e-ill·Q: 

+ u(p, l)g*(p, l)eiJl'Q:], (43) 

where the index A. ranges over the two helicity states, 
the spinors u and v satisfy 

(ft - m)u = 0, 

(ft + m)v = 0, 

uu = -vv = 1, 
and we always set 

(44) 

(45) 

(46) 

E = Po = +(p2 + m2)t. (47) 

The charge and the energy-momentum vector become 

Q =.t I d3p(b*b + dd* - f*f - gg*), (48) 

py = :t I asppib*b - dd* - 1*f + gg*), (49) 

where the only unusual feature is the additional 
minus sign for the terms coming from X. After a 
lengthy calculation, we also find the angular momen­
tum tensor Mvp , which we split into the separately 
conserved parts Lyp and Syp according to 

L = mi ~ I d3
p {p [.1... (utb*)ub + ..£...(vtd)vd* 

vp .of E p opy oPy 

- ~ (vt1*)vf - ..£... (u t g)Ug*] - (p ~ 11)}, 
oPy opy 

(50) 

So = m:t Id3p(2E)-1(-utO'iiUb*b - vtO'ijvdd* 

+ vtO'ijv1*f + UtO'iiUgg*), (51) 

So; = mi I d3P(2IPD-l[ u tel) L; u( -l)b*(l)b( -1) 

+ vt(l)L;v(-l)d(l)d*(-!) - vt(l) Li v(-!) 

X 1* (!)f( -1) - u t(l) L; u( -l)g(l)g*( -1)] 

+ h.c., (52) 
where derivatives with respect to Po are to be set 
equal to zero (as a matter of notation), and in Eq. 
(52), 

Lk = -lEiikO'i;' (53) 

i.e., 

~ = (: :). (54) 
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This separation of the total angular momenta into 
orbital and spin parts is different from the usual ones.12 

It is a natural separation insofar as L.p is an extension 
of the angular momentum for a scalar particle and 
Sij has the form which would be expected for the spin 
vector; on the other hand, SOl contains only terms with 
mixed helicities, although the contributions from cp 
and X are still separate, as throughout. It is also 
worth noticing that, in going over to L.p and S.P' not 
only the time-dependent parts of L~p and S~p cancel 
each other, but that some time independent cross 
terms do likewise. A similar separation is also possible 
in the case of Lorentz vector fields. lo 

The question whether a reasonable relativistic 
quantum mechanics for a single spin t particle 
exists might not be really significant. Feshbach and 
Villarsl3 make a very convincing case for the inter­
pretation of a scalar field that obeys the Klein­
Gordon equation: they replace the (positive definite) 
probability density of nonrelativistic quantum me­
chanics by a (no longer positive) "charge" density 
in the relativistic theory; the problem of negative 
energy states is then solved by the introduction of an 
indefinite metric in a certain "charge" space (not in 
the Hilbert space of the quantized field theory). In 
their equally relativistic spin t theory, they go back 
to a positive definite probability and the problem of 
negative energies remains unsolved until the fields 
become anticommuting operators by a second 
quantization; then the probability density becomes 
the (indefinite) charge density, and the energy be­
comes positive. An infinite sea of electrons with 
negative energies is not a very satisfactory assumption 
for a single particle theory either. Our charge density 
jo, given by Eq. (37), is indefinite, but Eqs. (48) and 
(49) show that there is no correlation between the 
signs of the charge and energy, so that an interpreta­
tion similar to that given in Ref. 13 for a scalar 
particle is apparently not possible. The basic difference 
between anticommuting field operators and com­
muting classical fields suggests that maybe the 
interpretation of relativistic quantum mechanics for 
spin t particles should not be pursued too far. 

3. QUANTIZATION OF THE FREE FIELD 

We can use the canonical quantization procedure 
and set 

{V'crCx, t), rr~(x', t)} = it5"pt53(x - x'), (55) 

{,pix, t), rr:(x', t)} = -it5"pt53(x - x'), (56) 

where the spinor indices ex and {J go from I to 4 and 

13 H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958). 

t5"p is the ordinary Kronecker delta, and we set all 
other equal-time anticommutators equal to zero. 
The minus sign in Eq. (56) is necessary to avoid 
getting only mixed anticommutators of cp and X 
different from zero, and it also makes Eq. (56) the 
Hermitian conjugate of Eq. (55). We obtain from 
them the nonzero anticommutators 

{cpcrCx, t), rpp(x', t)} = (l/2m)(Yo)"pt53(x - x'), (57) 

{X,,(x, I),xix', t)} = -(l/2m)(Yo)"pt53(x - x'), (58) 

and but for the minus sign in Eq. (58) and the 
normalization factor 1/(2m), they are the usual ones for 
Dirac spinor fields. 

These anticommutation relations imply 

{cpcrCx), rpp(x')} = -is,,p(x - x')/2m, (59) 

{xix), xix')} = -iS~p(x - x')/2m, (60) 

{V',,(x), ,pp(x')} = it5llp/l(x - x'), (61) 
where 

/lex) = -i(211")-3 f d4pe(po)t5(p2 - m2)e-iP'''', (62) 

A 

Sex) = -(io + m)/l(x), (63) 

S'(x) = -( -ia + m)/l(x). (64) 

We can also derive from them 

{b(P, A), b t(p', A')} 

= {d(P, A), dt(p/, A')} = t5.U ,t53(P - p'), (65) 

{f(P, A),ft(P/, A')} 

= {g(P, A), gt(P/, A')} = -t5,u,t53(p - p'). (66) 

Going over to the discrete language of box normal­
ization, we are faced by anticommutation relations 
such as 

(67) 

which are clearly in contradiction with the usual 
definition of Hermitian conjugate. The problem is 
similar to the one presented by the time component 
of the electromagnetic potential,14 and can be solved 
in the same manner by introducing an indefinite 
metric in Hilbert space. IS We can use (a direct product 
of) state vectors with only two components,16 with a 

14 Reference I, Chap. 2, p. 130ff. 
16 S. N. Gupta, Proc. Phys. Soc. (London) A63, 681 (1950); K. 

Bleuler, Helv. Phys. Acta 23, 567 (1950); L. K. Pandit, SuppJ. 
Nuovo Cimento 11, 159 (1959); K. L. Nagy, SuppJ. Nuovo Cimento 
17, 92 (1960). 

16 J. O. Bjorken and S. O. Orell, Relativistic Quantum Fields 
(McGraw-Hill Book Company, Inc., New York, 1965), Chap. 13, 
p.47ff. 
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metric 

n = nt = n-1 = (-~ ~). 
The adjoint of the annihilation operator 

is then 

(0 -1) 
a* = nat n = 0 0' 

so that 
{a, a*} = -1. 

The equations of motion for the spinor field become 

(68) (fJ2 + m2)1jJ = 0, (81) 

(69) 

(70) 

(71) 

or 
(82) 

where the so-called magnetic moment term6 !eF,.v(] ,.v'P 
is the same distinctive spin! term obtained by oper­
ating with fJ on the Dirac equation 

(-ifJ + m)1jJ = O. (83) 

It is still possible to define the gauge, covariant 
fields 

qr4 = (ilJ + m)1jJ/2m, 

z4- = (-ifJ + m)1jJ/2m, 

(84) 

(85) We consequently have to change the definition of 
iji to since 

iji = 1jJ*Yo, (72) 

and replace ft and g t by f* and g*; naturally we have 
b* = bt , d* = dt. 

The vacuum expectation value of Wick's chrono­
logical product of 1jJix) and ijip(x') is calculated to be 

(01 T(1jJrz.(x)ijifJ(x'» 10) = !<5rz.fJ~F(x - x'), (73) 

where 

~.z;{x) = 2i(27T)-'f d'p(p2 - m2 + iE)-le-illol1J
• (74) 

We are now faced with the problem of the physical 
interpretation of states with negative norm, such as 
those containing one particle created by f* or g*; it 
is always possible to restrict the physical states to 
those (with positive norm) containing particles 
created by b t and dt. The physical state vectors then 
satisfy 

(-iYp1jJ~t) + m1jJ(+» 1 ) = 0, (75) 

(iiji~t'Yp + miji(+» 1 ) = 0, (76) 
or 

x<+) I) = 0, i(+) I) = 0, (77) 

where the positive frequency parts 1jJ<+), iji(+l, x(+) and 
i(+> contain the annihilation operators. 

4. ELECTROMAGNETIC INTERACTIONS 

By addition of a Lagrangian density for the free 
electromagnetic field and the usual gauge-invariant 
substitution 

op - Dp = op - ieA,., (78) 

the Lagrangian density (25) becomes 

I: = (D:iji)y,.YvDv1jJ - m2iji1jJ - iFpvF,.v, (79) 

where the fields F,.v are defined in terms of the 
potentials Ap by 

Fpv = Ap.v - Av.,.. (80) 

pt = (±ifJ + m)/2m (86) 

are again projection operators in the space of solutions 
ofEq. (81). 

The action integral 

I = f !:[tp(x) , A(x)] d'x (87) 

is obviously invariant under proper Lorentz trans­
formations, since the spinor 1jJ and the vector A 
transform in the usual way. So it is under space 
reflection :1', time reversal 'G, and charge conjugation 
e, characterized by 

tp(x) _1jJ'(X') = :1'1jJ(x):r--1 = Yo1jJ( -x', t'), (88) 

A,.(x) - A~(X') = :1'A,.(X):r--l = <5ppA,.( -x', t') (89) 

(no summation over ft), 

1jJ(x) -1jJ"(x") = 'Gtp(X)'b"""l = iYIYa1jJ*(X", -t"), (90) 

Ap(x) - A;(x") = 'GA,.(x)'b l = !5p,.A,.(x", -t"), (91) 

and 

1jJ(x) _1jJIII(XIll) = e1jJ(x)e-1 = -iY21jJ*(XIll), (92) 

Ap(x) -A;(x"') = eA,.(x)e-1 = -A,.(xlll). (93) 

Then the new 1jJ fields obey the same Eq. (81) with 
the new potentials. 

The action is also invariant under the chirality 
transformation 

tp(x) - Y6tp(X). (94) 

It should be noted that, contrary to :1', 'G, and e, 
the Dirac equation is not invariant under a chirality 
transformation; moreover, if cpA is a solution of Eq. 
(83), y"cpA belongs to the subspace of the XA• 

The interaction Lagrangian density is defined to be 

1:[ = ie(ijiAYA1jJ.A - iji.AyAA1jJ) + e2A2iji1jJ, (95) 
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which introduces both gradient coupling and vertices 
with two photon lines. Nevertheless, we have calcu­
lated the amplitude for the Compton effect in lowest 
order with the above interaction, usingl? 

and omitting "singular expressions arising when 
differentiating singular functions," 18 and the result 
is precisely the same one that is obtained from the 
usual theory. 19 It should then be of interest to compute 
radiative corrections and see whether there is a 
difference that might be tested experimentally. 

By examining the vertices and propagators,20 we 
come to the conclusion that the theory is still re­
normalizable. 

5. MASSLESS FERMIONS 

The theory set forth in Secs. 2 and 3 runs into quite 
predictable problems when the mass m is allowed to 
be zero. The normalization conditions for u and v 
have to be changed if their components are to remain 
finite; we can take, for instance,21 

uu = iiv = 0, 

utu = vtv = 2E. 

(97) 

(98) 

Moreover, the u and v used before become essentially 
equal, i.e., the solutions of 

flu = 0 (99) 

with Po = E> O. Consequently, the spinors cp and X 
become essentially the same, say cp(O), and we have to 
find the other solutions of 

D1p = 0 (100) 

by a limiting process or otherwise. They correspond 
to E < 0 and can be expressed in terms of the spinors 
YoU that complete the set of orthogonal spinors with 
the u. Completeness now reads 

I [u(P, ,1,)u t(p, ,1,) + You(p, ,1,)u t(p, ,1,)yo] = 2E xl, 
A 

(101) 

17 Ref. I, Chap. 3, p. 226. 
18 S. S. Schweber, An Introduction to the Relativistic Quantum 

Field Theory (Row, Peterson and Company, Evanston, Illinois, 
1961), Chap. 14, p. 482; see also Ref. I, Chap. 3, p. 230ff. 

19 A similar result is obtained by L. M. Brown, Phys. Rev. 111, 
957 (1958), for the electromagnetic interactions of a two-component 
spinor that also obeys the Klein-Gordon equation. As far as these 
theories reformulate ordinary quantum electrodynamics, they 
should be equivalent. 

10 Ref. 1, Chap. 4, p. 340ff. 
11 J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics 

(McGraw-Hili Book Company, Inc., New York, 1964), Chap. 10, 
p. 249. It should be noted that their "projection operators" do not 
satisfy any of the usual relations PI + Pa = I, pf = PI' p~ = Pa• 

where the I in the right-hand side is the 4 X 4 unit 
matrix. We can separate the general solution of Eq. 
(100) into two parts 

1p = cp(O) + X(O), 

where cp(O) and X(O) satisfy 

icpa(O) = 0, 

iYoayoX(O) = O. 

(102) 

(103) 

(104) 

Their momentum-space expansions are of the form 

cp(O)(x) = f J d3P(27T)-i(2Ert [u(p, ,1,)b(p, ,1,)e-i"'''' 

+ u(p, ,1,) d*(p, ,1,)ei".",], (105) 

X<°)(x) = f J ~p(27T)-i(2Ert[you(p, ,1,)/(p, ,1,)e-i".'" 

+ You(p, ,1,)g*(p, ,1,)ei".",]. (106) 

The projection operators now become integral 
operators, and we use the matrix 

F(x) = i(27Tr3 J d3p(2Er2 f u(p, ,1,)u t(p, ,1,)e-i"''', 

(107) 

= i(27T)-3 f d3p(2E)-2pyoe-i".'" (l08) 

to express 

cp(O)(x) = f d3x' ([F(x - x') + Ft (x - x')]a~1p(x') 
- a~[F(x - x') + Ft(x - x')]1p(x')}, (109) 

X(O)(x) = f d3x'{yo[F(x - x') + Ft(x - x')]Yoa~1p(x') 

- Yoo~[F(x - x') + F\x - x')]Yo1p(x')}. (110) 

We can check that expressions (109) and (110) are 
independent of t' for functions 1p that satisfy Eq. 
(100) and vanish sufficiently rapidly at infinity. 

If we now try to follow a procedure similar to that 
used for massive fermions, starting from the Lagran­
gian density 

I: = ip,/JY/JYv1p.v, (Ill) 

we are led to unreasonable expressions such as 

n'l' = ip,/lY/lYo (112) 

= -if fd3p(27T)-i(2E)~(utf*ei"."'- utge-i "."'), 

(113) 

P/l = f f d3p(2E)pib*/ + dg* + f*b + gd*). (114) 

The canonical quantization procedure also has to be 
abandoned for this field. The reason an expression 
such as (114) occurs is clear: The original fields cp and 
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X become equal, but they contributed terms with 
opposite signs to the conserved quantities; hence, 
these now vanish unless the new solutions are intro­
duced. These problems do not appear when only one 
field qJ is considered, with a Lagrangian density such 
as 

1:' = !i(ipY,.qJ.,. - ip.,.Y,.qJ), (115) 

which gives Eq. (103) for qJ. 

This peculiar behavior for massless particles is 
certainly not limited to the spin ! case. In the much 
better known spin 1 case, the scalar part of the Lorentz 
vector field and the longitudinal component of the 
vector part become equal, while their contributions to 
conserved quantities also have the opposite sign.1o 

6. WEAK. INTERACTIQNS 

These interactions occur between four fermion 
fields. Since the range of this interaction is very short, 
it has been customary to assume a point interaction 
of the formlll 

1:1 = I Ci1ji(1)Oi1Ji(2)1ji(3)O~1J'(4) + h.c., (116) 
i 

where the operators 0i can be 1,1',., (/,.v, 1'61',., or 1'5' 
Alternatively, the suggestion has been made that the 
interaction is mediated by a vector boson. The theory 
with a point interaction has led to difficulties because 
it is nonrenormalizable, while the vector boson has 
not been observed (and it is not clear whether its 
electromagnetic interactions are renormalizable). 

On the other hand, if we use the fermion fields 
described above, the point interaction becomes 
renormalizable.20 The most objectionable feature 
would be the consideration of the neutrino as a 
massless particle; it could be given a small mass and 
then the results should be taken in the limit my -+ O. 

Feynman and Gell-Mann23 have proposed a theory 
that is a special case of Eq. (116); it is 

1:1 = C1ji(l)y,.a+1J'(2)1ji(S)y,.a+1J'(4), (117) 
where 

(118) 

It is introduced by the replacement of the fields 
lJ'(i) by a+lJ'(i). In our theory, the operators Q: are 
projection operators that separate the solutions of the 
Klein-Gordon equation into two subspaces. But 
a±lJ' is not a solution of the Dirac equation (with either 

21 Ref. 18, Chap. 10, p. 295. 
II R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 

(1958). The same proposal was made by E. C. G. Sudarshan and 
R. E. Marshak, Proceedings of the Padua-Venice International 
Conference on Mesons and Recently Discovered Particles, 1957 
Societa (Italiana di Fisica, Padova, 1958); Phys. Rev. 109, 1860 
(1958); and J. J. Sakurai, Nuovo Cimento 7, 649 (1958). 

sign) when 11' is, so that the subspaces defined by P ± 

become intermixed by relations of the form 

Q+qJ = qJ' + X'· (119) 

The only case in which this does not happen is that of 
the field corresponding to massless fermions, as is 
well known. 

The equations of motion obtained from the Lagran­
gian density (117) in our theory are easily seen not 
to be invariant under parity transformation or charge 
conjugation separately, but they are invariant under 
their product. 

7. STRONG INTERACTIONS 

The usual interaction Lagrangian density for 
nucleons and pions is of the form24 

(120) 

where 11' is an ordinary Dirac field and 4> a pseudo­
scalar field, so that the equation of motion for 11' is 

(-ia + m - gY54»1J' = O. (121) 
"-

Operating on this equation with (io + m + gy,,4» we 
obtain 

(0 + mil - g24>2)1J' = 0, (122) 

where the pseudo scalar nature of the field 4> is ex­
pressed by the minus sign of the third term and the 
absence of a first degree term in 4> brought in by a 
scalar coupling. The obvious choice for an interaction 
Lagrangian density that would give Eq. (122) is 

(123) 

it would give vertex diagrams with two meson lines, 
which should give essentially the same results as the 
original theory. 

There is a second possibility, which is to keep I:~ 
for our 11' fields; this should give interesting variations 
on calculations of transition amplitudes. 

In general, we can say that the old equations of 
interacting fields can be "squared" to bring them into 
a form similar to the Klein-Gordon equation, but the 
modified propagator for the fermion fields allows a 
number of new interactions which are also renor­
malizable. 

8. OPEN QUESTIONS 

What we have done so far is to sketch a new 
approach to spinor fields. We have not gone far 
enough to come to any conclusions, so instead we 
briefly point out several considerations that indicate 
possible areas of further research. 

U See, for instance, Ref. 18, Chap. 10, p. 283. 
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A completely satisfactory interpretation of the 
quantum mechanics of spin 1- particles has not been 
achieved, and there are indications that this might 
not be possible. For the same reasons, the possible 
usefulness of the theory of a classical spin or field as an 
approximation to the quantized theory (in the sense 
the classical electromagnetic field and even the meson 
field25 are useful) is not apparent. 

The general problem of the separation of the total 
angular momentum of a field into orbital and spin 
parts has also not received a satisfactory treatment in 
the literature, in our opinion. The interpretation of 
the space-time components of the tensor should also 
be examined in greater detail. 

We have seen that, both in the present theory and 
in that of Lorentz vector fieldslo (or the electro­
magnetic field), a part of the field appears in conserved 
quantities and commutation relations with the "wrong" 
sign, leading to difficulties such as an indefinite 
expression for the total energy or inconsistencies that 
are solved by an indefinite metric in Hilbert space. 

16 D. Iwanenko and A. Sokolow, Klassische Feldtheorie (Akade­
mie-Verlag, Berlin, 1953). 

JOURNAL OF MATHEMATICAL PHYSICS 

The origin of these problems can be traced back to the 
requirement that the Lagrangian density be a Lorentz 
scalar, and the indefinite nature of the Lorentz metric. 

As far as quantum electrodynamics is concerned, 
either a general proof of equivalence of this theory 
with the usual one should be found, or transition 
amplitudes for the different processes and divergent 
diagrams should be recalculated to find possible 
changes in the results. 

The peculiarities of the limit m --+ 0 require further 
attention, and a search for a better formulation is 
clearly necessary. If this problem is satisfactorily 
solved, it becomes possible to calculate higher order 
corrections to the transition amplitudes in weak 
interactions. 

It is also possible to write down a number of new 
interaction terms for strongly interacting particles, 
and the corresponding Feynman diagrams can be 
evaluated. 

In general terms, we can say that a further study of 
the ramifications of this theory is required to reach a 
better understanding of the significance of the new 
features it presents. 
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The paper contains a number of remarks occasioned by Sabatier's enlargement of the class of solutions 
to the inverse scattering problem at fixed energy found previously by the author. The implications of 
the large class of scattering-equivalent potentials for the angular momentum interpolation problem 
are discussed. The additional angular momenta that appear in the expansion of the potential are directly 
related to the singularities of its Mellin transform. It is shown that the expansion coefficients must not 
converge too rapidly to zero unless the first moment of the potential vanishes. Finally we analyze the 
information contained in an "angular momentum dispersion relation" obeyed by the Jost function 
which is found as a by-product. 

I. INTRODUCTION 

THE "inverse scattering problem at fixed energy" 
is the problem of finding the local potentials which, 

when inserted in the Schrodinger equation, lead to a 
prescribed set of phase shifts of all angular momenta. 
A solution to this problem was given five years ago. l 

* Supported in part by the National Science Foundation and by 
the U.S. Army Research Office-Durham. 

1 R. G. Newton, J. Math. Phys. 3, 75 (1962). 

In a recent series of papers2 Saba tier considerably 
expanded this method and found a very much larger 
class of solutions. The following remarks are con­
cerned with this general set of scattering-equivalent 
potentials and the connection of the results with the 
theory of complex angular momenta. Of particular 
interest in this connection is an "angular momentum 

2 P. C. Sabatier, J. Math. Phys.7, 1515 and 2079 (1966)' 8,905 
(1967). ' 



                                                                                                                                    

1566 EGON MARX 

A completely satisfactory interpretation of the 
quantum mechanics of spin 1- particles has not been 
achieved, and there are indications that this might 
not be possible. For the same reasons, the possible 
usefulness of the theory of a classical spin or field as an 
approximation to the quantized theory (in the sense 
the classical electromagnetic field and even the meson 
field25 are useful) is not apparent. 

The general problem of the separation of the total 
angular momentum of a field into orbital and spin 
parts has also not received a satisfactory treatment in 
the literature, in our opinion. The interpretation of 
the space-time components of the tensor should also 
be examined in greater detail. 

We have seen that, both in the present theory and 
in that of Lorentz vector fieldslo (or the electro­
magnetic field), a part of the field appears in conserved 
quantities and commutation relations with the "wrong" 
sign, leading to difficulties such as an indefinite 
expression for the total energy or inconsistencies that 
are solved by an indefinite metric in Hilbert space. 

16 D. Iwanenko and A. Sokolow, Klassische Feldtheorie (Akade­
mie-Verlag, Berlin, 1953). 

JOURNAL OF MATHEMATICAL PHYSICS 

The origin of these problems can be traced back to the 
requirement that the Lagrangian density be a Lorentz 
scalar, and the indefinite nature of the Lorentz metric. 
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clearly necessary. If this problem is satisfactorily 
solved, it becomes possible to calculate higher order 
corrections to the transition amplitudes in weak 
interactions. 

It is also possible to write down a number of new 
interaction terms for strongly interacting particles, 
and the corresponding Feynman diagrams can be 
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the ramifications of this theory is required to reach a 
better understanding of the significance of the new 
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dispersion relation" obeyed by the Jost function. It 
is discussed in Sec. IV. 

ll. INVERSION AND THE MELLIN 
TRANSFORM OF THE POTENTIAL 

If we define3 

f(x, x') = L CIUI(X)UI(x'), 
I 

(1) 

where uI(x) = (l7Tx)tJ;,(x), A. = 1 + 1, and letting 
K(x, x'), x' ::;; x, for fixed x, be the unique solution 
of the integral equation 

K(x, x') = f(x, x') - f'dxl x"-2K(X, x")f(x", x'), (2) 

then the functions 

are the regular solutions of the Schrodinger equations 

[ 
d2 1(1 + 1) ] 

- dx2 + x2 + Vex) <JJ,(x) = <JJ,(x) 

with the potential 

Vex) = _2X-l(djdx)[X-lK(x, x)], 

which leads to the expression 

-lx (:!ldx'x'V(x') = L c,<JJ,(x)u,(x). Jo , 

(4) 

(5) 

(6) 

Furthermore, the Jost functions satisfy the following 
set of equations4 : 

.l . ei1TU'-1l - 1 
f, = 1 + 2' t (I' _ 1)(1' + 1 + 1) cd,,· (7) 

<JJI(X) = u,(x) - 5o:!l dX'X,-2 K(x, x')ul(x') 
Since II = IIII e-i61 , where ~I is the phase shift of 

(3) angular momentum I, the imaginary part of (7) 
multiplied by ei61 reads 

sin ~I = L rg,>c
" 

If,,1 (8) 
I' 

with 

r(ll _ sin217T(I' - 1) cos (~, - ~,,) + t sin 7T(1' - I) sin (~, - ~I') 
II' - (I' - 1)(1' + 1 + 1) , 

and the real part 
(9) 

with 

r(2) _ sin217T(I' - 1) sin (~" - ~z) - 1 sin 7T(I' - I) cos (~, - ~I') 
II' - (1' - 1)(1' + 1 + 1) . 

In Ref. I we allowed I everywhere to assume integral 
values only. For given phase shifts ~I' the infinite set of 
equations (8) was then to be solved for the products 
Cz' liz' I; these were to be inserted in (9), which then 
gave us the lid, and therefore the CZ•5 

It was pointed out by Sabatier2 that allowing 1 to 
take on integral values only is an unnecessary restric­
tion on the potential. Allowing other values of I leads 
to a very much larger class of potentials for the same 
set of phase shifts. This is because for nonintegral I 
values we may choose the CI arbitrarily, and still solve 
Eqs. (8) and (9) for the CI (l integer) and the phase 
shifts ~z (l noninteger). This arbitrariness has impor­
tant implications for the "interpolation problem" of 
the physical phase shifts by analytic functions. 

3 Since the energy is fixed in the following, it is convenient to use 
the variable x = kr. 

4 I am using here the same definition of the J ost function as in 
R. G. Newton, Scattering Theory of Waves and Particles (McGraw­
Hill Book Company, Inc., New York, 1966). For real k and lit is the 
complex conjugate of the more customary definition, so that its 
phase is the negative of the phase shift. Equation (7) corrects an 
error in Eq. (20.62a) on p. 628 of the above-mentioned work. 

S Sabatier, Ref. 2, has shown that a sufficient condition for this 

procedure to lead to convergent results is that CI = 0(1*) as 1- 00. 

The fact is that within the framework of local 
potentials, we can choose the interpolation of the 
physical phase shifts largely arbitrarily, except for 
the restriction that6,7 

d~"dl < !7T. (10) 

We may choose a discrete set of points Ii of arbitrary 
density, and choose arbitrary values of ~, there, 
keeping the ~I at integral I fixed, except that we must 
have 

~I; - ~Z;_l < 17T(/. - I.-I) (lOa) 

if II < 12 < . . . . Equations (8) and (9) can then be 
solved for the CI and the local potential that produces 
these phase shifts can be constructed. What is more, 
we may even choose the phase shifts ~z as an arbitrary 
smooth curve satisfying (10) with prescribed values 
at the integral I. Then the summations in (8)-(9) all 
become integrals, but we can still find local potentials 
that produce this phase shift curve. Therefore, as long 

6 T. Regge, Nuovo Cimento 14, 951 (1959); see also Ref. 7, 
Appendix B. 

7 R. G. Newton, The Complexj-Plane (W. A. Benjamin, Inc., New 
York, 1964). 



                                                                                                                                    

1568 ROGER G. NEWTON 

as we only demand existence of ~ local potential, the 
physical phase shifts can be interpolated quite arbitrar­
ily, except for smoothness and (10).8 

The question naturally arises: What is the signifi­
cance of the particular I values that enter in the 
summation (1)? In other words, how can we deter­
mine the set A such that 

-!x r:t:dx'x'V(x') = L YA<PA-1(x)UA-1(x) , (6a) Jo A 

where YA = cA-1? (If A contains a continuum then 
the sum becomes at least partly an integral.) The 
answer is contained in (7), which reads, with f().) = 
fA-1' 

. ei .. (A'-A) _ 1 , 
f().) = 1 + !lA~ ).,2 _ ).2 yd().), (7a) 

if the potential has the expansion (6a). If the fA'-l 
are solutions of (7), then (7a) defines an analytic func­
tion f().) whose values, when). assumes values in A, 
are just the numbers fA'-l that appear on the right. 
What is more, this analytic interpolation of f is the 
"right" one. That is because, for any ). with Re ). > 0, 
Eq. (3) defines the regular solution of (4) with the 
potential (5), and (7a) is obtained from its asymptotic 
behavior. Therefore the interpolation defined by (7a) 
is the same as that defined by the "dynamical" 
interpolation of (4).9 

Now (7a) tells us that f().) has singularities exactly 
when -). takes on values in A, except at positive 
integers, if they occur in A.IO Equation (7a) shows 
that at the integers 

f( -n)lJ(n) = 1 + (7T!2n)Yn, n = 1,2, .. '. (11) 

The set A is identical with the set of points where 
f( -).) is singular, augmented by the positive integers. 
Without loss of generality we may assume that A 
contains all the positive integers. In specific instances, 
of course, some, or all, of the YA' at integral ).' may 
vanish. 

8 It should be added that, except for Sabatier's general results on 
the asymptotic behavior of the potentials constructed via (1)-(5), 
we have no guaranty that any particular one is "well behaved" in 
any sense of the term. That situation is quite analogous to the one 
in the inverse scattering problem at fixed angular momentum. 

• If the potential is well enough behaved, then we know that this 
"dynamical" interpolation is the unique one in the sense of Carlson's 
theorem (see, for example, Ref. 7, Chap. 15). If it is not, then the 
"dynamical" interpolation may not satisfy the hypotheses of 
Carlson's theorem. In that case there is the possibility that another 
interpolation exists which does, and which is therefore the "right" 
one. (No such cases are actually known.) So all we can assert is that 
the interpolation of the Jost function given by (7a) is identical with 
the "dynamical" one. This is sufficient for the purpose of identi­
fyingA. 

10/0.) can be made singular at A = -n by letting two terms on 
the right of (7a) coincide while their coefficients approach infinity. 
In that case (I) and (6) will contain derivatives of the UI and 'PI with 
respect to I. 

Now the set of singularities of f().) has been ex­
plicitly connected by Froissartll to the set of singu­
larities of the Mellin transform of the potential. That 
situation is as follows. 

Define 

(12) 

as an analytic function of (I and continue it to the 
region Re (I < O. Let S be the set of singular points 
of v(o'). Then f().) can have singularities only at the 
points 

). = 1 - n + !m(S - 2), m, n = 1,2,' .. (13) 

if the symbol m(S - 2) denotes the set 0'1 + 0'2 + ... 
+ o'm - 2m, where 0'1' ••• , (1m are any m points of S 
(not necessarily all different); except that in general 
f().) will not have poles at the negative integral values 
of )..12 The set A therefore consists of the negatives of 
the numbers described in and below (13), plus the 
positive integers. IS Note that A may contain complex 
numbers. But, according to (12), the reality of the 
potential implies that if ). is in A, then so is ). *. 
Furthermore, (6) shows that, because for a real 
potential <Pl. = <Pt , we must have 

cl • = c:, i.e., YA. = y~. (14) 

The coefficients I' A, corresponding to real points in A, 
must be real. 

Let us return now to the interpolation problem. Ifwe 
are given a set of physical phase shifts, we must in 
general assume that A contains the half-integral values 
of ). (integral I). Otherwise we have no way of guaran­
teeing that the phase of f().) at ). = I + ! (integral 
I) has the prescribed value. 14 In the course of solving for 
the constants Cl it may then turn out that some (or all) 
of them, for integrall, are zero, so that, in effect some, 
or all, of the half-integral ). values are not in A. But 

11 M. Froissart, J. Math. Phys. 3, 922 (1962). 
I. This point was not mentioned in Ref. II, but it follows from 

the presence of the gamma function in the denominator of the 
Bessel function [Eq. (16) of Ref. II]. The function/(A) has a singu­
larity at a negative integer only if that value of A in (13) comes from 
a point in 8 that is not a simple pole of (12). 

18 Strictly speaking, A is a subset of the set A' that consists of the 
negatives of the numbers given in (13), plus the positive integers. 
But the members of A' that are not in A may be thought of as 
absent "accidental1y." We may handle that situation most con­
veniently by making A equal to A' and then setting YA = 0 at those 
values of A that are "accidentally" missing. 

14 Sabatier showed in Ref. 2 that if the physical phase shifts are 
sufficiently small, then there exists a potential for which A contains 
only integers. (This potential is an even function of T.) The Jost 
function/then contains no singularities in the A plane. However, it 
is not known what "sufficiently small" means. [One may conjecture 
that it has something to do with the violation of (lOa) by the phase 
shifts for half·integral I.] Hence for a prescribed set of physical 
phase shifts, one cannot assume the existence of an associated even 
potential. 
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that cannot be anticipated. However, the remaining 
members of A are at our disposal. This means that, 
even though the physical phase shifts are given, we 
are free to prescribe arbitrarily the nonintegral 
singularities of the Mellin transform (12) of the 
potential. [According to (13), the singularities of (12) 
at negative integers give rise to singularities of f(A) 
at integral and half-integral values of -A.] The free­
dom to choose singularity points of (12) means 
freedom to choose the exact way the potential behaves 
at r -- O. For example, a term r" produces a simple pole 
of v( 0") at 0" = - oc. Such a question is independent of 
bounds on the potential or of whether a term of that 
nature dominates at small distances. Specifically, a 
given set of physical phase shifts may always be 
fitted by a potential that is analytic in a neighborhood 
of the origin. Such a potential produces simple poles 
in the Mellin transform (12) at negative integral 0", 

and no other singularities. Hence A then contains 
integral and half-integral A only. A special class among 
these potentials are those for which c, = 0 for all 
half-integral I values (integral A). They are the ones 
discussed in Ref. 1. But the class of analytic potentials 
that produce a given set of physical phase shifts is 
enormously much larger. Since all the phase shifts 
for integral A are free, this class contains a denumer­
able infinity of parameters. IS 

m. SLOW DECREASE OF THE Cz 

We cannot in general assume that the coefficients 
c, vanish rapidly as 1-- 00. Such an assumption puts 
a more severe restriction on the potential than is 
usually physically acceptable. That can be seen as 
follows. 

Multiply the SchrOdinger equation (4) by ul(x), 
subtract the same equation with V = 0 for ul(x) 
multiplied by IPI(X), and integrate from zero to infinity. 
The result is 

f"dXIP,(X)U,(x)V(X) = Imf,. (15) 

Now multiply (15) by c, and sum over I. Use of (5) 
then shows that 

[L"'dXXV(X)T= -4tczlmf,. (16) 

But multiplying (8) by Cz Ifzl and summing shows that 

right-hand side must be zero because rll' is anti­
symmetric under the interchange of I and 1'. Con­
sequently (16) says that 

!"'dXXV(X) = o. (18) 

The same conclusion follows from (6) if we assume 
that as I -- co the CI vanish sufficiently fast that the 
asymptotic value of the right-hand side of (6) is given 
by 

l C1 lid sin (x - 17Tl) sin (x - 17Tl - 61) , 
and this is bounded. Then (6) also implies (18). 

We must therefore conclude that if the potential 
does not satisfy (18) (for example, if it has everywhere 
the same sign), then Cz can at best vanish rather slowly 
as 1-- 00. It cannot even be absolutely summable: 

follows from a violation of (18). 

IV. ANGULAR MOMENTUM DISPERSION 
RELATION 

Finally we want to discuss Eq. (7a), which can be 
considered an angular momentum dispersion relation 
satisfied by the Jost function. If A contains discrete 
points only, (7a) is equivalent to a Mittag-Leffler 
expansion with a remainder.16 In order to see how 
much information it contains, we may try to derive it 
without any of the machinery contained in Eqs. (1)­
(5). That can be done as follows. 

The most essential ingredient to be used is the 
symmetry of the Jost function,17 

f(),)f*( _),*)eid - f( -)')f*(A*)e-i",t = 2i sin 7TA, 

(19) 

which holds whenever the potential is local and real 
and well-enough behaved to permit the definition off 
Let us define two functions 

gl(A2) == l(I - i cot 7TA)f(),) + I(I + i cot d)f( -A), 

g2(A2) == li[f(),) - f( -A)]/sin 7T)" (20) 

so that 

~ ~ (l) (17) Insertion in (19) then leads to -l Cz Im/, = k k rl!' cICZ' Ildl'l· 
I z " gl(A2)g:(A2*) _ g2(A2)g:(A2*) = 1, 

If the Cz vanish so rapidly as 1-- co that inversion of 
the order of summation is allowed in (17), then the 

(22) 

1& This was already pointed out by P. C. Sabatier, Ref. 2. 

18 I am indebted to Dr. Sabatier for correspondence on this point. 
17 See, for example, Ref. 7, p. 32. Eq. (5-11). However, note 

Ref. 4. 
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which means particularly on the real and imaginary 
axes, 

(22a) 

The other fact to be used is the behavior of the 
Jost functionl8 

f(A) -- 1 as ,,== 1m 1.-- - 00. (23) 

As " __ + 00, eifty(A) is bounded by an inverse power 
of ".18 These statements are most reasonably inter­
preted by demanding 

gl(A
2
) -- I} 

g2(A2) __ 0 as" -- ± 00. (24) 

Of course, they do not imply (24). But let us now 
make the additional assumption that g I' and g 2 possess 
Mittag-Leffler expansions of the forml9 

(25) 

which incorporate (24).20 This is the only additional 
assumption we are going to make. Of course, it does 
not follow from (21) and (23), nor at present are any 
sufficient conditions on the potential known which 
would allow us to prove (25) directly. We therefore 
assume these equations. 

Now, according to (21), the singularities of gl and 
g2 are singularities off, except that if 

(26) 

18 See, for example, Ref. 7, Chap. 6. 
It There is no loss in generality in summing both over the same 

set A. A is the union of the sets of singularities of K 1 and K2' Some 
ofthe coefficients aJ.' or bJ.' may, a priori, be zero. 

10 Provided that A does not extend to infinity in the imaginary 
directions. 

then f(A) has no pole at A = A'. Therefore, if we 
demand that 1(1.) have no poles in the right half-plane, 
as we must for well-behaved potentials, III then (26) 
must hold for all A' in A. Furthermore, if A' is in 
A, then so must be 1.' *. That follows from (19) (or 
from the reality of the potential). Now let us insert 
(26) and (25) in (22). Then we find, after a bit of 
algebra, that 

where the constants /'J.' must have the property (14). 
This means that we have derived (7a). 

The reasoning may, of course, be easily inverted. 
The result is that the "dispersion relation" (7a) is 
equivalent to the symmetry (19), together with the 
absence of singularities in f in the right half-plane, 
and the expansions (25). The extent to which the latter 
incorporate (23) or other statements about the 
asymptotic behavior of f(A) depends on the distribu­
tion of singularities off(A), i.e., of gl andg2 • And that, 
in turn, depends on the detailed behavior of the 
potential near r = 0, as expressed in the singularities 
of (12). For example, we cannot conclude from (7a) 
that f(A) -- 1 as Re A -- - 00, with 1m A :;l: 0 fixed, 
unless we know that the singularities of f do not 
extend infinitely far away from the real axis. 

The integers in A again require a brief separate 
discussion. If gl and gz have simple poles at an integral 
value of A, then f is analytic there. Equations (20) show 
that these poles come from the sin 1TA in the denomi­
nators. In fact, unless fen) = f( -n), gl and g2 must 
have poles at ±n. According to (11), the exceptional 
casef(n) = f( -n) does imply /,,, = 0.22 

2lSee, for example, Ref. 7, Chap. 5. 
22 In view of the fact that (7a) implies the existence of a real local 

potential, it must imply another important property of [(A): It can 
have no zeros in the fourth quadrant (see, for example, Ref. 7, 
p. 51). However, I have been unable to prove this fact directly from 
(7a). 
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In this paper we realize the algebra of the group U(6, 6) as an algebra of differential operators acting 
in the Hilbert space of functions defined on a 23-dimensional pseudosphere. We then calculate the matrix 
elements of the generators of this algebra between certain harmonic function states. 

1. INTRODUCTION 

I N a complex n-dimensional differentiable manifold 
en, the harmonic functions are defined as the eigen­

vectors of the so-called Laplace-Beltrami operatorl 

~(cn) = _1_.i... (Igl)!gii..i.. (1.1) 
(Igl)! ax' ax' 

g == det (gij); gil = (g-l)ii' (1.2) 

The metric is defined by the line element 

(1.3) 

If a group of transformations § acts transitively on 
the manifold en, i.e., is such that every two ordinary 
points of en are transformable into one another by 
one or more transformations of the group, then the 
harmonic functions defined on en form a basis for the 
irreducible representation of the group §. Beg and 
Ruegg2 have used this idea to construct the harmonic 
functions for the group SU(3). R~czka3 and Rlilczka 
and Fischer' have generalized the method of Beg and 
Ruegg to an arbitrary noncompact group, U(p, q), 
and have derived the harmonic functions for this chain 
of groups on homogeneous spaces of unit rank. 

In this paper, we particularize the results of Rlilczka 
and Fischer' to the U(6, 6) group, which is of interest 
in elementary particle physics, and we study the 
special features of these particular results. We then 
realize the algebra of U(6, 6) as an algebra of differ­
ential operators, diagonalized with respect to a subset 
of the set of compact generators. From the set of 
functions that provide a basis for an irreducible 
representation of the U(6, 6) algebra, we pick out 

* On leave of absence from Department of Physics, University of 
Nigeria, Nsukka, Nigeria. Address after 1 October 1967: Depart­
ment of Physics, University of Ghana, Legon, Ghana. 

1 S. Helgason, Differential Geometry and Symmetric Spaces 
(Academic Press Inc., New York, 1962), p. 387. 

2 M. A. B. Beg and H. Ruegg, J. Math. Phys. 6, 677 (1965). 
8 R. R~czka, ICTP, Trieste, Preprint IC/65/80. 
4 R. R~czka and J. Fischer, Commun. Math. Phys. 3, 233 (1966). 

what are in effect extreme vectors.a We then calculate 
the matrix elements of the generators between any 
two such vectors. 

In order to meet the particular needs of this paper, 
we have found it necessary to introduce some minor 
phase changes in some relations in Ref. 4. 

2. HARMONIC FUNCTIONS FOR U(6, 6) 

The homogeneous (carrier) space is the 23-pseudo­
sphere Z23, 

(2.1) 

embedded in the 12-dimensional complex space e12 , 

of which 1p are vectors, or in the 24-dimensional flat 
Minkowski space MI2,a. 

Here the matrix P is given by 

P = (Pi;) = (~ii) for i,j = 1,2," . ,6 
= -(~ii) for i,j = 7,8," . ,12. (2.2) 

Z23 is homeomorphic to the coset spaces 

U(6, 6)/U(5, 6), U(6, 6)/U(6, 5), 

on which U(6, 6) acts transitively.4 
We parametrize the pseudo sphere Z23 as follows. 
We first construct two identical ll-spheres with 

bases 
g = {gl' g2"", g6}, 

'fJ = {'fJI' 'fJ2"", 'fJ6}, 

respectively, such that 
6 

(2.3) 

(2.4) 

gi = eiq" II sin Ok cos 0i; i = 1, ... ,6, (2.5) 
k=i+1 

A 6 

'fJ; = e-iq,i II sin (Jk cos (Ji; i = 1, ... ,6, (2.6) 
k=i+1 

where 

(JI=Ol==O; O~Oi' 6;~i1T, i"t:.l; 

o ~ cPt, $; ~ 21T. (2.7) 

6 E. B. Dynkin, Am. Math. Soc. Trans!. Ser. 2, 6, 327 (1960). 
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We denote the set {Op ~i} by wand the set {9i , $i} 
by lo. We note that 

1~12 = 1'112 = 1. (2.8) 

Basis vectors of Z23 are then realized as 

"Pi = ~i cosh 0, i = 1, ... ,6, (2.9) 

"Pi = '11 sinh 0, J = 7,8, ... , 12, 

j = J(mod 6), (2.10) 

o ~ 0 ~ 00. (2.11) 

It is convenient to denote the set {w, lo, O} by n. 
From Eq. (2.8) and (1.3), which now becomes 

(2.12) 

we obtain the determinant of the metric gii: 

8 

gl = (cosh 0 sinh 0)11 II sin2
1-3 OJ 

i=2 
6 

X cos OJ II sin2i
-

S 0i cos 0i' 
i=2 

This provides us with an invariant measure in Z23, 

namely, 
1 '" 8 It "'-dn = g d~1 dipl II dO j dU j d~1 dipj. (2.13) 

j=2 

The Laplace-Beltrami operator reduces to 

~(Z23) = 1 ~ (COShll 0 sinhll 0 i.) 
coshll 0 sinhll 0 00 00 

+ _1_ ~(~ll) __ • _1_ ~('111), (2.14) 
cosh! 0 smh2 0 

where ~(ell) is the Laplace-Beltrami operator for the 
II-dimensional sphere on which the compact group 
U(6) acts transitively. ~('111) is interpreted similarly. 
The eigenvalue equation 

(2.15) 

is completely separable. 
If we write 

Y).(O) = 'Y).(O)<P(w)<i>(lO) (2.16) 

and demand that Y).(O) also be an eigenvector of the 
operator 

M'=f~+i ~ 
i=10~i 1=10ipi 

(2.17) 

belonging to the center of the algebra, then we find 
that the eigensolution (2.16), regular at 0 = 0, is 

given by' 
A 

"P).(O) = _1_ tanh
J

• 0 
(N ).)t coshll 0 

X 2FIO(J8 - J8 + IX - 10), 

!(J8 + J8 + IX); J8 + 6; tanhS 0), (2.18) 

where m" mi are zero or integers, -J,.(J,. + 2k- 2) 
(J,. = 0, 1,2, ... ) are the eigenvalues of the Laplace­
Beltrami operator, ~(~2k-l), on a (2k - I)-sphere, 
and J,. replaces J,. in '1 space. We also have 

j,. = !(J,. + k - 2), k = 2, 3, ... ,6, JI = ml' 

(2.21) 

IX,. = !(m,. + Jk- 1 + k - 2) == !(m,. + m:), (2.22) 

/lk = !(mk - Jk- 1 - k + 2) == !(m,. - m:), (2.23) 

N", = (2'7T)8 IT 1 
k=2 Jk + k - 1 

6 1 
N~ = (2'7T)8 II 1, , 

k=2 k + k - 1 

IX = 11 + (121 - A)l > O. (2.24) 

N). is a normalization coefficient for "P(O) , and the 
angles 0, Oi' 90 rPi' $i have the ranges given by Eqs. 
(2.7) and (2.11). 2Fl(lX, /l; y;!5) is a hypergeometric 
function. The d functions are defined in Edmonds8 in 
terms of Jacobi polynomials. For a square integrable 
solution regular at 0 - 00, we must have 

!(J8 - J8 + IX - 10) = -n, (2.25) 

where n is an arbitrary nonnegative integer. This in 
effect makes the hypergeometric function a Jacobi 
polynomial. 

We then obtain a discrete spectrum for A: 

A = An = 121 -(J8 - J8 + 2n + 1)2. (2.26) 

The normalization coefficient for "P(O), with respect 
to the measure 

coshll 0 sinhu 0 dO, (2.27) 

8 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 19S7), p. S7. 
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is readily shown to be given by" 

r(l + n)r2(J6 + 6)r(J6 - 16 - n) 
N). 

2(J8 - 16 - 2n -1)r(J8 + 5 - n)r(16 + 6 - n)' 

(2.28) 

Let us write -16 + J6 = ~, say. If we assume that 
18 and J 6 are free to assume any positive integer values, 
then an examination of the structure of the coefficient 
N). [Eq. (2.28)] shows that a restriction is imposed 
on the possible values of n, by the following relations: 

but 

..:l - n ~ 0, (2.29) 

~ - 2n - 1 > 0, 

J8 + 5 - n ~ 0, 

(2.30) 

(2.31) 

~ - 2n - 1 < 0 at Itanh2 01 = 1, (2.32) 

if n is nonintegral. The relation (2.32) is necessary for 
the absolute convergence of the series for 2F1 when n 
is nonintegral. It therefore does not strictly apply here. 

The irreducible representations given by the har­
monic functions are characterized by the numbers A 
andM: 

8 8 

M = I rn i + Im;. (2.33) 
i=1 ;=1 

Suppose we consider the case 16 = J6 = J, say. This 
is forbidden by (2.30) for any n > O. The case ~ = 1 
is also forbidden. For ~ = 2, we have 

n < t, i.e., n = O. 

There is therefore, in this case, only one member of 
the discrete series labeled by An' and this corresponds 
to n = O. We then have 

N;. = tj2(J + 4), 

A = Ao = 120, 

IX = 12, 

",'-0(0) = [2(J + 4)]!(tanhJ - 2 Ojcosh12 0). (2.34) 

In this paper we study only this case, reserving the 
more general case for subsequent papers. 

We turn now to the functions <l>(w), <l>(w) defined 
by Eqs. (2.19) and (2.20). We notice that since the d 
functions are polynomials, we must have 

(2.35) 
i.e., 

We must also have 

which gives 

Hence 

Similarly 
IM61 ~,J8' 

IM61 =:;;16, 
Now, since the operators 

a a .. 12 6 
0$;' ocA' l, J = , , ... , 

(2.38) 

(2.39) 

(2.40) 

mutually commute, any 11 linearly independent 
combinations of them form a basis for the Cartan 
subalgebra of U(6, 6). We can then choose the linear 
combinations so that the numbers 

and 

ml< = JI< - Jk--l> k = 2, ... , 6, 

ml< = 11< - lk-1' 

(2.41) 

(2.42) 

(2.43) 

correspond to the highest weight of the representation.7 

The corresponding eigenfunction is an extreme 
vector.6 

We are interested in the matrix elements of the 
generators of the algebra between any two such 
extreme vectors. This restriction is justified from the 
following analogy with the three-dimensional rotation 
group Os. For, suppose 

Um), '-j ~ m ~j 

are the usual basis vectors for an irreducible repre­
sentation of 0 3 in spin space. Let 0 be any operator­
valued function of the operators of 0 8 , The following 
equation is true: 

(irn'IO lim) = (ijl (J+)s-m'O(J_);-m Iii), (2.44) 

where J+, L are operators that raise and lower 
weights, respectively. By commuting the J/s and J_'s 
successively with 0, eventually making use of the 
relations 

o = (jjl L , J+ Ijj) = 0, (2.45) 

we reduce the matrix element between the states 
Jjm'), Urn) to one between highest weight states /jj). 

Our argument then is that the harmonic function 
states for which 

m" ~ J" - Jk--1; k = 2, .•. , 6~ 

m1 =J1 ~ 0, 

(2.36) m" = J" - Jk-1 

and 
6 

M6= Irn i =:;; J 8 • 
i=l 

(2.37) would be highest weight states for a proper choice 

7 The existence of such a highest weight does not imply that the 
representation is finite-dimensional. This is because the m's are 
given by differences of arbitrary numbers. 
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of basis in the Cartan subalgebra. With this simplifi­
cation, we now have 

N: = 2r(m,. + m! + 2)/r(m,. + 1)r(m: + 1). 
, (2.47) 

3. LIE ALGEBRA 

We may write the generators AiS of U(6, 6) as 

(
Ail AiJ) j,i=1,2,···,6, 

{A<l,} = , 
Ai3 Aij t,} = 7,8,'" , 12, 

(3.1) 

in which the elements Ail generate the compact 
subgroup U(6), as also do the elements At}. The 
elements A,j, Ai} generate the noncompaM completion 
to the group U(6, 6). 

The generators by definition satisfy the Hermiticity 
conditionS 

(3.2) 

where fJ is given by Eq. (2.2) for the space C2. Hence 
t t Ad = Aii , Aii = Ait , 

AI, = -AJ., Au = -Aii · 
(3.3) 

The generators A", also satisfy the commutation 
relations 

[A"" Ay,,] = fJ,yA"" - fJ""A y,' (3.4) 
We choose the operators AiiAJJ diagonal, with eigen­
values mi and m;, respectively. In terms of differential 
operators, 

1 a a * a 
Hi == Au = (-1)i 0..1.., = 'Pia. - 'Pi ~ , (3.5) 

'1'. 'P. fI'Pi 

1 a a * a 
Hi == AJj = (-1)!- 0$; = 'PI O'PJ - 'PJ 0'P; ,(3.6) 

Amn = 'Pm%'Pn - 'P!%'P!, (3.7) 

* * A~ut = 'P~%'P1t - 'P,,010'P~, (3.8) 

Ail = 'Pto/0'PJ + 'Pr%'P: , (3.9) 

Aii = 'PiO/0'Pi + 'P: 010'P:' (3.10) 
The relations (3.3) are satisfied because the operators 

0/0'P 
satisfy the Hermiticity condition 

(%'P)t = -010'11*' (3.11) 

This follows from the invariance under 0/0'11 of the 
scalar product (j, g) of two functions defined on Z23: 

(%'P)(J, g) = o. 
Hence 

(I, :'11 g) = - (o~*I, g) == - (I, C~~*y g). 
In order to express the operators in terms of 0, OJ. 
CP., 9. , and $., we use the following inversions of Eqs. 
(2.5), (2.6), (2.9), and (2.10): 

We thus obtain9 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

8 We adopt the following convention with respect to subscripts: (a) Greek subscripts take the values 1, 2,' .. , 12. (b) Latin subscripts 
without a caret take values 1, 2,' • " 6. (c) Latin subscripts with a caret take values 7, 8,' .•• 12. This convention is assumed forthwith 
without further mention. 

• We note that for any functions A" "'('II A_ = 0 for y < x,while TIll A_ = 1 fory < x, ~"=,, ~ "=,, ~ 



                                                                                                                                    

U(6,6) ALGEBRA 1575 

We obtain a similar expression for A~lI' with the following replacements: 

° ~It • -I.~ ~ e~"'_e-i$ ... , m -1 2 ... 6 m ~ 17m , 't' ~ cp, - " ,. (3.19) 
Furthermore, 

6 

sin 9r sin 9, sin Of cos 9,. cos 91 cos Om 
r=,.+1 

6 0 8 .=1+1 0 II sin 9, cos 9,. sin °
1 

cos Om • ;- + ! ~t-::!m!!:+C!1 _____ """"'"""::6 _______ ' -9-
;::::t.\ . flO 1=,.+1 2 sin 91 II sin3 9

r 
0 1 

.... 1+1 

8 

II sin Or sin 0, sin 9f cos Om cos OJ cos 9" m-1 8 

! II sin2 
OJ sin 91 cos2 

Ok cos 9,. r=m+1 
8 '=1+1 + ! f~=:!!n+:t;!1'--____ ---:"8 ______ _ 

I-m+l 2 sin °1 IT sin 3 ° i 

k=1i=k+1 
/=,,+1 

8 

;=1+1 

,.-1 8 

2 sin Om II sins 0i 
.-m+1 

8 6 ! II sinll 9. sin °1 cos2 9k cos Om 
k=1 i=k+1 

1=m+1 
o . II sin 0; cos Om 0 ;JI,.+1sin 9, cos 9" + .=m+1 

6 

2 sin 9" II sin3 9. 
i=n+1 

. 09" 2' ITS . It It' 0$" - 2; IT6 sl'n 0. cos Om 
' SID 17. cos 17" • 

We obtain A~" from Eq. (3.20) simply by putting 
carets where there were no carets, and removing them 
where there were, i.e., by the interchanges 

9m ~ Om' $m ~ tPm, m = 1, ... ,6. (3.21) 

4. MATRIX ELEMENTS OF THE 
GENERATORS OF U(6, 6) ALGEBRA 

The problem we have to solve is the evaluation of 
the integrals 

D( R) - DAo,J,¥ A (A ) 
(x, tJ = m,m';m,m' a,fJ' 

== f dn(y;:,~f,(n))*A/ZfJy;::~,M(n) (4.1) 

for Ot, (3 = 1, 2, ... , 12, where dO. is given by Eq. 
(2.13) and 

i=n+1 i=m+1 

(3.20) 

We proceed now to evaluate D(m, n), D(m, ii), 
D(mii) , and D(m, n) in that order. The matrices 
D(m, m), D(m, m) are trivially given by 

(4.5) 

respectively. 
For D(m, n), we substitute Eq. (3.18) in (4.1) and 

carry out the differentiations, making use of the 
relations 

6 

X IT (cos Ok)fflk(sin 0Jmk+2-k, (4.6) 
k=2 

m-1 6 6 
J = J6 = 16 + 2 = J~ = 1~ + 2, 

mk = Jk - J1c-1; k = 2,3, ... , 6, (4.2) ! II sin2 0; cos2 01 = (1 - 6m1) IT sin2 
Ok' 

m1 = Jlt 

/=1 /=1+1 k=m 

01 == 0, (4.7) 

M=!m;+!ml' 
i ; 

(4.3) 
nk==NkN; 

It is convenient at this point to introduce the notation 
[ 

r(mk + m: + 2)p(m; + m:' + 2) Ji 
=r(mk + I)r(m~ + I)r(m: + I)r(m:' + 1) . 

(4.4) 
(4.8) 
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We then obtain: 
Form> n, 

6 6 Lft/2 6 
D(m, n) == «5tnm+1,tnm,«5m,,-I.m .. ' II m." «5m~.m.' II «51!1i'~' II Ok dOk(cos Ok)"I:+1(sin 0JYI:+l 

k=1 i=1 0 1:=2 

6 

X {I sin Om cos O,,(J m-l cot Om - mm tan Om)(l - «5m1) IT sin 0. + I cos Om cos 0" 
i-,,+1 

X J .. II sm-10. - Jm II sm (Jr - - m" m (J,,-l cot 0 .. - m" tan (J,,)(1 - «5nJ ( 
m . m . ) 1 sin ° cos ° 

i=,,+1 1'=,,+1 2 II . 0 sm • 
f-A+l 

(J mm IT sin 0. cos O,,} + __ m--,,,'!..c_o_s----:.:m,,--_ + i=,,+1 , 

m . 2 cos 0 
2 II sm 0i cos 0.. m 

i-,,+1 
(4.9) 

where lIm,,, indicates that the terms k == m, n are omitted from the product. This product of 12 delta 
k=1 

functions occurs often in this work, and so we denote it by a new symbol. We define 

.. 
" m" II sin (J,cos Om ° 

X (1 - «5"1) II sin Of + f=m+l + __ m-"m::...c_o_s--=.,, __ 
1=m+l 2 cos 8n n 

2 II sin (Ji cos Om 
i=m+l 

(4.10) 

In carrying out the (J integrations in Eq. (4.10), we notice that the integrals for k < n and for k > m 
give unity, since the (,f) functions are properly normalized with respect to the measure 

6 

II sin2
.1-3 ° i dOi • 

i=2 

For the same reasons, the 0 integrals in (4.11) give unity for k > n and for k < m 
We finally obtain: 

(a) For m > n > 1, 

D( ) _ ~ lIm ( rem. + m: + 2)r(m; + m:' + 2) )t JOm+,,-
m, n - *' * U M M' 

2 i=" rem. + 1)r(m. + l)r(mi + 1)r(mi ' + 1) . 

X {OmO" r(l(p" + 3»r(l(v" + 2»rO(Pm + 3»rO(vm + 1» 
2r(l(p" + v" + S»rO(.um + Vm + 6» 
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+ Jm(mm + 1) r(m" + l)rCmm + I)rO(vm + 3)}ro(v" + 2» IT r(M,ui + 2)}r(l(Vi + 3» 
r(mm + ICvm + 7)}r(m" + l(v" + 4» i-,,+1 r(l(,u. + "i + 5» 

+ m"(m,, + v" _ J,,_1 + 2) r(mm + 2)r(m")ro(v,, + 2)}rO(vm + 1)}ii r(l(,u. + 2)}rO(Vi + I)}}. 
r(m" + l("" + 4»r(mm + l("m + 5» l-n+1 rO(,ui + Vi + 3» 

(4.12) 
(b) For n > m > 1, 

x {OmO" rO(,um + 3)}rO(vm + 2)}r(Mv" + l)}ro(,u" + 3» 
2r(lC,um + Vm + 5)}ro(,u" + V" + 6» 

) r(mm + 2)r(m")rOCv,, + 3»rO(vm + 2» "n-1 roc,u. + 2»rO(Vi + 3»} + m"(m,, + V" - J ,,-1 + 3 . 
r(mm + l(Vm + 6)}r(m" + l(v" + 5» i-m+l ro(,u. + Vi + 5» 

(4.13) 

The numbers p, V are defined by Eqs. C4.4) and the symbollJMM, by Eq. (4.10). 

(e) For m > n = 1, 

D( 1) = ! IT ( rem. + mi + 2)r(m: + mi' + 2) )* lJm +c, 
m, 2 ;=2 rCm. + 1)r(mi + l)rCm; + I)rCmi' + 1) MM 

a rO(,um + 3)}rOCvm + 1» 
+ m rO(,um + Vm + 6» 

x IT Or r(lC,u .. + 2»ro(v .. + 1)}(m
1
(,um + Vm + 4) - Jm(Vm + 1) IT "t' + 1 )}. (4.14) 

,.=2 ro(,u,. + V,. + 3» ,.-2 p .. + V,. + 3 
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(d) For n > m = I, 

D(I, n) = ! ir ( r(m, + m~ + 2)r{m~ + m:1 +.2) )1 ~k~'{O" ro(.u .. + 3»ro(" .. + 1» 
2 i-2 rem. + l)r(mi + l)r(m; + 1)r{mi I + 1) ro<p .. + " .. + 6» 

x IT Or r(!(.ur + 2»r(!{"r + 1»(J .. (" .. + 1) IT "r + 1 - ml(.u .. + " .. + 4») 
r=2 rO(.ur + 'IIr + 3» r=2 f'r + "r + 3 

+ ( + 
_ J + 3) r(m .. )rO('IIn + 3» 11n- 1 rO(.ui + 2»rO("i + 3» 

m.. ".. n-l mn 
r(m .. + 1(" .. + 5» i-2 rO(.ui + 'IIi + 5» 

+ m
1 

r(mn + 1)ro("" + 1» IT rO(.ul + 2»rO('IIi + I»}. 
r(m .. + 1('11" + 3» i=2 ro(.u. + "i + 3» 

(4.15) 

In order to find the matrix elements of Am4 , we substitute Eq. (3.20) in Eq. (4.1) and make use of Eqs. 
(4.6), (4.7), and (4.8). 

Noting that 
(4.16) 

so that 
6 ; m 6 

! (-m j + J i - 1 cot2 OJ) 11 sin2 0. = J m 11 sin2 6. - J 11 sins 6, (4.17) 
;-m+l i=2 i=2 i-2 

and 
8 J.. 6 

! (-m; + J1- 1 cotS 9;) 11 sinS 9. = I n 11 sinS 0. - (J - 2) 11 sin2 9., (4.18) 
I-n+l i=2 i-2 i-2 

and carrying out the ° integrations we finally obtain: 

(a) Form,n > 1, 
6 6 

D{m, Ii) = ~m .. +1.mm'''';'''-I,~ .. , 11m 
"mk,mk' 11" b~I'~" 

k=l !=1 

x !{_ 44(J + 4i~ TI O. rocp. + 3»rOCUi + 3» ir O. ro{f'! + 3»rO{"i + 3» 
2 (2J + 7)(2J + 9)i=n+1' rHea. + Pi + 6» i=m+l' rocf'; + 'II; + 6» 

+ {J 0 rOCf'm + 3»rOClIm + 2»i:l o. r(!(f'j + 2»rOClI; + 2» IT 0 rOCf'k + 2»rO(Vk + 1» 
m m r(!(f'm + Vm + 5» ;=2 1 r(!(f'i + 11; + 4» k=m+l k rO(f'k + Vk + 3» 

_ JO rO(f'm + 3»rO('IIm + 2) IT 0 r(!(f'k + 2»rOClIk + 3»} IT O. rOCfli + 3»rO(pi + 3» 
m rO(.um + Vm + 5» k=m+l k rOCf'k + 11k + 5» i=1I+l' rOCfli + Pi + 6» 

+ {JnOn rOCfln ~ 3»)~OCPn + 2» IT 0; rOCfl; ~ 2»~OCPi + 2» IT Ok rO(flk ~ 2»rO(Pk + 1» 
rOCf'n + Vn + 5» ;-2 ro(f'; + 11; + 4» k=n+1 r(Hf'k + Pk + 3» 

_ (J _ 2) rO(fln + 3»rO(Pn + 2» 0 IT 0 rO(flk + 2»rO(lIk + 3»} 
rO(fln + Pn + 5» nk=n+1 k r(l(A + Pk + 5» 

x TI OJ rO(.ui + 3»roc". + 3» _ JmO
m 

rOCf'm + 3»rO(vm + 2» 
i=m+l rO(.ui + lIi + 6» rO(.um + Vm + 5» 

x IT Ok rOCf'k + 2»rO('IIk + 2» IT 0i r(Hf'i + 2»rO(vi + 1» 
k-2 rO(.uk + 'Ilk + 4» i=m+l rOCf'i + Vi + 3» 
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x 0 roea" + 3»rocv" + 2» IT 0 roea; + 2»rocv; + 3» 
" roc,u" + v" + 5» ;=,,+1; roc,u; + V; + 5» 

_ J 0 roc,u" + 3»rocv" + 2» IT 0 rOC,uk + 2»rOCVk + 2» IT Cl. roc.ai + 2»rOCVi + 1» 
"" roc,u + V" + 5» k=2 k roc.ak + vk + 4» i=n+l' rOC,ui + Vi + 3» 

x Om rOC,um + 3»rOCvm + 2» IT 0; ro(,u; + 2»rocv; + 3»} . 
rOC,um + Vm + 5» ;=m+l ro(,u; + V; + 5» 

C4.19) 

(b) Forn > 1, 
6 6 

DC1, Ii) = ~ml+1.ml,~~"-l.~,,, TI ~mk.mk'TIn~~I~I' 
k=2 1=1 

X!{ -44CJ + 4)2 IT Cl. rOC,ui + 3»rOCVi + 3» Ii O. ro(,u; + 3»ro(v; + 3» 
2 (2J + 7)(2J + 9)i=,,+I' rOC,ui + Vi + 6» ;=2' ro(,u; + V; + 6» 

_ IT Cl
i 
rO(,ui ~ 3»~OCVi + 3»(_ IT Ok ro(,u; + 2»rocv; + 1» ml 

i=n+1 rO(,ui + Vi + 6» ;=2 roC,u; + V; + 3» 

+ J IT 0 ro(,u; + 2»ro(v; + 3») _ (-J Cl ro(,u" + 3»rocv" + 2» 
;=2 ; roc,u; + V; + 5» n" ruc,u" + V" + 5» 

X IT O.ro(,u; + 2»rocv; + 2» IT !! rO(,uk + 2»rOCVk + 1» 
;=2 ' r(lC,u; + Vj + 4» k=,,+1 k rOCA + Vk + 3» 

+ CJ - 2)0 rO(,un + 3»rocv" + 2» IT (l r(lCA + 2»rUCVk + 3») IT 0 rO(,ui + 3»rOCVi + 3» 
" rO(,un + Vn + 5» k=n+l k rO(A + Vk + 5» i=2 i rO(,ui + Vi + 6» 

_ m Q rO(,un + 3»rocv" + 2» IT 0 rO(,uk + 2»rOCVk + 1» IT !! rO(,u1 + 2»rOCvl + 3» 
1 n rOC,un + Vn + 5» k=2 k rO(,uk + Vk + 3» 1=,,+1 I ro(,uz + VI + 5» 

_ I
n 
IT Qkro(t1: ~ 2»~OCVk + 2» X Q

n 
ro(,u; ~ 3»:O(vn + 2» 

k=2 rh(,uk + Vk + 4» r(2C,un + v" + 5» 

X IT Q. rO(,ui + 2»rOCVi + 1) IT O. ro(,u; + 2)rocv; + 3)}. 
i=1I+1 , rO(,ui + Vi + 3) j=m+l' ro(,u; + V; + 5) 

C4.20) 

Cc) For m > 1, 
, 6 6 

DCm, 1) = ~mm+l,mm' ~~1-1.~1' TIm ~mkmk' TI ~~"~I' 
k=1 1=2 

X 1 { -44(J + 4)2 IT Q. rO(,ui + 3»rO(Vi + 3» IT O. rO(,uj + 3)rocv; + 3) 
2 (2J + 7)(2J + 9) i=2 ' rO(,ui + Vi + 6) ;=m+!' ro(,u; + V; + 6) 

_ (-J 0 rO(,um + 3)rOCvm + 2» IT 0 .ro(,u; + 2»rocv; + 2» IT Ok rO(,uk + 2»rOCVk + 1) 
m m rO(,um + Vm + 5» ;=2' roc,u; + V; + 4» k=m+l rO(,uk + Vk + 3) 

JO rO(,um + 3)rOCvm + 2» IT 0 rOC,uk + 2»rO(vk + 3») IT nroeai + 3)rOCVi + 3» 
+ m rO(,um + Vm + 5» k=m+1 k rOC,uk + Vk + 5) i=2' rOC,ui + Vi + 6» 

+ IT Ot rO(,ui + 3)rOCVi + 3» (ml IT Ok rO(,uk + 2»r(C!Vk + 1» _ 
i=m+l rOC,ui + Vi + 6) k=2 rO(,uk + Vk + 3) 
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_ (J - 2) IT 0
1 

r(!{J.t1 + 2»rO(vl + 3») 
k=2 rO(,ui + Vi + 5» 

_ A a r(!{J.tm + 3»r(l(vm + 2» IT a rO(,ui + 2»rO(Vi + 3» IT ii r(l(.Uk + 2»rO(ilk + 1» 
ml m r(!{J.tm + Vm + 5» i=m+1 I rO(,ui + Vi + 5» k=2 Te r(l(.Uk + ilTe + 3» 

_ JmO
m 

r(l(,um + 3»rO(vm + 2» x IT aTe rO(,uk + 2»rO(vk + 2» 
rO(,um + Vm + 5» k=2 rO(,uk + vk + 4» 

x IT iii r(l(,ui ~ 2»~O(ili + 3» x IT 0i rO(,ui + 2»rO(vi + 1»}. 
i=2 r(l(.U1 + Vi +5» i=m+1 rO(,ui + Vi + 3» 

(4.21) 

x!{ -44(J + 4)2 IT ii. r(l(,ui + 3»rO(ili + 3» IT a rO(,ui + 3»rO(Vi + 3» 
2 (21 + 7)(21 + 9) i=2 • roc,ui + ili + 6» ;=2 i rO(,ul + Vi + 6» 

+ IT ii. rO(A + 3»rO(ili + 3»(m IT a ro(,u; + 2»rO(Vi + 1» 
i=2 • r(l(.Ui + ili + 6» 1 i=2 i rO(,ui + Vi + 3» 

_ J IT aTe rO(,uk + 2»rO(vk + 3») + IT 0i rO(,ui + 3»rO(vi + 3» 
k=2 rO(,uk + Vk + 5» i=2 rO(,ui + Vi + 6» 

x (m IT ii ro(,u; + 2»rO(il; + 1» _ (J _ 2) IT a rO(,uk + 2»rO(ilk + 3») 
1 i=2 i rO(,ui + ill + 3» k=2 k r(l(A + vk + 5» 

n
6 

1'\ rO(,ui + 2»rO(il; + 3» n° r. rO(,ui + 2»rO(vi + 1» -ml ~~i ~~i 
i=2 rO(A + Vi + 5» 1=2 rO(,ui + Vi + 3» 

_ m
l 
IT at rO(,ut + 2»ro(v.: + 3» IT iii ro(,u; -t: 2»~O(Vi + 1)}. 
i=2 ro(,u.: + Vi + 5» 1=2 rO(,ui + 'Pi + 3» 

(4.22) 

The matrices D(m, n) are obtained from Eqs. (4.19)­
(4.22) by interchanging symbols with carets with 
symbols without carets, at the same time inter­
changing the factors J and J - 2 that appear in these 
formulas. 

5. CONCLUSION 

We have derived and explicitly displayed the matrices 
of the generators of the algebra of U(6, 6) between 
harmonic function states which may, under certain 
circumstances, be considered highest weight states. 

It is now in principle possible to calculate the matrix 
elements of any element of the U(6, 6) algebra between 
these states. 

If we proceed in a similar manner to find the matrix 
erements of the generators between any two harmonic 
function states, then it is again in principle possible to 
find the matrix elements of the finite transformations of 
the groups generated by the algebra. It is clear, however, 
from the complicated structure of the results obtained 

above that such a task would be prohibitively com­
plicated, at least within the framework of the 
formalism used here. We should, nevertheless, like to 
find compact expressions that describe the matrices 
for finite transformations-expressions that are 
analogous to the Wigner d functions for the rotation 
group. This would require the decomposition of 
U(6, 6) into an ordered product of a finite number 
of its one-parameter subgroups. This problem is being 
studied. 
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Superconductivity in One and Two Dimensions. ll. Charged Systems 

T. M. RICE· 
Department of Physics, University of California, San Diego, La Jolla, California 

(Received 10 October 1966) 

In an earlier paper the Ginzburg-Landau free energy functional was used to calculate the effect of 
thermodynamic fluctuations on the off-diagonal correlation function and we found no off-diagonal 
long-range orde~ in one- and two-dimensional systems. It has been pointed out that, for a charged system, 
the use of the Gmzburg-Landau free energy functional is in error for arbitrary nonequilibrium values of 
the order parameter since the electrostatic energy of the charge fluctuations associated with an arbitrary 
order parameter is not included in the free energy functional. We have not succeeded in a direct general­
ization of the free energy functional so we are forced to proceed by inference from the generalized 
random phase approximation (RPA). We find that, for uncharged systems, the RPAgives a linearization 
of the results obtained earlier using the Ginzburg-Landau theory. For charged systems we find in the 
RPA results similar to those obtained for uncharged systems. From this we conclude that it is very likely 
that, as in uncharged systems, there will be no ODLRO in charged infinite one- and two-dimensional 
systems. 

I. INTRODUCTION 

THERE has been considerable interest recently in 
the possibility of superconductivity in one- and 

two-dimensional systems. The original impetus for 
this work came from a suggestion by Little! that 
certain organic macromolecules might be supercon­
ductors with very high transition temperatures. Little! 
used as a criterion for superconductivity that the 
Bardeen-Cooper-Schrieffer equations have a solution. 
FerreIra examined the effects of low-lying collective 
modes on a one-dimensional superconductor and 
found that the expectation value of the gap function 
was zero and therefore no superconductivity. Recently 
Bychkov, Gorkov, and Dyaloshinski3 have argued that 
the macromolecules proposed by Little! would not 
have low-lying collective modes because of the 
Coulomb interaction and that such macromolecules 
could be superconductors. In a previous paper' (here­
after referred to as I) we examined the effects of 
thermodynamic fluctuations on the existence of off­
diagonal long-range order (ODLRO) in one- and two­
dimensional systems. The concept of ODLRO was 
first introduced by Penrose and Onsager5 for bosons in 
the superfluid state. y ang6 has shown that ODLRO 
in Fermi systems implies flux quantization. In I we 
calculated the off-diagonal correlation function by 
first assuming the existence of an order parameter 

• Present address: Bell Telephone Laboratories, Murray Hill, 
New Jersey. 

1 W. A. Little, Phys. Rev. 134, Al416 (1964). 
2 R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964). 
3 Yu. A. Bychkov, L. P. Gorkov, and I. E. Dyaloshinski, JETP 

Pismav Redaktsiyu 2, 146 (1965) [English trans!.: Soviet Phys.­
JETP Letters 2, 92 (1965)]. 

'T. M. Rice, Phys. Rev. 140, Al889 (1965). 
• O. Penrose, Phil. Mag. 42, 1373 (1951); O. Penrose and L. 

Onsager, Phys. Rev. 104,576 (1956). 
• C. N. Yang, Rev. Mod. Phys. 34,694 (1962). 

and then averaging over all possible choices of the 
order parameter weighting each according to its 
thermodynamic probability in the Ginzburg-Landau 
theory.7 We found that, whereas in three dimensions 
the resulting correlation function exhibited ODLRO, 
in one and two dimensions this was not so. 

At first sight it would seem that it is possible to 
apply the arguments given in I to charged or un­
charged superconductors since they depend only on 
the Ginzburg-Landau theory which is known to work 
well for real conductors. Kohn8 has pointed out that 
the use of the Ginzburg-Landau free energy func­
tional for arbitrary values of the Ginzburg-Landau 
order parameter 'f"(x) is highly suspect for charged 
systems. An arbitrary 'f"(x) has a current associated 
with it J '" '¥*V'f" - (V'f"*)'f". Further, since in 
general div J ¥= 0, an arbitrary '¥(x) will have a 
charge fluctuation associated with it. Charge fluctua­
tions require an electrostatic energy which is positive 
and this tends to inhibit them, but this fact is not 
contained in the Ginzburg-Landau theory. This 
criticism does not apply to the equilibrium values of 
'f"(x), which satisfy the Ginzburg-Landau equations, 
(since div J = 0 for all such values). The criticism 
only applies to the use of the Ginzburg-Landau free 
energy functional to describe an arbitrary nonequi­
librium value of'¥(x) in a charged system. 

We have not succeeded in generalizing the Ginzburg­
Landau free energy functional to include these effects 
and thus we cannot give a direct generalization of the 
results in I to a charged system. Thus we are forced 
to proceed by inference from the generalized random 

7 v. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 
20, 1064 (1950). 

8 W. Kohn (private communication). 
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phase approximation (RPA). We calculate the off­
diagonal correlation function in the RP A for both the 
uncharged and the charged systems. We find that, in 
an uncharged system, the form of the off-diagonal 
correlation function obtained from the RPA is a 
linearization of that obtained in I using the Ginzburg­
Landau theory. We then calculate the off-diagonal 
correlation function in the RPA for a charged system 
and we find a form similar to that obtained for the 
uncharged system. From this we infer that it is very 
likely that a more correct calculation would give results 
similar to that obtained in I-namely, that there could 
be no ODLRO in an infinite one- or two-dimensional 
system. This is rather remarkable since the question of 
ODLRO is closely related to the long-wavelength 
collective modes of the system. These modes are 
strongly influenced by the Coulomb interaction. 

We use the functional integral formulation of the 
theory of superconductivity developed by Hubbard9 

and LangerlO since it facilitates the comparison of the 
Ginzburg-Landau theory and the RP A. These two 
approaches appear in this formulation as two dif­
ferent approximations to the full functional integral. 
In Appendix A we show how Werthamer'sll general­
ization of the Ginzburz-Landau functional to all 
temperatures can be derived readily from this formu­
lation. 

II. FUNCTIONAL INTEGRATION TECHNIQUE 

We start by discussing the functional integral 
formulation of the theory of superconductivity. As 
we are interested in the effects of the Coulomb inter­
action on the off-diagonal correlation function, we use 
a Hamiltonian which contains a short-range attractive 
force and a Coulomb repulsion. The functional 
integration technique has been applied to supercon­
ductivity by Hubbard,9 MuhlschlegeI,12 and Langer. lo 

Hubbard and Langer use just a short-range attrac­
tive force while Muhlschlegel considers only the trun­
cated BCS Hamiltonian. We wish to extend the 
Hubbard formulation to include the Coulomb repul­
sion. The Hamiltonian of the system is given by 

H - ftN = ! B(p )a!,aap,a 
p,a 

• J. Hubbard, Phys. Rev. Letters 3,77 (1959). 
10 J. Langer, Phys. Rev. 134, A553 (1964). 
11 N. R. Werthamer, Phys. Rev. 132,663 (1963); L. Tewordt, ibid. 

132, 595 (1963). 
1. B. Muhlschlegel, J. Math. Phys. 3, 522 (1962). 

Here the ap,a and a!,a are the annihilation and 
creation operators for Fermions of momentum p and 
spin (j and B(P) in the energy measured from the 
chemical potential ft. The momentum dependence 
of the attractive interaction is a purely formal device 
which, as we see, enables us to calculate easily the 
off-diagonal correlation function. We always set 
ga == g at the end of our calculations. The Coulomb 
interaction is given by v(Q) = 47re2j Q2. 

Let Z denote the grand partition function 

Z = Tr exp {-fJ(H - ftN)}, (2) 

where fJ is the inverse temperature. Following Hubbard 
we introduce a Feynmanl3 ordering label s and write 

Z = Tr exp {_l[ ! B(p)a!,a,.ap,a,. - ! gab~,.ba,. 
N p,a,. a,s 

+ t! V(Q)p6,.pa,.]}, (3) 
a,. 

where we have introduced the operators 

and 

b6,. = ! a!+a,a,.a~p,_a,. 
p 

t _ '" at a Po,s - ~ p-tQ,a,s P,0',8· 
p,a 

The sum over s runs from I to N. With the introduc­
tion of the ordering label, the quantities now can be 
treated as c numbers with an error which goes to zero 
as N - 00. Using the identity 

exp {laI2
} = ;. L+roro dXl dX2 

X exp { -lxl2 + ax + a*x*}; 

where x = Xl + iX2' we can express the partition 
function as a double functional integral 

f+OO { fJ } Z= -dx·d. IT N a,s,. Ya,s,. 
-00 QJt 8 11' 

X exp {- ~~.cIXQ,l+ IYQ,l)}C[XQ,.'YQ,s]' (4) 

The functional C is given by 

C[xa,., YQ,.] = Tr exp {- NfJ [ ! B(p)a!,a,.ap,a,8 
p,a,8 

+ ! (gQ)!(x~'8bb'8 + h.c.) 
Q,s 

+ ! (-!v(Q»!(y~,sp6,s + h.c.)]}. (5) 
Q,8 

C is the partition function of noninteracting elec­
trons moving in an arbitrary "scattering" potential 

13 R. P. Feynman, Phys. Rev. 84, 108 (1951). 
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and an arbitrary "pairing" potential. It can be evalu­
ated by the usual procedures of many-body perturba­
tion theory. If now we replace the sum by an integral, 
i.e., (fJIN)!. ->- IC ds, and expand all quantities de­
pending on S in a Fourier series as is usually done in 
finite temperature many-body theory, we get that 

Z = f 1] (; dX~'idY~.i) 
i=l,2 

X exp {-~ (lx~12 + IY~12)}qX~' Y~], (6) 

where IX = (Q, m) and m runs over all integers and 

qx~, y~] = Tr exp {- ell ds! &(p)a:, .. ,.ap , .. ,. Jo p, .. 

- p-l ell ds ! (go)!(x: b~,. exp (27Timsl P) + h.c.) Jo ~ 

_ p-l [II ds ! (-iv(Q»! 
Jo ~ 

x (Y: P~,. exp (27Timsjp) + h.c.)}. (7) 

The calculation of C reduces to the calculation of 
the "partition" function of noninteracting particles 
moving in arbitrary "scattering" and "pairing" 
potentials. An expansion of C in powers of the 
"pairing" potentials {x} and "scattering" potential 
{y} is generated by perturbation theory. The "parti­
tion" function then is given by the exponential of the 
sum of all connected electronlike graphs. The con­
tribution from each graph may be written down 
using the following rules: 

(1) For each solid electron line, a factor 

[P(&(p) - 7TilIP)]-l. 

Label each interaction line with a momentum and 
frequency which must be conserved at all vertices. 

(2) For each ingoing "pairing" interaction, denoted 
by a wavy line, a factor (goP)h!; for each outgoing 
"pairing" interaction, denoted by a wavy line, a 
factor -(goP)h~. 

(3) For each ingoing "scattering" interaction, denoted 
by a broken line, a factor (-iv(Q)p)ly!; for each 
outgoing "scattering" interaction, denoted by a 
broken line, a factor (-iv(Q)P)!y~. 

(4) (-l)lw for each closed loop where w is the 
rotational symmetry of the loop, and a factor (i) for 
each closed loop involving a "pairing" interaction 
for overcounting the spin sum. 

(5) Sum over p, a and I odd. 
With these rules we can evaluate formally the 

functional qx~, Ya] and can write the ratio of the 
partition functions of the interacting and noninter-

acting systems z' as 

Z' =f n (! dX~idYd) exp {- Y[x~, Y~]}, (8) 
a,t. 17' 

where 

Y[Xa' Ycz] = -(S(P»l1nked + ! (lxczl
2 + IY~12), 

~ 

and 

S(P) = T. exp ( - 1'8 H1nt(s) dS). (9) 

Hint(s) is the interaction Hamiltonian Eq. (7) in the 
interaction representation. 

In the next section we discuss the evaluation of Y 
for the uncharged system in various approximations 
and the calculation of the off-diagonal correlation 
function. 

ill. UNCHARGED SYSTEM 

We begin by considering the uncharged system, 
i.e., no Coulomb interactions between the particles 
v(Q) == O. The Hamiltonian is now the same as that 
used by Langer.1o Hubbard9 and LangerlO showed 
that the superconducting transition manifests itself 
in a shift of the minimum of Y[xcz] away from the 
origin. The position of the minimum is atlxo,012 = So, 

where So is given by the BCS equation 

1 = gO! tanh HP[&(p)2 + gosoIP]!}. 

2 p [&(p)2+gosoIP]1 
(10) 

There are two alternative approximations we can 
now make, 

(1) We can expand Y[x~] in powers of X~ about the 
origin, i.e., x~ = 0, all IX. If we drop the "time"­
dependent terms-ignore the s dependence of the 
variables {xo s}-then we need only include IX = 
{Q, O} terms and, expanding the coefficients in powers 
of Q, we get the Ginzburg-Landau functional. This 
procedure is valid only near the transition temperature 
but it can be extended to obtain the Werthamerll 

function, which is valid for all temperatures, as 
indicated in Appendix A. 

(2) Alternatively, we can expand Y[xcz] about the 
new minimum x~,o = So; x" = 0, IX =F (0,0). This 
expansion, which is a generalized RPA, has been 
carried out by Langer.10 We calculate the off-diagonal 
correlation function in both approximations and show 
how the results are related. 

Ginzburg-Landau Approximation 

We begin by discussing the first approach. We 
neglect all "time" -dependent graphs and consider 
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just the two lowest-order graphs shown in Fig. 1; then 
we have 

(11) 

where 

9, ° 2,,0 
FIG. 1. The graphs included in the Ginzburg-Landau 

approximation. 

K Cll = _ 1.. ! go (12) ° 2fJ p,!, .. (t;(p + Q) - 7TillfJ)(t;(p) + 7TillfJ) 

K(2) _ ~ ! (gOlgOagOsgOl+OS-OS)! 
o"o •. os - 2fJ2 p,!,47 (t;(p + Ql) - 7TillfJ)(&(p + Ql - Qa) + 7TillfJ)(&(p + Ql + Q2 - Qa) - 7TillfJ) 

Expanding in powers of Q and setting go == g, we 
write 

K Cll = K + K Q2 + .... K (2 ) = K + ... ° 0 1 '0,,01.03 2 • 

The evaluation of the coefficients Ko, K1 , and K2 has 
been given by Gorkov.14 Writing Y[xo ] as a functional 
in position space, we get 

Y[~(R)] = fJaJI~(R)12 dR + ifJbJI~(R)14 dR 

+ fJc' J IV ~(R)12 dR, 

where 

(14) 

~(R) = (glfJ)! ! Xo exp (iQ. R). 

° 
~(R) is Gorkov gap function14 and is proportional to 
the Ginzburg-Landau order parameter 'Y(R): 

'Y(R) = (n(3)NI87T2T~)!~(R). (15) 

X 1 (13) 
(t;(p) + 7Till fJ) 

The coefficients a', b', c' are given by 

a' = (1 + Ko)/g; b' = 2fJK2/g2; C' = -K1/g2. 

If we write the functional Yin Eq. (14) as a functional 
of'Y(R) rather than ~(R), then we see at once that it 
has the same functional form as the Ginzburg­
Landau free energy functional. Comparing coefficients, 
we find, as shown in detail in Appendix A, that 
Y = fJF where F is the Ginzburg-Landau free energy 
functional. In I we calculated the off-diagonal cor­
relation function by averaging over all possible choices 
of the order parameter and using the Ginzburg­
Landau free energy functional to weight each choice. 

The Generalized Random Phase Approximation 

In this section we calculate the off-diagonal cor­
relation function in the generalized RPA. The off­
diagonal correlation function can be obtained by 
differentiating the grand partition function, 

a I Tr {ifJ .4 a!-to .. a!p.-.. a_p,,_ .. ap'+o ... exp (-fJ(H - P,N»} 
-In Z[go] = P.P ." = fJGOD(Q), (16) 
ago go=g Tr {exp (-fJ(H - p,N»} 

and we have used the cyclic property of the trace to 
write the derivative in this form. 

The grand partition function is obtained in the 
RP A by expanding the functional about its minimum 
and evaluating the functional integral by using 
a saddle-point approximation. As LangerlO has shown, 
the saddle-point approximation is at best a physical 
one, which is mathematically unjustified. We follow 
Langer's analysis, extending it to a momentum-

14 L. I. Gorkov, Zh. Eksperim i Teor. Fiz. 36, 1918 (1959) 
English transl.: Soviet Phys.-JETP 9,1364 (1959)]. 

dependent pairing interaction and we find 

Z'[go] = 1] (; J dX".i) exp( - Y[go, x,,]), 
i=1,2 

where Z' is ratio of partition functions of the inter­
acting and noninteracting systems, and 

Y[go, x,,] 

= Y(go, so(go» + ! Y"(go, so(go»(lxoI2 
- s:(go» 

+ ! {(1 - rigo, go»x:x" 
""'CO,O) 

+ l~,,(go, go)(x:x~" + c.c.)}. (17) 



                                                                                                                                    

SUPERCONDUCTIVITY IN ONE AND TWO DIMENSIONS. II 1585 

The first term is 

Y(go, so(go» 

= So - 2! In (COSh [(tP)(B(p)2 + goso/P)t]), (18) 
p cosh t,8&(p) 

where the minimum value of Y(lxo.ol) occurs at 

IXo.o12 = So, 
i.e., oY/OS 1.=80 = O. 

The coefficients 1' .. , (l .. can be calculated by summing 
all diagrams which may be obtained by inserting all 
possible numbers of ex = (0, 0) vertices between 
two ex #: (0, 0) vertices. It is straightforward to show 
that all such diagrams are included when one replaces 
the bare propagator by the Gorkov propagator.lO 

G( 1) _ ! B(p) + 7Til/P 
p, - P &(p)2 + l:!,.2 + 7T212/P2' 

1 l:!,. 
F(p, I) = P &(-p)-2 -+-l:!,.-2-+-7T-21-:"2/---:p2 ' 

(19) 

with l:!,.2 = goso(go)/p. Note Ft = -F because of rule 
(2). 

Using these propagators, the coefficients can be 
expressed by the diagrams in Fig. 2, and we have 

1' .. = goP! G(p + Q, I + m)G( -p, -1), 
D,' ( 

(l .. = (gog_o)l,8! F(p + Q, 1 + m)F( -p, -I). 20) 
P,! 

Integrating over the {x .. } we obtain 

( 
27T )l Z'[go] = exp( - Y(go, so» -~-

Y"(go, so) 

x II [(1 - 1' .. )(1 - I'-Cl) - (J!rl. (21) 
Cl;O(O,O) 

We can now compute the off-diagonal correlation 
function by differentiating with respect to go: 

1 0 
GOD(Q) = P ogo {In Z[go]}ro=g (22) 

-1 -I' (1 -" ) - (l2 __ ! « r-(Z IX. Q 0 
- pg m (1 - I'Cl)(1 - Y-Cl) - (J! ' #:. 

(23) 

The behavior of the off-diagonal correlation func­
tion for large separation in position space is deter­
mined by the character of GOD(Q) at small Q. Using 
pa.rticle-hole symmetry, we find that YCl is real and 
further I' -Cl = I' Cl' If we expand for small Q and m, 
we get 

1 - YCl - (lCl = coQ2 + c1m2 + ... 
GOD(Q) = _1_! (coQ2 + C1m2 + ... )-1. (24) 

2gp m 

(e) 

p+:0' ---- - -p.-I 
l+m -

(e) 

P+9..«:, 
l+~ -.e.-1 

;t 
(b) 

£+9'0-:,1 
l+m -

(d) 

- - -p.-l 
p+:0' ---
l+m -

(f) 

FIG. 2. The graphs included in the generalized RPA. A wavy 
line denotes a "pairing" interaction and a broken line a "scattering" 
interaction. 

As we stressed above, we are only interested in the 
dominant term of small Q. Thus we may keep only 
the m = 0 since, for finite temperatures, the sum on m 
is over discrete points. Thus we find 

GOD(Q) = 1/2,8cogQ2; Q #: 0, (25) 
where 

g p2 
Co = 6m2p ~ (&(,)2 + l:!,.2 + 7T2/2j,82)2 (26) 

Turning now to the calculation of the Q = 0 term, 
we see that differentiating Eq. (21) with respect to 
go gives two contributions, one from differentiating 
the exponential and one from differentiating the 
product, since the coefficients 1' .. , (lCl are functions of 
l:!,.. Taking the latter first we use the result that 

{ d +! d} 
dgo .. ;00 dg .. 

x In II [(1 - I'Cl)(1 - I'-Cl) - b!]-ll 
Cl;O(O,O) Igk=go=g 

= ~ {In II [(1 - YCl)(1 - Y-Cl) - b;rt I }. 
dg Cl;O(O.O) go=go=g 

(27) 

Now the right-hand side ofEq. (27) is easily evaluated, 
and by Eq. (24) gives 

!C~Q2 + c~m2 + .. . 
.. coQ2 + c1m2 + ... ' (28) 
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where 
Co = dco/dg, c~ == dCl/dg. 

Thus, using Eqs. (25) and (22), we get 

.!!.(In IT [(1 - 1' .. )(1 - I'-a) - b:r1)1 
dgo a;O(O,O) go=go=g 

= - I {~ + F(k)}. (29) 
k 2cogk 

where F(k) is regular as k -+ O. The contribution from 
differentiating the exponential in Eq. (21) is easily 
calculated and combining the results we get 

GOD(Q) - /).2 [(1 - ~ g )b + g ] 
- g2 f 2f3co/).2k2 0,0 2f3c

O
/).2Q2· 

(30) 
Thus in position space at large separation 

GOD(X) = /).2[1 _ -g-I 1 - cosk· X]. (31) 
g2 2f3c/J.2 

k k2 

In I we found that the functional integral over the 
phase which controls the nature of the long-range 
correlation gave 

GOD(X) = /).2 exp { __ 1_ I 1 - cos k • X}. (32) 
g2 2f3c~ k k 2 

Thus, comparing coefficients for T,....., To using Eqs. 
(A8) and (A9), we see at once that the RPA result, Eq. 
(31), is just a linearization of the more exact result 
found in I. 

IV. CHARGED SUPERCONDUCTORS 

We now consider the effects of including the Coulomb 
repulsion between the particles. As we stressed in the 
Introduction, it would appear at first sight that 
the treatment in I is sufficiently general to cover the 
charged case since it depends only on the Ginzburg­
Landau theory which is known to work well· for 
real superconductors. However, as shown in the 
Introduction, if we examine the free energy functional 
more carefully, then we see that it does not include 
the energy due to charge fluctuations which must, 
by the conservation laws, accompany an arbitrary 
'J!'(X).8 The generalized RPA as developed by 
Anderson15 and Thouless16 does not suffer from this 
defect since the charge conservation condition is 
built into this approximation explicitly. We now 
develop the generalized RPA in our formulation. The 
approximations made are entirely equivalent to those 
of Anderson and Thouless, although formally they 
seem different. 

16 P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
16 D. J. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960). 

The generalized RPA for a charged superconductor 
is generated by expanding the functional Y[xa,Ya] 
about its minimum position. For temperatures below 
the transition temperature. the minimum is at 

IXool2 = so; Xa = 0, IX "" (0,0); Ya = 0; (33) 
and we write 

Y[xa, Ya] 
= Y(go' so) + ! Y"(go, so)(Ixo,ol2 - SO)2 

+ I {(I - I'It)x:x .. + !15 .. (x:x~" + x"x_ .. ) 
.. ;0(0,0) 

+ (1 + ila)Y:Ya + ! il .. (Y:Y~a + y .. Y-a) 
+ tI>..(x:(y" + Y~a) + x .. (y_ .. + y:))}. (34) 

The functions I' a' ba , il", and tI>" can be written down 
from Fig. 2 using the rules given above and are most 
simply expressed using the Gorkov G and F functions. 
The functions 1'", 15", and Y(g 0, so) are the same as 
before [see Eq. (20)]. We obtain from Fig. 2{c) and (d) 

il" = -f3v{Q) I {G(p + Q, 1 + m)G(p,l) 
p,1 

+ Ft(p + Q,l + m)F(p, l)}, (35) 

and from Fig. 2(e) and (f) 

tI> .. = -( -tgov(Q»!f3 I {G(p + Q, 1 + m)F(p, l) 
Po! 

+ F(p + Q, 1 + m)G(p, I)}. (36) 

The functional integrals over the {x,,}, {y,,} can be 
done readily, and we obtain 

Z[go] = exp ( - Y(go, so» ( ,,211' )1 IT A;!, 
Y (go, so) ""'(O.O} 

where A" is the determinant 

1 - Ya 15" 

A .. = 
!5a 1 - 1'-" 

tI>a tI>_ .. 

<P" 
tI>_" 

1 + II" 

tI>a: 

tI>_" 

illt 

tI>IX tI>_a ITa 1 + il" 

(37) 

. (38) 

Using Eq. (22) we find for the off-diagonal correlation 
function 

GOD(Q) = -1 I {(d/dgo)Aa[gQ]} ; Q "" O. (39) 
f3 m A", go=g 

Evaluating the determinant gives 

A", = {(I - 1',,)(1 - y_",) - !5!}(l + 2ila:) 

- 2tI>:il - 1',,) - 2tI>!(1 - 1'-",) + 4b"tI>",tI>_,,}. (40) 

Substituting in Eq. (39) gives, for Q "" 0, 

GOD(Q) 

= -f3I I A;l{( -1'",(1 - I'-a) - !5!)(1 + 2il,,) 
g m 

+ 21'"tI>': .. - 2tI>;(1 - 1'-.. ) + 4b"tI>atI>_a}. (41) 
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It remains to calculate the quantities, y", (l", <1>", 
and TI". These quantities are in fact the same as those 
evaluated by Thouless and Tilleyl? and we obtain with 

Z = 7Tim/{3 

y" = y_" = ~ ~ {t+(P, z)(E' + E)( 1 + ;:!) 
+ t-(p, z)(E' - E)( 1 - ~:!)}, 

(l" = ~ ~ {t+(P, z)(E' + E) ~ 4;- E'E 

- qp, z)(E' - E) ::}, 

TI" = v<i) ~ {t+(P, z)(E' + E)(1 - &'&E~~/~) 

+ qp, z)(E' - E)(1 + &'~~A)}, 
zA t 

<1>" = -<1>-" = - -; (-tv(Q)g) 

where we have written 

±( t_a_nh_(=!{3_E.-:.')_±_ta_nh_(=f=--{3E...;.) 
t p z)-
,- (E' ± E)2 - Z2 

and 

(42) 

(43) 

Substituting into Eq. (41) gives us GOD(Q). We 
discuss the evaluation of GOD(Q) separately for each 
number of dimensions. 

Three-Dimensional System 

The sum over m in Eq. (41) can be transformed in 
the usual manner to a contour integral. This con­
tour integral picks up contributions from the zeros of 
A". The zeros of A" give the position of the collective 
modes. In the uncharged system it was not necessary 
to do this transformation since there are low-lying 
collective modes for small Q and m 

The m = 0 term dominates the sum as Q -+ 0 since 
it alone diverges in this limit. All m ¢ 0 terms were 
finite as Q -+ O. Thus the behavior of GOD(Q) for 
the uncharged system can be connected directly to 
the presence oflow-lying modes. However, for the three-

11 D. J. Thouless and D. R. Tilley, Proc. Phys. Soc. (London) 77, 
1175 (l961); 80, 320 (l962). 

dimensional charged superconductor, Anderson15 •l8 

has shown that there are no low-lying modes at T = O. 
We assume that this is so at finite temperatures and it 
can be shown that temperature dependence of the 
plasmon mode that Anderson found is negligible. In 
this case the behavior of A" for small Q and m is now 
drastically changed and it is necessary to evaluate the 
contour integral. The dominant contribution at small 
Q comes from the zero-point motion of the plasmon 
mode. There is also a contribution from the collective 
modes due to oscillations of the magnitude of gap, but 
this is finite as Q -+ O. Evaluating the residue of the 
plasmon modes, we find the dominant contribution 
at small Q comes from the 2<1>2 term in the numerator 
of Eq. (41) and, neglecting terms of O(WD/Wp) and 
O«{3wp)-l), we get 

GOD(Q) = ~: [( 1 - t !:~2) (lQ,O + ~;~2l (44) 

where the first term is calculated in a similar manner 
to Eqs. (27)-(30). Wp is the plasma frequency. 

Comparing this form for GOD(Q) with that found 
for the uncharged system in the RPA Eq. (26), we see 
that it has the same behavior at small .Q. There we 
found that the RPA linearized the more correct 
answer found from Ginzburg-Landau. Thus we 
expect a more correct theory to give 

GOD(X) = A2 exp {_ 87Te
2 QyM 1 - cos Q. X} 

g2 wp Q Q2 

(45) 

x -+ 00, (46) 

where QM is an upper cut-off whose magnitude is 
determined by the terms omitted in the expansion in 
Eq. (44). This form for GOD(X) of course exhibits 
ODLRO. The behavior of GOD(Q) for small Q in 
the charged system is similar to that in the uncharged 
system, although we have no low-lying modes. The 
divergence at small Q for the charged system comes 
from the residue of the plasmon mode rather than the 
modes' dispersion relation. 

In order to understand physically what is going on, 
it is instructive to ask how the phase of the gap param­
eter varies in a superconductor in the presence of 
a charge fluctuation. Consider a localized charge 

18 Note added in proof. Quite recently P. C. Hohenberg [Phys. 
Rev. 158, 383 (1967)] has given a very elegant and general proof of 
the absence of ODLRO in one- and two-dimensional systems at 
finite temperatures. This proof is applicable to both charged and 
uncharged superconductors. 
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oscillation at the origin which we represent by an 
electromagnetic potential 

9'ext(k; w) = (41Te9/k2) c5(w - wo)' (47) 

Then the Fourier transform of the phase of the order 
parameter W(k, w) is given by [see Ambegaokar and 
Kadanoff,19 Eq. (4.9)] 

W(k, w) = 41Te2wc5(w - wO)/k
2(w}, - w:>. (48) 

Thus the phase difference is 

W(X) _ W(O) = ! _ 41Te2wo(1 - cos k· X) (49) 
k k 2(w}, - w~) 

,...., _ e2wo (kmax _ !) 
2 2 • (50) 

Wp - Wo 21T X 

Thus we see that, whereas in an uncharged system 
a localized density fluctuation gives rise only to a 
localized phase fluctuation, in a charged system the 
phase fluctuation falls off slowly. We attribute the 
behavior of GOD(Q) for small Q in the charged system 
to the zero-point motion of the plasmon modes. We 
see that the presence of a long-range force does not 
alter the character of GOD(X) at large X because, al­
though such an interaction forces the density modes 
up to the plasmon frequency, it also causes localized 
density fluctuations to have a long-range effect on the 
phase. 

One- and Two-Dimensional Charged Systems 

We begin by defining more exactly what we mean 
by a one- or two-dimensional charged system. For an 
uncharged system it sufficed to define the dimensional­
ity of the system purely in terms of the dimensionality 
of the sum over Q; but this prescription breaks down 
for a charged system since the one-dimensional 
Fourier transform of the Coulomb potential is not 
well defined. It is necessary to take a specific model, 
and we take as our model in one dimension a system 
of electrons constrained to move inside a long, very 
thin cylinder, and for a two-dimensional system a very 
thin film. Thus, in one dimension, consider the elec­
trons as moving in a potential 

Vex, y, z) = !mw2(x2 + y2). (51) 

The energy eigenvalues of a system of noninteracting 
electrons moving in such a potential are given by 

En,k. = (k!/2m) + (n + !)w. (52) 

We assume that w is very large, so large in fact that 
we need never consider the higher transverse states, 
i.e., we keep only the n = 0 term in all sums over the 

11 v. Ambegaokar and L. P. Kadanoff, Nuovo Cimento 11 914 
(1961). ' 

transverse wavefunctions. The wavefunctions associ­
ated with this system are 

'1'0 k.(r) = 9'o(x,y)L-l exp (ik.z), (53) 

where L is the length of the system and 9'0 is lowest 
oscillator function 

9'o(x, y) = (Y/1T) exp {- !y2(X2 + y2)} (54) 

with y = mw. 
We now switch on two different interactions be­

tween the electrons, an attractive c5 function interaction 
and a repulsive Coulomb interaction. Migdal20 has 
extended the Gorkov theory to nonuniform systems. 
In this case, the extension is particularly easy since 
we have only one transverse level. The derivation of 
the functional integral in this case is straightforward 
and the rules for evaluating the graphs are the same, 
except that the three-dimensional momentum vector 
p is replaced by the one-dimensional vector P., the 
transverse label n = 0 being understood throughout. 
The interaction matrix elements go and v(Q) are 
replaced by the matrix elements g~ , v'(Q.), where we 
again introduce a momentum d~pendence to the 
coupling constant g to facilitate the calculation of the 
off-diagonal correlation function. The new matrix 
elements are given by 

g' = g f dx dy9'~(x, y) (55) 

and 

v'(Q.) = f d3
r ~r''I':k.(r')'I':,Q.+k .. (r) 

e2 

X -- 'I' (r')'I' (r) 
/ 

'/ O,k.+Q. O,k.' , r-r 
(56) 

= -(e2/1TL) log (Q./J2 y) + ... , (57) 

where we keep the dominant term for small Q •. 
Below the "transition" temperature we again intro­
duce the Gorkov G and F functions, 

G (k 1) = .! Eo(k.) + 1Til/f3 
o .' f3 E:(k.) + ~~ + 1T2/2/f32 (58) 

and 

F (k 1) - .! ~o ( ) 
o . Z' - f3 E~(k.) + ~~ + 1T2/S/f32 ' 59 

where Eo(k.) = EO,k. - f-t and ~o is determined by 
the equation 

~o = g' ! ~o tanh [!f3Eo(kz)] • (60) 
2 k. Eo(k.) 

We now examine the collective modes of the system. 
In the normal phase it is shown in Appendix B that 
this system has low-lying modes. The dispersion 

10 A. B. Migdal, Nucl. Phys. 13, 655 (1959). 
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relation in the limit as k z - 0 is 

{
N e2 }t 

Wk. = k% L ~ [-log (kz/J2 lI)J + .... (61) 

These modes are similar to those discussed by Ferrell.2 

Below the "transition" temperature the zeros of Art 
determine the modes and we show in Appendix B 
that these modes persist. To calculate the off-diagonal 
correlation function we need to evaluate the sum 
over m in Eq. (41). Because of the low-lying modes 
the dominant term at small Qz in the sum for T ~ 0 
will, as in the uncharged case, be the m = 0 term. 
But 'l>Q.,m=o = 0 from Eq. (42), so that in the one­
dimensional system 

GOD(Q ) = J.. -y'(Q., 0)(1 - y'(Q., 0» - 15,2(Qz (0) 
z {Jg (1 - y'(Qz, 0»2 - b,2(Q., 0) , 

(62) 

and all effects of the Coulomb interaction have 
canceled out in this approximation. The result is 
identical to that which we found in the RPA for the 
uncharged system. The RPA as we discussed above 
gives a linearization of the more exact results found 
in I. Thus we argue that, in view of the equivalence 
of the results found in the RPA for the charged and 
uncharged system, a more correct theory of the 
charged system would give the results found in I. 

The two-dimensional charged system is similar. 
There are low-lying collective modes which persist 
below the "transition" temperature. Because of these, 
the terms which couple in the Coulomb interaction 
again do not contribute to the dominant term at small 
Q. and the result for GOD(Q.) in the RPA is identical 
to the uncharged system. 
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APPENDIX A 

In this Appendix we show how the procedure used 
in the text to obtain the Ginzburg-Landau functional 

for temperatures near the transition temperature can 
be generalized to all temperatures to obtain the 
Werthamerll functional. The functional Y[xQ,m] is 
written first as a functional in position space. The 
"time" -independent approximation is made and all 
terms with m ~ 0 are discarded. Then a gradient ex­
pansion is carried out. We confine our attention to the 
field-free case, although our results can be generalized 
to include a static external vector potential. In order 
to demonstrate that the resulting functional is the 
Werthamer functional, it is sufficient to consider 
just the nearly uniform situation. Werthamer's func­
tional for the free energy for the field-free case can be 
written as 

9'[b.(R)] = f d3RN(0)[ w(lb.(RW') 

+ iv~ I o~ b.(R) rW"Ob.(R)1
2
) 

+ v~(~ 1b.(R)12)2W"'(lb.(R)12»)] (AI) 
36 oR ' 

where N(O) is the density of states at the Fermi 
surface, and 

f+OO [1 1 + cosh (J(E2 + x2)l 
w(x) = - dE -In-'---...!...-''----'--'-

-00 {J 1 + cosh {JE 

_ x tanh !{JcE
]. (A2) 

2E 

We could now proceed to check that the functional 
obtained by a gradient expansion of Y[b.(R)J is 
identical to {J9'; but, in fact, it is not necessary to 
calculate this expansion directly since Langer'slO ex­
pansion of Y in momentum space about the minimum 
value can be used to derive the coefficients. Langer 
[Eq. (4.14)] has shown that 

Y[b.q ] = Y(lb.oD + (~) I {(1 - Yilb.ol))b.:b.q 
g q"O 

+ !birb.ol)(b.!b.:d~1t + c.c.)/lb.oI2
}, (A3) 

where we have written 

and the coefficients are given by 

b. _.!. '" (t;(p) - '/Til/{J)(t;(p + q) + '/Til/fJ) 
yq(1 oD - 2{J p:t .. (t;(p)2 + '/T212/{J2 + \b.o \~(&(p + Q)2 + '/T212/{J2 + \b.o \2) 

(A4) 

and 

g Ib.ol2 1 
~1t(lb.oD = ~pf .. (t;(p)2 + '/T212/{J2 + lb.oI2)(&2(p + Q) + '/T212j{J2 + Ib.ol~ (AS) 
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This can be rewritten as 

Y[~q] = Y(l~oD + f!. I {(l - Yil~oD - ~il~ol))~:~q 
gQ,oo 

+ i~q(l~ol)(~~~:~~Q + 21~12 ~:~q + ~:2~q~_q)/I~oI2}. (A6) 

Expanding the coefficient in powers of q, we write 
g (8(p + Q) - 8(p»2 

1 - Yil~ol) - ~q(l~ol) = 4P IItl1 (8(p)2 + 7T2[2/P2 + l~oI2)(8(p + Q)2 + 7T2[2/P2 + I~ol~ 
= co(l~oDq2 + .. " (A7) 

~il~oD = oo(l~oD + ~2(1~ol)q2 + . . . . (A8) 

Transforming to position space, we obtain 

Y[~(R)] = Y(I~ol) +; co(l~oD f I o~ ~(R) rdR 

+ POo(l~Df(~2~*2(R) 
2g l~ol2 0 

+ 21~oI21~(R)12 + ~~2~2(R» dR 

+ 1!... ~ll~oDf{~2(~ ~*(R»)2 
2g l~ol2 0 dR 

+ 21~o121 d~ ~(R) n dR. (A9) 

Comparing with the free energy functional :F, we see 
that Y has the same form as p:F in the nearly uniform 
case, i.e., one writes ~(R) = ~o + ~'(R) and expands 
in ~'(R). It remains to show that the coefficients are 
the same. After some algebra we find 

_ 2 I In (COSh [(P/2)(8(p)2 + l~oP~)l]} 
II cosh iP8(p) 

= pw(I~I~, 
f!. c ~ _! ~ (v • 4)2 
g 0(1 oD - 4 111':11 (8(p)2 + 7T212/P2 + l~oI2)2 

= lPv~w"(I~012), 

pooCl~ol) = ! I 1 
2g 1~012 4 11•1,11 (8(p)2 + 7T2[2/P2 + l~oI2)2 

= !pw"(I~oI2), 

P02(1~01) =! I (v· 4)2(382(p) - 7T2[2/P2 
- 1~012) 

2g l~ol2 4 11.1.11 (8(p)2 + -r?12/P2 + l~oI2)4 
- = pv~wm(I~12)/36. (AlO) 

Thus we have shown that the two functionals are 
equivalent and that a gradient expansion of Y[~(R)J 
yields Werthamer's generalization of the Ginzburg­
Landau free energy functional. 

APPENDIX B. COLLECTIVE MODES OF 
THE ONE- AND TWO-DIMENSIONAL 

CHARGED SYSTEM 

In this Appendix we calculate the collective density 
modes of one- and two-dimensional model systems. 
Consider first the normal phase of the one-dimen­
sional system. Then, in the RPA, the dispersion 
relation is determined by the eigenvalue equation 

and Go(q" e) is the single-particle Green's function. 
At small k, the dominant contribution is from the 
logarithmic term in v'(k,). Thus, using Eq. (57), we get 

1 = -~ log (~) I noCk. + q,) - no(q,) 
7TL .J2 ')I fl •• 11 (J) - 8o(k" + qz) + 8o(q,,) 

(B2) 

(B3) 

where VF is the Fermi velocity. Solving for (J), we get 

(J)lI = v~k~{(e2/7T~F)[-Iog (k.rJ2 ')I)] + I}. (B4) 

Thus at small k. the first term dominates, and we 
obtain 

(J) = k.{(N/L)(e2/m) [ - log (k./Ji ')I)J}l + .. '. CB5) 

Next we consider the two-dimensional charged 
system. In this system we again consider only one 
transverse energy level, and it is straightforward to 
generalize the treatment given above for the one­
dimensional system. The new matrix elements are 
g" and v"(kll ) where g" differs from g only by a constant 
and 

CB6) 

fhen we find, on solving the eigenvalue Eq. (Bl) for 
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the normal two-dimensional system, that 

w(kll) = [N/£2)(e2kll/m)]l + . . . . (B7) 

We now turn to the calculation of the dispersion 
relation below the "transition" temperature. The 
dispersion relation is determined by the zeros of 
the determinant A". We consider only T = 0 since the 
additional terms in Eq. (40) which enter at nonzero 
temperature are nonanalytic and cannot be expanded 
about w = 0, kll = O. At T = 0 we have to solve for 
the zeros of Eq. (40), namely, 

A" = (1 - r~ + ~~){(1 - r~ - ~~)(1 + 2IT~) - 4<I>~2}, 
(BS) 

where the prime denotes that we have replaced the 
interaction g and v(Q) by the appropriate primed 
matrix elements given in Eqs. (55), (57), and (B6). The 
zeros of 1 - y: + ~~ correspond to oscillations in 
the magnitude of the gap and these oscillations all 
start at a finite frequency, namely, at twice the gap. 
Using Eq. (42), we get, in one-dimension with w = 
1Tim/ j3, 

JOURNAL OF MATHEMATICAL PHYSICS 

g'w2 1 
1 - y'(w k) - /j'(w k) = - - ~ -

'Z 'z 84E3 
1)z v% 

+ g' ! (&(p. + k')3 - &o(P.» 2 + ... , 
8 2>. E2>. 

(B9) 

1 + 2IT'(w, k.) = 1 + ~~v'(k.) ! ;3 +"', 
11z P z 

41l>2(w, k.) = - W2A~V~(k.)g' (~ ::J + .. '. 

Solving for the dispersion relation, we get 

w
2 = vick; + k;vicv'(k.)A~(!~) + .. '. (B10) 

2>. E2>. 
Using Eq. (58) for v'(k.), we see that the second term 
dominates at small k., but nevertheless there are low­
lying collective modes. We have not been able to 
demonstrate explicitly the existence of these modes 
for temperatures 0 < T < Tc ' but it is reasonable to 
assume that they are present at these temperatures. 
Similarly, one finds low-lying modes for the two-di­
mensional system below the "transition" temperature. 
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Description of Extended Bodies by Multipole Moments 
in Special Relativity* 
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The description of an extended charged body in a given electromagnetic field in fiat space-time is 
considered, and it is shown that such a body may be completely specified by a certain set of multipole 
moments of the energy-momentum tensor Ta.{J and the charge-current vector Ja.. These moments include 
the momentum vector, spin tensor, and total charge of the body, and they completely determine Ta.{J 
and Ja.. It is shown that the only relations between the moments due to the "generalized conservation 
equations" op Ta.{J = - Fa.{JJp and oa.Ja. = 0 are the constancy ofthe total charge and equations of motion 
for the momentum vector and spin tensor, in contrast to previous descriptions by moments, such as 
that of Mathisson, which have an infinite number of such relations. The equations of motion are given 
exactly, as infinite series in the moments, without assuming the applied electromagnetic field to be 
analytic, and an approximation procedure is developed, based on the smallness of the body compared 
with a typical length scale for the external field. 
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the normal two-dimensional system, that 

w(kll) = [N/£2)(e2kll/m)]l + . . . . (B7) 

We now turn to the calculation of the dispersion 
relation below the "transition" temperature. The 
dispersion relation is determined by the zeros of 
the determinant A". We consider only T = 0 since the 
additional terms in Eq. (40) which enter at nonzero 
temperature are nonanalytic and cannot be expanded 
about w = 0, kll = O. At T = 0 we have to solve for 
the zeros of Eq. (40), namely, 

A" = (1 - r~ + ~~){(1 - r~ - ~~)(1 + 2IT~) - 4<I>~2}, 
(BS) 

where the prime denotes that we have replaced the 
interaction g and v(Q) by the appropriate primed 
matrix elements given in Eqs. (55), (57), and (B6). The 
zeros of 1 - y: + ~~ correspond to oscillations in 
the magnitude of the gap and these oscillations all 
start at a finite frequency, namely, at twice the gap. 
Using Eq. (42), we get, in one-dimension with w = 
1Tim/ j3, 

JOURNAL OF MATHEMATICAL PHYSICS 

g'w2 1 
1 - y'(w k) - /j'(w k) = - - ~ -

'Z 'z 84E3 
1)z v% 

+ g' ! (&(p. + k')3 - &o(P.» 2 + ... , 
8 2>. E2>. 

(B9) 

1 + 2IT'(w, k.) = 1 + ~~v'(k.) ! ;3 +"', 
11z P z 

41l>2(w, k.) = - W2A~V~(k.)g' (~ ::J + .. '. 

Solving for the dispersion relation, we get 

w
2 = vick; + k;vicv'(k.)A~(!~) + .. '. (B10) 

2>. E2>. 
Using Eq. (58) for v'(k.), we see that the second term 
dominates at small k., but nevertheless there are low­
lying collective modes. We have not been able to 
demonstrate explicitly the existence of these modes 
for temperatures 0 < T < Tc ' but it is reasonable to 
assume that they are present at these temperatures. 
Similarly, one finds low-lying modes for the two-di­
mensional system below the "transition" temperature. 
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summary of the notational conventions used in the 
present section is given in Sec. 2. 

Consider first an extended body in a curved 
space-time with F"P = O. Then T"P is a function of 
class Cl whose support, i.e., the closure of the set of 
points on which it is nonzero, is a world-tube W 
whose intersection with every spacelike geodesic is 
bounded. This property of W, for brevity, will be 
called spacewise bounded ness. Choose any timelike 
world-line L lying in Wand let its parametric equation 
be x" = z"(s), where s is the proper time measured 
along it. Let ~(s) be the hypersurface generated by all 
geodesics through zi%(s) orthogonal to v"{s) ~ dza/ds. 
Then, as was shown by Bielecki, Mathisson, and Weys­
senhoff,l there exist unique tensor fields t Y1 '" Yn"P(s) 
defined along L for each n ~ 0 and satisfying 

(1.3) 
and 

v tY1 '" y,.",p = 0 
Y1 ' 

(1.4) 

for any Coo tensor field p"p of compact support whose 
Taylor series expansion about z"{s) is valid on 
~(s) n W. It will be shown in a later paper that the 
coefficients t Yl ••• Yn"P(S) are identical with the quantities 
having the same notation which were defined by 
Dixon2 as explicit integrals of raP over ~(s). In the 
present section we call these the multipole moments 
of the body, but in subsequent sections we reserve this 
name for other quantities defined later. They can be 
shown to determine T"P completely, as we see for the 
case of flat space-time in Sec. 5. This is contrary to a 
statement made in Ref. 2, and I am indebted to 
Dr. J. Ehlers for this correction. 

As F"P = 0, we have 
VpT"P = O. (1.6) 

So, given any vector field k" satisfying the same 
conditions as imposed on p"p, if we choose 

p"p = V"kp + Vpka' (1.7) 

then the left-hand side of (1.5) vanishes identically. 
We thus have the identity 

I 
j: ~ tY1 '" Yn«P(S)[VY1'" Yn"kp]z(s) ds == 0, (1.8) 

,,=0 n! 

1 A. Bielecki, M. Mathisson, and I. W. Weyssenhotf, Bull. 
Intern. Acad. Polon. Sci. Lett., Cl. Sci. Math. Nat. ·Ser. A; Sci. 
Math. p. 22 (1939). 

I W. G. Dixon, Nuovo Cimento 34,317 (1964). 

due to Mathisson,M who calls it the variational 
equation of dynamics. It is equivalent to an infinite 
system of ordinary differential equations relating the 
moments, which is usually treated by the following 
process of approximation. We suppose that the 
diameter d of the body is small compared with a 
characteristic length scale R of the external gravi­
tational (i.e., metric) field. If we assume that the 
2"-pole moment t h '" Yn"P interacts only with n-fold 
and higher derivatives of the field, this interaction 
should be of order (d/R)", and thus negligible for 
large n. It then should be a good approximation to 
treat all but a finite number of the moments as zero, 
and thus to terminate (1.8) at, say, n = N. This gives 
a system of (N + 1) equations relating the (N + 1) 
nonvanishing moments, which may be obtained by 
the method of Mathisson.3 It is there applied to the 
cases N = 1 and N = 2, but with restrictions on the 
form of the moments in both cases. 

Tulczyjew5 simplified Mathisson's procedure by 
noting that the truncated variational equation is 
equivalent to requiring the tensor distribution 

*T"P(x) ~rf (-1)" yV1'" YnItY1 '" Yn"P(s)!5(z(s), x) ds 
n=O n! 

(1.9) 
to satisfy 

(1.10) 

He treats the pole-dipole approximation (N = 1) 
with no additional restrictions, and, from the form of 
the resulting equations, identifies certain quantities 
constructed from taP and taPy with the momentum 
vector p" and internal angular momentum (spin) 
tensor S"'P of the body, showing that they agree with 
the usual definitions in the case of flat space-time. 
Such an identification is open to ambiguity, especially 
when higher approximations are considered, and this 
procedure makes p" and S"P depend on the order of 
approximation used. This is unsatisfactory if pa and 
S"P are used in defining the center of mass of the body, 
as is further discussed below. This difficulty is avoided 
by the author's treatment in Ref. 2 by using the 
equivalent integral expressions for the moments, 
and separately defining pa and sap as integrals of raP 
which can be expressed in terms of the moments to any 
required degree of approximation. This is not so in 
the earlier theories that use explicit integral expressions 
for the moments, due to Papapetrou,6 to Urich and 

• M. Mathisson, Acta Phys. Polon. 6, 163 (1937). 
4 M. Mathisson, Proc. Cambridge Phil. Soc. 36, 331 (1940). 
" W. Tulczyjew, Acta Phys. Polon. 18,393 (1959). 
6 A. Papapetrou, Proc. Roy. Soc. (London) Al09, 248 

(1951). 
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Papapetrou,' and to Tulczyjew and Tulczyjcw.8 The 
treatment in Ref. 2 also allows for the presence of an 
electromagnetic field (as also does Ref. 7) and 
defines moments of Ja. as well as of pfl. The total 
charge q, which is the electromagnetic analog of pa. 
and Sa.fl , is similarly separately defined. 

A feature common to all the above-mentioned 
theories is that (Ll) and (1.2), where applicable, imply 
an infinite number of relations between the moments. 
This suggests that these relations could be used to 
extract a subset of the moments that is still sufficient 
to determine pfl and Ja. completely, but upon which 
(Ll) and (1.2) impose only a finite number of 
restrictions. We might expect pa. and Sa.fl to be sufficient 
to describe the monopole and dipole structure of ya.fl 
instead of needing the full ta.fl and ta.flY , respectively, 
and similarly the charge q to suffice for the description 
of the monopole structure of Ja.. (Ll) should then be 
expected to impose laws of motion on pa. and Sa.fl 
of the form 

where t5lds ~f va.Va. and Fa., G"fl are, respectively, a 
force and a couple constructed from the curvature 
and electromagnetic field tensors and the moments of 
Ta.P and Ja., while (1.2) should require charge con­
servation 

dqjds = o. (Ll2) 

We might hope that, with suitable definitions for the 
higher moments, (Ll1) and (1.12) would be all of the 
consequences of (1.1) and (1.2), so that the variation 
of the other moments with time would be determined 
entirely by the equations of state of the body. Our 
main result in this paper is to show that, in the case 
of flat space-time, a set of moments of Ta.fl and Ja. can 
be defined-as explicit integrals of these tensors-which 
has all these properties. Fa. and Ga.fJ are given explicitly 
as infinite series in the moments. The case of curved 
space-time will be treated in a later paper. 

Here we should also mention theories of point 
particles. Although in many respects theories of point 
particles and of extended bodies overlap, there are 
important differences between them. If no restrictions 
other than (1.3) and (1.4) are placed on the moments, 
then (1.1) and (1.2) impose no restrictions on the 
world-line L. Thus, to obtain equations of motion, 
additional conditions must be used. For an extended 
body we take L to be the world line of a suitably 
defined center of mass of the body. The problem of 

7 W. Urich and A. Papapetrou, Z. Naturforsch. lOa, 109 (1955). 
• B. Tu1czyjew and W. Tu\czyjew, in Recent Developments in 

General Relativity (Pergamon Press, Inc., New York, 1962), p. 465. 

defining such a mass center has been discussed by 
Tulczyjew5 and by Dixon, II who conjecture without 
proof that, imposing 

P/lS"P = 0, (1.13) 

L is suitably and uniquely determined. A more 
rigorous discussion has been given by Beiglbock,9 who 
proves this uniqueness under very general conditions, 
using the definitions of pa. and Sa./l given in Ref. 2, and 
who also suggests an alternative definition of the center 
of mass. In the case of point particles, however, we are 
not free to define a center of mass, since the position 
of the particle is well defined; any additional 
conditions we impose are physical restrictions on the 
particle. This has been discussed in more detail by 
Dixon.lO Another difference is that the energy­
momentum tensor of a point particle has exactly the 
form (1.9) and satisfies (1.10), so that no approxi­
mation is involved in limiting oneself to only a finite 
number of nonvanishing moments. This is not as 
trivial as it might seem at first, for we later have cause 
to question the validity of the multipole approxi­
mation procedure in the form in which it is explained 
above. Multipole theories of point particles have been 
given by Mathisson,3 by Lubaoski,l1 by Hon1 and 
Papapetrou,12·13 and by Taub.14.15 

2. NOTATION AND CONVENTIONS 

Space-time is treated as a pseudo-Riemannian 
manifold .At with metric tensor ga./l and signature 
+ - - -, tensor indices running from 0 to 3 and the 
summation convention being used throughout. We 
write g ~f det ga.fJ . Partial and covariant differentiation 
with respect to xa. is denoted by a a. and V "' respec­
tively, with the kernel a or V being written only once 
in repeated differentiations, thus Va.p == Va.Vp. We 
say that a function on .At is of class cr if it has 
continuous derivatives of all orders sr, and of 
class Ceo if it has continuous derivatives of all orders. 

Following Lichnerowicz,I6 we treat the Dirac 
t5 function as a biscalar distribution on .At defined by 

f f(x)t5(x, y)( - g)i d4x = fey) (2.1) 

for any Coo scalar function f of compact support. If 

• W. D. BeiglbOck, Commun. Math. Phys. 5, 106 (1967). 
10 w. G. Dixon, Nuovo Cimento 38,1616 (1965). 
11 J. Lubanski, Acta Phys. Polon. 6, 356 (1937). 
12 H. Honl and A. Papapetrou, Z. Physik 112, 512 (1939). 
13 H. Honl and A. Papapetrou, Z. Physik 114, 478 (1939). 
14 A. H. Taub, J. Math. Phys. 5, 112 (1964). 
16 A. H. Taub, Proc. Galileo IV Centario Conference, Florence 

(1964), p. 77. 
16 A. Lichnerowicz, in Relativity, Groups and Topology, C. M. 

DeWitt and B. S. DeWitt, Eds. (Gordon and Breach, Science 
Publishers, Inc., New York, 1964), p. 821. 
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TIZI' •• IZ .. is a Coo tensor field of compact support, then 
we also write 

f TlZl"'lZn(x)<'J(x, y)(-g)! d4x = Pl"'IZ,,(y), (2.2) 

although then <'lex, y) is acting strictly as a bitensor 
distribution. 

We follow Schouten17 in denoting the symmetriz­
ation and antisymmetrization of any number of 
tensor indices by ( ) and [ ], respectively, e.g., 

A[IZPYl = l(A"PY + A py" + A ylZP - A lZyp - Ap"y - A yp,,), 

(2.3) 
and in writing for four indices 

del 
A[o:[~Yldl = t(AO:~Yd - AYP<Xd - Ady~ + Aydo:P)' (2.4) 

Indices enclosed in vertical lines are excluded from 
these operations, e.g., 

AC"IPYld) = t(A"Pyd + AdPy,,)' (2.5) 

When considering flat space-time E, we use 
Minkowskian coordinates with metric tensor 

g"p = diag (1, -1, -1, -1), (2.6) 

and denote the scalar product of vectors alZ , h" by 
a • h ~f alZhlZ . The sign of the electromagnetic field 
tensor FIZP is such that 

E ~f (F Ol
, F02, F03) and H ~ (F23, F3t, F12) (2.7) 

are the electric and magnetic 3-vectors, respectively, in 
the 3-space X O = const. 

Following Gel'fand and Shilov,18 we denote by K 
the set of all Coo complex-valued scalar functions on E 
of compact support, and by Z the set of slowly 
increasing entire analytic functions on E. Specifically, 
this means that fEZ if, in any Minkowskian co­
ordinate system, (1) it may be extended to all complex 
values of its arguments so as to be everywhere 
analytic in each variable, and (2) for this extension, 
there exist positive constants CliO'" a. for all positive 
integers q,., and positive constants ao, ... , a3 , such 
that 

Izgo ... zg1(zo, ... , z3)1 
< CliO'" 113 exp (ao IYol + ... + a3 IYaD (2.8) 

for all complex ZT' where ZT = XT + iYr with XT and YT 

~eal. Then, if f E K or Z, its Fourier transform J, 
defined by 

/(k) = f f(x)eik
'" d4x, (2.9) 

17 J. A. Schouten, Ricci Calculus. An Introduction to Tensor 
Analysis and its Geometrical Applications (Springer-Verlag, Berlin, 
1954), 2nd ed. 

18 I. M. Gel'fand and G. E. Shilov, Generalized Functions 
(Academic Press Inc., New York, 1964), Vol. 1. 

is an element of Z or K, respectively. The inverse of 
(2.9) is 

f(x) = _1_ Jl<k)e- ik
'" d4k. 

(217)4 

3. STRUCTURE OF THE CHARGE­
CURRENT VECTOR 

(2.10) 

In the subsequent sections we consider an extended 
charged body in a flat space-time E and use Minkow­
skian coordinates throughout. The charge-current 
vector JIZ is then a Cl vector field satisfying 

(3.1) 

whose support W is a spacewise bounded world tube. 
Choose any C1 timelike world-line L, with parametric 
equation x<X = z"(s), where s is the proper time 
measured along it, and let ~(s) be the hyperplane 
through z"'(s) orthogonal to 

v"(s) ~f dz"jds. (3.2) 
Our exposition is worded as if L lies in W, but no real 
restriction is involved in this. On ~(s) define 

and 
w"'(x) ~f vlZ(s)[1 - v~(s)rp(x)], 

where v" ~ dVIZ/ds. Then 

(3.3) 

(3.4) 

vaCs)rlZ(x) = 0, for x E ~(s). (3.5) 

And iff is any C1 function on E of bounded support, 

and 
ff(X) d4X = fdS r f(x)w« d~" Jr.c.) 

as is shown in Refs. 4 and 2. 
We need the following integrals of J": 

and 

(3.6) 

(3.8) 

qlZl'" "n(s) ~ r r lZl ••• rlZnJP d~p, for n ~ O. (3.9) Jr.c.) 
Using (3.5), we see that they satisfy 

and 
v ,'''I'''lZnP = 0 V qlZl' "lZn = 0 (3.11) 

al ' 12'1 • 

Let des) be the diameter of the compact section 
~(s) n W. Then, since JP is continuous, each of its 
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components is bounded on ~(s) n W, and so there 
exist continuous positive scalar functions A(s) and 
B(s) such that 

!jill" . II .. P(S) 1 < A(s) dn and Iqlll·· . II .. (S) 1 < B(s) dn 

(3.12) 

for all n, these inequalities holding for each component 
separately. 

Now letfE K, and write 

(3.13) 

With (3.6) and (2.10) this gives 

(JII,!) = ~ fdS r wP d~pfd4kJ(k)JII(x)e-ik."'. 
(27T) Jr.(8) 

(3.14) 

But!EZ, so that lJ(ko,···, ka)1 < C Iko,···, kal-2 

for some constant C > 0, and hence the k-space 
integration is uniformly convergent for x E ~(s). 
Thus, since ~(s) n W is compact, the order of 
integration over ~(s) and k space may be interchanged. 
Doing this and expanding the exponential in a 
power series about z(s) gives 

(JII,!) = _1_ fdsfd4k r wP d~p!(k)JII(x)e-ik.'(') 
(2 7T)4 Jr.(,) 

x I(_i)n (k· r)n. (3.15) 
n=O n! 

From now on, we will not give the details of the 
arguments involving uniform convergence which 
justify our operations with infinite series and integrals, 
unless some special point is involved, since they are all 
very simple. So, on integrating the series in (3.15) term 
by term over ~(s) and using (3.8), we get 

(JII !) = _1_ fdsfd4kf(k)e-ih(s) 
, (27T)4 

This shows that the r .. 's determine (JII,f) for every 
f E K, and hence they completely specify JII itself. 

In particular, this shows that the j ... 's determine 
the q ... 'so This can also be seen directly from (3.8) 
and (3.9), for, as ~(s) is orthogonal to VII(S), we have 

J P dr.p = JPvpvY d~y. 
Pulting this into (3.9) and using (3.4), we see that 

qlll· .. II .. _ vpqlll·· . ""P = j"l ... " .. /lv/I for n ~ o. 
This may be iterated to give 

00 

which, by (3.12), is convergent for sufficiently small v". 
However, for larger V" we cannot give an explicit 
expression of this sort, and we would have to resort to 
(3.16) to determine the q . .. 's from the j . .. 'so We 
need the integral expression (3.9) for the q ... 's in our 
development of the theory given below. 

Ifwe could perform the k-space integration in (3.16) 
term by term, we would get 

(J II f) - fd ~ 1. ·Pl··· P""( )[~ f] , - s :0 n! J S UP1··· /I.. .(8)' (3.17) 

or equivalently 

JII(x) = i (_1)n 0Pl . .. p .. fll ... P .. II(S)!5(Z(S), x) ds. 
n=O n! 

(3.18) 

(3.17) is the analog in flat space-time for JII of (1.5) 
for PP, and is only valid iffis analytic on ~(s) n W 
for each s. It clearly cannot be true for a generalfE K 
since the derivatives off along L which appear on the 
right-hand side do not determinefthroughout W, and 
hence cannot be sufficient to determine the left-hand 
side. This failure is reflected in the form of the right­
hand side of (3.18), since this, which formally appears 
to be a distribution of support L, does not exist 
within the framework of the theory of distributions 
unless the series terminates. This can be seen from 
(3.17), which would be its value at f E K, since in 
general the right-hand side of (3.17) need not be 
convergent. The structure of a general distribution 
whose support is a COO submanifold has been deter­
mined by Schwartz,19 whose result is applicable to our 
case if L is of class Coo. 

Nevertheless, any finite number of terms of (3.16) 
can be integrated term by term, giving 

(JII,!) = fds:f 1. jPl··· /I""(S)[Olll ... P .. f].(8) 
n=O n! 

+ _1_ fdsfd4kJ(k)e-ik .• 
(27T)4 

00 ( .)n 
'" -I k k ·Pl ... P II X k -- Pl··· /I"J ... 

n=N+l n! 
(3.19) 

From this we get the unexpected result that, if the 
moments j ... are known for all n > N, they com­
pletely determine J" and thus all the lower moments! 
For, by (3.19), the moments for n > N determine 
(J",f) for any f E K which vanishes in some neighbor­
hood of L, and thus they determine JII at all points not 

q"l·· ·11" = v L jill··· ""Pl··· P~Yv ... V for n ~ 0, 19 L. Schwartz, Theorie des distributions. (Hermann et Cie., Paris, 
1 '0=0 P, /l p

' 1957), Vol. I, Chap. III, Theoreme XXXVII. 
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on L. By continuity this determines J~ everywhere, as 
stated. We discuss this result further in Sec. 8. 

We now use (3.1) to obtain a new and more 
convenient set of moments that also determines J~. 
Using (3.7) and remembering that r" also depends 
explicitly on s, we get from (3.9) that 

dqlds = 0 (3.20) 
and 

(dlds)q~l'" " .. = n/~l'" ",,) - nv(~lq~"" ~ .. ) 

for n ~ 1. (3.21) 

This is a system of differential equations determining 
the dependence of the q ... 's on s in terms of the 
completely symmetric part of the j ... 'so Since, as we 
saw above, the j ... 's determine the q ... 's, this is 
equivalent to an infinite system of differential relations 
between the j ... 's as a consequence of the con­
servation equation (3.1). 

Let us put 

a"l' .. ~"fJ ~ r l ... rz .. fJ - /~l ... ~ .. fJ) for n ~ 1. (3.22) 

With (3.21) this gives 

r = qv
rz + dq~/ds, ) 

j~l ... ~ .. {I = a~l' .. ~ .. {I + q(~l'" ~"DfJ) 
(3.23) 

+ _1_.:!... q"I···~ .. fJ for n ~ 1, 
n + 1 ds 

from which 

00 ( ')n 
e-ik'~ ! ~ k ... k jilt··· fJ .. rz 

n=O n! {II fJ .. 

= e-ik·.[qv~ + ~(-on k ... k m{lI"'fJ .. ~] 
k I fJI fJ .. 
n=l n. 

+ .:!... [e-ik-z ~ ( - i)n k ... k fJI' .. fJ .. ,,] 
ds n~o (n + I)! {II fJ .. q , 

(3.24) 
where 

{II' .. fJ .. ~ del {II'" {lnrz + (fJ· .. (I .. ~) (fJ, fJ2'" fJ III. m =a q V -v q .. 

for n ~ 1. (3.25) 

(3.25), (3.22), and (3.12) show that there exists a 
continuous positive function C(s) such that 

ImfJI ' .. fJ .. IZ(s)I < C(s) dn(s) for all n ~ 1, (3.26) 

and from (3.25) and (3.23) we get 

mfJ1' .. fJ .. ~ = /1 ... (I .. rz _ V({llqfJ2'" fJ .. )~ 

1 d fJ "'fJ ~ I." ----q I .. lor 
n + 1 ds 

n ~ 1. (3.27) 

(3.12) and (3.26) may be used to verify the convergence 
of the series in (3.24), and in particular (3.12) has been 

used above to justify the term-by-term differentiation 
of the second series on the right-hand side of (3.24). 
This series may be summed explicitly on using (3.9) 
for 

<J) ( ")n I -1 k··· k qfJI···{I .. rz 
n=O (n + I)! fJI fJ .. 

=J [i (-i)n (k.r)n]r~JfJdI:.fJ 
I(s) n=O (n + I)! 

= r [r1dU i (-i? (uk· r)n]~JfJ dI:.fJ 
JI(S) Jo n=O n! 

= r dI:.fJ rldur~JfJ exp [-iuk· r]. (3.28) 
JI(S) Jo 

So, on substituting (3.24) into (3.16), the contribution 
from the last term of (3.24) is 

~ JdsJd4k/{k)':!'" r dI:.fJ 
(217-) ds JI(S) 

X f durrzJfJ exp [- ik . (z(s) + ur)] 

=JdS':!'" r dI:.fJ rldur~JfJf(z(s) + ur), (3.29) 
ds JI(s) Jo 

where the k-space integration has been brought 
through the dlds and two other integrations and 
performed first with the help of (2.10). Since f has 
bounded support, we see that (3.29) vanishes, so that 
only the first term on the right-hand side of (3.24) 
contributes to (3.16). We thus have 

where 

(r,j) = ~ JdsJd4kj(k)Q~(k, s), (3.30) 
(2?T) 

Q~(k, s) ~ e-ik-z[qv~ + i (-!? kfJI ... kfJ .. mfJI ·· . fJ .. rz] , 
n=l n. 

(3.31) 

which shows that Jrz is completely determined by q and 
the set of m ... 'so 

Consequently, q and the m" . 's must completely 
determine the j' .. 'so For small I;~ we can, from (3.23) 
and (3.27), demonstrate this explicitly. Por on 
multiplying (3.27) by vfJ1 and using (3.11), we get 

~{li ... fJ.. 1 fJI ••. fJ + 1 . ~fJI ... fJ Drzm = - - q .. -- v~q .. 
n n + 1 

for n ~ 1. (3.32) 
By iteration, this yields 

00 

qfJ "'fJ" = -nv ~ I; ... 1; m~7I"·7"fJI"·fJ .. 
II. k 71 7" 

2'=0 

for n ~ 1, 

which by (3.26) converges for sufficiently small I;~. 
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This then gives the qa l ' .. a .. for n ~ 1 in terms of the 
m ... 's, and q itself is assumed given. (3.27) together 
with the first of equations (3.23) then give all the 
j' .. 's. However, just as in the general case we must 
resort to (3.16) to evaluate the q ... 's when the j ... 's 
are known, so also for larger va we must use (3.30) with 
(3.31) to determine the r .. 's given qand the m' .. 's. 

We thus see that q and the m' .. 's describe the 
arbitrariness in the j' . "s left after the conservation 
equation (3.1), or equivalently the system (3.20) and 
(3.21) of differential relations between them has been 
taken into account. For later use, we also note here 
that (3.32) and (3.10) imply 

vamafJl " . fI .. = vama(fll" . fJ .. ) for n ~ 1. (3.33) 

Qa(k, s) may also be given in an integral form that 
gives a useful upper bound for it. By summing the 
left-hand side of (3.24) [cf. the transition from (3.14) 
to (3.16)] and using (3.31) and (3.28), we obtain 

Qa(k, s) = [ r(x)e-ik'''w fJ d"'f.fJ 
J1:(o) 

- ~ [ d"'f.fJ [1 duraJfJ(x) exp [-ik' (z(s) + ur)]. 
ds J1:(o) Jo 

(3.34) 
On explicitly performing the differentiation of the 
second term on the right-hand side, we easily see that 
there exist continuous positive functions D(s) and E(s) 
such that 

IQa(k, s)1 < D(s) + E(s)(lkol + ... + Ik31). (3.35) 
We need this result later. 

From (3.25) and (3.22) we see that 
mfJl' .. fI"a = m(fJI'" fI,,)a and m(fJI' .. fI"a) = O. 

(3.36) 
We now verify that as a consequence ofthese symmetry 
conditions, the only condition imposed on q and the 
m' .. 's by (3.1) is the conservation of charge (3.20). 
For iff E K, we have 

(oar,!) = -(1", oa!) (3.37) 
and 

aJ(k) = -ikJ(k) (3.38) 

so that (o.r,!> is obtained by replacing/(k) in (3.30) 
by ikJ(k). Then in virtue of (3.36), only the contri­
bution from the first term in (3.31) survives, giving 

by (3.20) 

= -qfdS!!.. (z(s» 
ds 

(3.39) 

by (2.10), which vanishes as f has bounded support. 
This gives oala = 0 as a consequence of (3.20) when 
Ja is given by (3.30) with (3.31) and (3.36) satisfied, as 
required. 

The orthogonality conditions (3.11) also impose 
conditions on the m ... 's, namely (3.33). These can be 
put in a simpler form if we describe the body, not 
by the m'" 's, but instead, by a new set of tensors 
defined by 

Qal ' "a"fly = mal' .... ,,[fly] for n ~ O. (3.40) 

Using (3.36) we see that 

and 

Q"l'" ""fJy = Q(al'" ",,)[fJy] 

Q"l' ...... -I[ .... fJy] = 0 
for n ~ 0, 
&'or '" 1 (3.41) 
l' n ~ , 

m"l ' "a"fJ = [2nj(n + 1)]Q("l' "a,,)fI for n ~ 1. 

(3.42) 
(3.40) and (3.42) together show that the m···'s and 
the Q···'s are equivalent for describing the body. 
Moreover, from (3.41) and (3.42) we can deduce 
(3.40) and (3.36), so that the symmetry conditions 
(3.36) and (3.41) are equivalent. But from (3.40) and 
(3.33) we get 

V .. lQ"I"· .. "fJy = 0 for n ~ I, (3.43) 
which are the orthogonality conditions satisfied by 
the Q .. "s and which are simpler than the equivalent 
(3.33). 

From (3.40), (3.25), and (3.22) we have 

Q"l'" .. "fJy = rl'" .. ,,[fJy] + [lj(n + l)]qal'" ",,[flvY] 

for n ~ 0, (3.44) 

which, when expressed in terms of , .. through (3.8) 
and (3.9), is simpler than the corresponding expression 
for the m'" 's. Together with the simplicity of the 
symmetry and orthogonality conditions (3.41) and 
(3.43), this makes the Q···'s seem to be the most 
satisfactory description of the multipole structure of 
the charge distribution of the body. In virtue of (3.41) 
and (3.43), Q"l'" .. "fly has len + 3)(3n + 4) linearly 
independent components, and we call it the 2nH-pole 
electromagnetic moment tensor of the body. Together 
with q, the total charge of the body, which describes 
the monopole structure, these moments completely 
determine , .. through (3.30), (3.31), and (3.42), whilst 
the only condition on them due to (3.1) is the con­
servation of charge, (3.20). 

4. LORENTZ FORCE 

Our next task is to express the Lorentz force 

F" ~r _F"fJ JfI (4.1) 
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in terms of the moments of Jrz in a form 'Similar to 
(3.30) and (3.31) for Jrz itself. Because we have only 
proved (3.30) for functions of class Coo, we need to 
assume that Frzp is also of class Coo, but almost 
certainly this can be weakened-possibly even to 
taking pap to be of class Cl. 

Let f E K have support S(f), and let * Frzp be a Coo 
tensor field of compact support that equals FrzP on 
S(f) n W. Then 

(FrzPJp,j) = (JP, *F~pj). (4.2) 
Also, we have 

ti;;;-rk) = J d4x *F~p(x)j(x)eik'''' 

= _1_ Jd4xJd4l*F~(X)](l)ei(k-I),,,, (4.3) 
(27T)4 fJ 

on using (2.10), and since J E Z and * pap has compact 
support, we may change the order of integration and 
so perform the x-integration first using (2.9), obtaining 

~k) = ~ Jd4if(l) *F~P(k - I). (4.4) 
(27T) 

Together with (4.1), (4.2), and (3.30) this gives 

(F
rz
,!) = - ~ JdsJd

4
k 

(27T) 

x J d4if(l) ;:p~p(k - l)QP(k, s). (4.5) 

"" Remembering that J E Z and * F."p E Z and using 
(3.35), we see that we may invert the order of the k 
and I integrations. After doing so, we then change the 

variables in the k integration from krz to Urz ~ krz - Irz' 
and then we relabel Irz as krz and Urz as Irz to give 

(Frz,j) = - [l/(27T)8] J ds J d4k 

x J d4if(k) *F~p(l)QP(k + I, s). (4.6) 

The infinite series for QP(k + I, s) given by (3.31) 
is seen, on using (3.26), to be absolutely convergent 
when regarded as a double (or rather, octuple) series 
in krz and Irz. It may thus be rearranged in any order, 
in particular as a series in krz in the form 

00 ( ')n 
Qrz(k + 1 s) = e-ik-z I ~ k '" k "PPI'" Pnrz(l s) 

, n~O n! PI Pn ' , 

where 
"Prz(l, s) = Qrz(l, s), 

given by (3.31), and 

(4.7) 

We now want to substitute (4.7) into (4.6) and perform 
the I integration term by term, but to justify doing so 
we need to obtain an upper bound for I"PPI'" Pnrzl. This 
involves explicitly summing the series in (4.8). We 
first substitute for the m'" 's from (3.27), and then 
we use (3.8) and (3.9). Proceeding in an analogous 
manner to the derivation of (3.28), we then find that 

"PPI ... Pn rz = KPI ... Pn rz _ nv(PIHP2' .. p,,>rz 

- (d/ds)HPI'" P"rz for n;;::: 1, (4.9) 

where we have defined for n ;;::: 0 

K P1 '" Pnrz(l, s) ~ r e-il·"'rP1 ... rPnj"w1 d:r.
1 

(4.10) 
)1:(s) 

and 

H P1 '" Pnrz(l, s) ~. r d:r.yJl duunrP1 ... rP"rrzJY 
)1:(8) 0 

x exp [-il' (z + ur)], (4.11) 

while (3.34) and (4.8) give 

"Prz = K rz - (d/ds)Hrz. (4.12) 

On explicitly performing the differentiation in the last 
terms of (4.9) and (4.12), we see that there exist 
continuous positive functions F(s), G(s) such that 

I"PPI'" Pnrz(l s,)1 < dn(s)[F(s) + (1101 + ... + IlaI)G(s)] 

(4.13) 

for all n, I, and s. This enables us to put a uniform 
bound on the partial sums of (4.7): 

f /(_i)n k ···k "PPI'''Pnrz(l S)/ 
n~O n! PI Pn ' 

< [F + (1101 +". + Ilal)G] exp [(Ikol +". + Ikal) d], 

(4.14) 

from which we see that the I integration in (4.6), when 
performed on the partial sums of N terms of (4.7) 
instead of on Qrz itself, converges uniformly in N, and 
that the series (4.7) converges uniformly in any 
bounded region of I space. Together, these two 
uniformities of the convergence of (4.6) validate the 
term-by-term integration referred to above, which 
gives 

(F" !) = - _1 JdsJd4k/(k)e-ik'Z 
, (21T)4 

xi (-on k ... k cpPI' "Pnrz(s) 
n~O n! PI Pn ' 

(4.15) 

"PPI'" Pnrz(l, s) (4.8) where 
00 ( ,')2> = e-il'zI -=- 1 ..• 1 mY!" '1~fJI' .. Pnrz(s) 

2>~0 p! Y! 1~ 

for n;;::: 1. 

cpPI'" Pnrz(s) ~f ~ Jd4l *F~il)~l'" PnY(l, s) 
(21T) 

for n;;::: O. (4.16) 
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The coefficients cp'" are given in terms of the 
moments m"'through (4.16) and (4.8), but we also 
need the integral forms for them that follow from 
(4.16) with (4.9). Using (2.10) with (4.10) and (4.11), 
we find for n ~ 0 that 

_1_ jd41*F~(I)KPI"'PnY(1 s) =jPI"'Pnlt(s) (4.17) 
(21T)4 y , 

and 

(2~)4 j d4[ *F.;(l)HPI·" PnY(l, s) = hP, '" Pnlt(s), (4.18) 

where 

and 

jPI"'Pnlt(s)~r rPI···rPn*F~yJYw~d"f.6 (4.19) 
JI(s) 

hP, '" Pnlt(s) ~ r d"f.6 
JI(S) 

x fdU unrPl . .. rPnrYJhF~iz + ur). (4.20) 

Equation (4.16) with Eqs. (4.9) and (4.12) then gives 

and 
cplt = r - dhltfds, ) 

cpPI' .. P,,1t = JPI ... Pnlt _ nv(P'hP2'" P .. )1t (4.21) 

- (dfds)hPI'" Pnlt for n ~ 1, 

which are the required integral forms. We now use 
(4.21) in the infinite series in (4.15) to give 

00 ( ')n 
e-ik-z ~ -=.!..- k .,. k .I.h··· Pnlt 

~ ,PI Pn'f' 
n=O n. 

00 ( ')n 
= e-ik" ~ ...=...!.- k .,. k jPI'" Pnlt 

~ ,PI Pn 
n=O n. 

_ ~ [e-ik'Z ! (_i)n k '" k h P, '" PnltJ 
ds n=O n! PI Pn 

= r e-ik·:e*F~pJPwY d"f. y - ~ { d"f. y (1durP 
JI(s) ds JI(S) Jo 

x *F~p(z + ur)JY(x) exp [-ik· (z + ur)], (4.22) 

which enables the k space integration in (4.15) to be 
performed explicitly, giving 

_1_jd4kJ(k)e-ik'Z!(-i)nk ..• k cpPI'''Pnlt 
(21T)4 n=O n! P, P .. 

= ( j(x)*F~p(x)JP(x)wy d"f.y - ~ f d'ky 
JI(S) ds I(s) 

X J: duj(z + ur)r P * F~p(z + ur)JY(x). (4.23) 

Since f has compact support, we see that (4.23) 
vanishes outside a finite range of s, say the interval 

[S1' S2], this interval depending on f but not on the 
particular * F~ P used. This incidentally shows that, on 
performing the final integration in (4.15) over s, the 
contribution from the second term on the right-hand 
side of (4.23) vanishes, while on using (3.6), the 
contribution from the first term is seen to be (Fit ,f> 
as required. However, it shows more than this; it 
shows that the left-hand side of (4.23) vanishes for s 
outside the interval [S1' S2], independently of the choice 
of the tensor field *F~p used in (4.16) in defining the 
cp'" 's, provided only that it has class Cooand compact 
support. But let U be a bounded convex set containing 
both S(f) and the segment of W lying between 
'k(S1) and 'k(S2), so that we may choose * F~ P to be 
equal to F~ P in U. Then (4.19)-(4.21) show 
that for any s E [S1' S2], the value of the cp'" (s)'s 
depends only on the value of * F~ P in the neighborhood 
of the convex hull of "f.(s) n W, and the convex hull 
of 'k(s) n W has a neighborhood lying in U in which 
*Pp = Pp. Hence, altogether, we see that (4.15) 
remains valid if, for each s, the cp'" (s)'s are evaluated 
using (4.16) with any *Pp (of class Coo and compact 
support) that equals F~ P in some neighborhood of the 
convex hull of "f.(s) n W. The cp'" 's thus obtained 
are seen to be independent of this choice of * F~ P , and 
they are given by (4.21) when *F~p in (4.19) and (4.20) 
is replaced by F~ p' In the future, references to cp"', 
f' .. , and h ... refer to these modified functions. 

The modified definition of the coefficients cp'" used 
in (4.15) thus defines them uniquely and independently 
of f It is to achieve this independence from f that we 
have gone through these final stages of the argument, 
for with the previous definition by (4.16) as it stood, 
the * F~ y used was independent of s but could not be 
chosen independently off, and thus it made the cp'" 's 
depend on f We cannot use P p itselfin (4.16) since in 
general its Fourier transform will not exist. Our 
final expression for the Lorentz force is thus (4.15) 
with the modified definition of the cp'" 's explained 
above. 

5. STRUCTURE OF THE ENERGY­
MOMENTUM TENSOR 

The energy-momentum tensor TItP is a C1 tensor 
field satisfying 

opTItP = -FItPJp, (5.1) 
whose support is a spacewise-bounded world-tube W'. 
We now analyze its structure following the procedure 
developed in Sec. 3 for JIt, but the details are rather 
more complicated than for that case. We first define 
for n ~ 0 the integrals 

tltl " .ltnPy(s) = ( rltl ... rltnTpyw6 d"f.
6 

(5.2) 
JI(S) 
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and 

p«l .•. « .. /1(s) = r r«l ••• r"'''T/1y d~1' (5.3) 
Jr.(,) 

which satisfy 

(5.4) 

v t"'l'" ",,,/1y = 0 and v p"'l'" ",,,/1 = 0 (5.5) 
al lXI' 

and also inequalities similar to (3.12). Then for f E K, 
as the analog of (3.16), we obtain 

(T"'/1 f) = _1_ fdsfd4k!(k)e-ik" 
, (217)4 

00 ( ')n 
X ! ~ k ... k tYl " '1""'/1(S) (5.6) 

n=O n! Yl Y.. ' 

showing that the integrals (5.2) completely determine 
p/1 (as stated in Sec. 1) and thus also the p'" 'so This 
can be shown more explicitly for small v«, as in Sec. 3. 

Using (5.2) and (4.19), we now obtain from (5.3), 
(3.7), and (5.1) 

dp«jds = -/" (5.7) 
and 

d "'1 ... '" /1 ("'1 "' .... '" )/1 - P "= -nv p' " 
ds 

+ nt("'l'" « .. )/1 - /,,1'" ",,,/1 for n ~ 1. (5.8) 

Using (4.21) and setting 

17"'1'" ",,,/1 ~ p"'l'" «,,/1 + hl/. l "· «,,/1 for n ~ 0, (5.9) 

these may be written as 

dl7"'jds = -1>'" (5.10) 
and 

(djds)l7"'I'" « .. /1 = -nv(<<ll7"'I" '''',,)/1 

+ nt(l/.l·" «,,)/1 - 1>"'1'" ",,,/1 for n ~ 1. (5.11) 

Now define as the analog of (3.22) 

b"'l ... «,,/1 ~ 17("'1 ... ",,,/1) for n ~ 1, (5.12) 

C"'1 ... "',,/1 ~f 17«1 ... ",,,/1 _ 17("'1'" "',,/1) for n ~ 1 

(5.13) 
and 
d"'I···"',,/1Y~t"'I···«,,/1Y - [en +l)jn] 

so that 

x [t("'I'" «,,/1)y + t ("'1 .•• "'"Y)/1] 

+ [en + 2)jn]t(l/.l··· "',./1y) for n ~ 2, 

(5.14) 

C"'l' •• "',,/1 = C("'I'" ",,,)/1 C("'l' •• 1/. .. /1) = O,} 
d("'I" . "',,/1)y = 0, d"'I' .. rJ,,/1y = d("'l'" ",,,)(/1y) and 

(5.15) 

and, for later convenience, put 

SI/./1 ~f 2c"'/1 = 217["'/1]. (5.16) 

We use these with (5.11) to obtain the analogs of (3.23), 
but the cases n = 1 and n = 2 of (5.11) must be 
treated separately from the rest. For n = 1 we find 

t"'/1 = Vl/.l7/1 + !(djds)(SrJ/1 + 2b«/1) + 1>"'/1, (5.17) 

which we separate into its symmetric and antisym­
metric parts thus: 

t"'/1 = l7(<<V/1) + (djds)b«/1 + 1>("'/1) (5.18) 
and 

(djds)SI/./1 = 217[«V/1] - 21>["'/1]. (5.19) 

For n = 2, (5.11) gives 

2t(<</1)y = 2v("'b/1)Y + v(<<S/1)Y 

+ (djds)(b"'/1Y + c",/1y) + 1>"'/1y, (5.20) 

which, with the identity 

t",/1y = t(<</1)y + t(",y)/1 - t(/1Y)rJ, (5.21) 
gives 

t,,/1y = v«b/1y + S"'(/1vY) + (djds)(!b«/1y - c/1YI/.) 

+ 1>«(/1y) - !1>/1Y«. (5.22) 

Finally, using (5.11) for n ~ 3 together with (5.14), we 
get 
t«1 ... ",,,/1y = d"'l" '1/.,,/1y + v(l/.lb"'.··· «,,)/1y 

+ 2V(«IC<<Z' .. «,,)(/1y) + ~ cl/.1 ... «,,(/1vY) 
n 

+ !!. [_1_ b«l'" «,,/1y + ~ C"'l ' •. «,,(/1y)J 

ds n + 1 n 

+ ~ 1>«1" • "',,(/1y) _ n + 2 1>(<<1" . «,,/1y) 

n n(n + 1) 

for n ~ 2. (5.23) 
We now use (5.18), (5.22), and (5.23) to put the 

infinite series in (5.6) in the form 

00 ( ')n 
e-ik"! ~ k ... k tY1 " 'y,,"'/1 

n-O n! Yl Y .. 

= e-ik .• {V(<<l7/1) + 1>(,,/1) + (- iky) 

x [SY(<<v/1) + 1>y(<</1) _ !1>IX/1Y] + ~ ( - i) n k ... k 
n~2 n! Yl y" 

(5.24) 
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where 

1"1'" ",,/Jy ~ d"l'" IZ .. /Jy - [2/(n - 1)] 

x V(a1Ca."· a .. )(/Jy) + (2/n)cIZ1 '" IZ,,(/JvY) (5.25) 

for n ~ 2. The term in (5.24) involving a total 
derivative with respect to s may be explicitly summed, 
as before, and shown to give a zero contribution to the 
right-hand side of (5.6). We thus have 

(TIZ/J,f) 

= (2~)' IdS I d4k](k)e-ik·.{v(IZ7T/J) + 4>(IZ/J) + (-iky) 

X [SY(IZV/J) + 4>y(a/J) _ !4>IZ/JY] + ~ (_i)n k .•• k 
n=2 n! Y1 y" 

X [111 '" YnIZ/J + ~ 4>11 .• ·Y .. (IZ{Jl _ n + 2 4>(11" . y .. IZ/l)]) , 

n n(n + 1) 

(5.26) 

which shows that to determine TIZ/l we need, in addition 
to the 4>'" given by (4.16) and (4.8) in terms of the 
electromagnetic moments, the quantities 7T1Z

, SIZ/l and 
the I'" 's, which are seen to be defined as explicit 
integrals over l::(s) involving both TIZ/l and JIZ. The 
contributions from JIZ vanish when FIZ/l = 0, and may 
be interpreted as due to the potential energy of the 
charge distribution in the electromagnetic field. 

From (5.15) and (5.25), we see that the /'" 's have 
the symmetry properties 

JlZ1' .. IZ,./ly = I( 1Z1" . " .. )(/ly) and 1("1' .. " .. /l)y= O. 

(5.27) 

But as in the electromagnetic case, there are additional 
restrictions on the /'" 's due to the orthogonality 
conditions (5.5), and to find these it is more convenient 
to use, instead of the /' .. 's, new tensors defined by 

]"1'" " .. /ly6E ~ 1"1'" IZ .. [/l[6Y]E] for n ~ O. (5.28) 

Using (5.25), (5.14), and (5.13) we find that 

J IZ1'" IZ .. /ly6E = tIZ1'" .... [/l[6y]E] _ [1/(n + 1)] 

x [v[/l7TY]1Z1'" IZ .. [6E] + V[6 7T E] 1Z1'" .... [/lY]], (5.29) 

and, as a result of(5.27), we see that the J'" 's have the 
symmetry properties 

J"l' .. " .. /ly6. = J("l' .... ,,)[/ly][6.], J"l' ...... /l[y6.] = a,} 
and 

J 1Z1' ...... _1[ .. ,./ly]6E = 0 for n ~ 1, 

(5.30) 
and that 

JlZ1'" ",,/Jy = [4(n - 1)/(n + 1)]]<"1'" « .. -lI/JI«,,)y 

for n ~ 2. (5.31) 

Moreover, (5.27) and (5.28) are consequences of 
(5.30) and (5.31), so that the J'" 's are equivalent to 
the /'" 's in their information content. InCidentally, 
(5.30) also implies that 

(5.32) 

From (4.20) we see that 

which, with (5.9) and (5.5), shows that the 7T'" 's 
satisfy 

Together with (5.5) and (5.29), this shows that the 
required orthogonality conditions for the J'" 's are 

V«/«l'" « .. (Jy6. = 0 for n ~ 1. (5.35) 

In virtue of(5.30) and (5.35), J«l'" a .. /ly6. has (n + 4) x 
(3n + 5) linearly independent components. We call 
it the 2n+2-pole inertial moment tensor of the body. 
Together with rr« and S«/l, the J' .. 's seem to be the 
most convenient description of the multipole structure 
of p/l, and with the electromagnetic moments they 
completely determine p/J through (5.26) and (5.31). 
7Ta describes the monopole structure and we identify 
it with the momentum vector of the body, while SIZ/l 

describes the dipole structure and is identified with 
the spin tensor of the body. Both depend on the 
choice of L, and are thus fully determined only when 
a center of mass has been chosen. These identifi­
cations are discussed further in Sec. 7. 

We finally show that as a consequence of the 
symmetry conditions (5.27), or equivalently (5.30), 
the only relations between the moments imposed by 
(5.1) are (5.10) and (5.19). For, on using (3.38) and the 
analog of (3.37), we see that we may evaluate (a /IT<</J,j> 
by replacing /(k) in (5.26) by ikP/(k). The contribu­
tions from the [' .. 's then vanish on account of (5. 27), 
and the contributions from the 4>'" 's under the 
summation sign are seen to be equal to the corre­
sponding terms of (4.15). We thus obtain 

(a/JT«/J + F«/JJ/J,j) 

= _1_ IdsId4kJ(k)e-tk
'. 

(27T)' 

x [ik/lv(<<7T/l) + !kpkySY«v/l + 4>« + ikp4>[«P]]. (5.36) 

On using (5.10) and (5.19), the right-hand side of this 
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simplifies to 

_1_ fdS .!!.. fd'k/(k)e-ik'Z[ -1T" + tik SY"] 
(21T)' ds Y 

= -fdS'!!" [1T"f(Z(S» + t sP"[apnZ(8)]' (5.37) 
ds 

which vanishes as required, since f has bounded 
support. 

6. APPROXIMATION PROCEDURES 

We now study what approximations can be made 
when the body is small in comparison to a typical 
length-scale of the external field, but, before so doing, 
it is necessary to say more precisely what we mean by 
such a length-scale. Suppose we are interested in the 
electromagnetic field F"P in a bounded region V of 
space-time and in some particular Lorentz frame. 
Let * F"P be any extension having compact support 
and class Coo of F"P in V to the whole of space-time 
and let m be a positive integer. Suppose that there 
exists an R > 0 such that if n is the region of I-space 
given by 

1/01 + ... + I/sl > R-l, (6.1) 
then 

fo(l/ol + ... + I/aDm 1;P"PI d'i 

« r {I1ol + ... + IlaDm I;PP"1 d4
/. (6.2) 

Jan ! space 

Then, if there is not a much larger R also satisfying 
this, R is a measure of the distances and times over 
which * F"P and its derivatives up to order m vary 
appreciably in that Lorentz frame, which we abbreviate 
to "R is a typical mth-order length scale for *F"/I." 
As such variation may be due either to its value in V, 
the region of interest, or to the particular extension we 
have made, we say that R is a typical mth-order 
length scale for F"/I in V if this is a length scale as 
explained above for its "best possible" extension­
meaning "best possible" in the sense of maximizing 
R. We note that we cannot just cut off pP at the 
boundary of V and take it as zero outside, as in general 
the Fourier transform of the resulting function 
(which will be discontinuous on the boundary of V) 
will tend to zero at infinity no faster than 1/0 , •• 131-1• 

Now, we saw in Sec. 4 that the 4>'" 's depend only 
on F"P in the neighborhood of the convex hull of 
~(s) (i W. Let m ~ 1, R(s) be a typical mth-order 
length scale for F"/I in such a neighborhood, and 
d(s) be, as before, the diameter of the section ~(s) (i. W. 
Then assuming d(s)« R(s), we investigate the 
validity of using only a finite number of terms in 
the series (4.8) for the "P' "'s in (4.16). For this 
purpose, the *F"/I in (4.16) is to be chosen to have 

(3.26) shows that 

I"PPI'" P .. " - "P~ ... /1""1 

< C(s) i 1.. (I1ol + ... + I/alY" dn+1> 
1>=N+l p! 

C(s) dn (dj D)N+l 
< (N + I)! 1 _ djD for n ~ 0, (6.4) 

where 
D(/) ~ (I1ol + ... + I/aD-I. (6.5) 

Now for fixed s, let w be the region of I space given by 

1/01 + ... + 1/31 < ,R-l(S), (6.6) 

i.e., D(l) > R(s). Then in virtue of (6.2) and (4.13), 
we see that unless the "P'" 's have an exceptional 
behavior, e.g., being extremely small in w, the 
contribution to the integral in (4.16) from the region 
n of I space will be very small compared with the 
contribution from wand we may neglect it, taking 
the integral only over w. But in w, D(l) > R(s), and 
so the assumed smallness of djR together with (6.4) 
shows that if N is sufficiently large, to a good approxi­
mation we may use "Pi;' instead of "P'" in this 
integral over w. Provided N ~ m, we may now use 
(6.2) to extend the region of integration back from w 
to the whole of I space. Since we now have only a 
finite number of terms in our series, the integration 
may be performed term by term, and since 

_1_ fd41;P~ (I) (_i)1> e-i!'zl ... 1 
(21T)4 P p! h Y" 

= 1.. [ay1 ••• Y F~P]Z(8)' (6.7) 
p! • 

to our approximation we have 

,/." - /IF" + ~ 1. /11' .. /lpy[a F" ] 'I' - qv '/1 k m /11' •. Pp 'Y .(s) 
1>=1 p! 

and 
4>111' •• II"" (6.8) 

= ~ 1.. 111' .. II"Y1 •.. y,,6[a . F" ] 
k m Y1 ... YP ·6 .(8) 

1>=op! 

for n ~ 1. 
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We see that the approximation improves as N in­
creases, provided N ~ m, but that in general we 
cannot take the limit N -+ 00, for as we go to higher 
orders, R has to be a typical length scale for higher 
derivatives of pP, and thus R decreases and dj R 
increases, worsening the stage in the approximation 
procedure that uses (6.4). Only by making some 
analyticity assumptions for FIZP can we guarantee the 
convergence of (6.8) as N -+ 00. We note that if the 
results of Sec. 4 are valid for an FIZP of class c r rather 
than of class ceo, we cannot be led to a contradiction 
by having m > r and thus allowing N> r in (6.8), 

"" since * FIZP(l) would only be of order I/o ... /sl-(r+ll at 
infinity, and the integrals in (6.2) would not converge 
for m ~ r. Due to the crudeness of our limits, our 
procedure would not even validate the case N = r, 
although (6.8) is then meaningful. 

We thus see that without any assumptions of 
analyticity for pP, we can justify the approximations 
(6.8) provided that the size of the body is small 
compared with a typical Nth-order length scale for 
the external field, and by following the above pro­
cedure step by step in a particular case, one could 
obtain an estimate for the error. But in general the 
series in (6.8) will not converge as N -+ 00 to the 
exact expressions given in Sec. 4. 

Using (6.8) in (5.10) and (5.19) and retaining terms 
involving up to the 2rth electromagnetic moment 
gives what the earlier theories would call "equations 
of motion in the 2r-pole approximation." But in 
contrast to these earlier theories, our neglect of the 
higher moments has been made only in the interaction 
terms, whereas they unjustifiably also neglect the 
higher moments in terms not involving the external 
fields. This is inevitable in any procedure that starts 
from a truncated form of (1.8) or an equivalent 
integral formalism, as the higher moments are 
neglected from the very beginning, wherever they 
should occur. This is conveniently illustrated from the 
author's treatment in Ref. 2. For a body in flat 
space-time with FIZ{J = 0, the equations of motion 
obtained there reduce to 

dplZ/ds = 0 and dSa{J/ds = 2p[lZv{Jl, (6.9) 

the notation agreeing with that of Sec. 5 if the surfaces 
~(s) in Ref. 2. are taken to be hyperplanes orthogonal 
to VIZ, as in the present treatment. As written, these 
equations are exact, but we may also deduce, from 
(6.22) of Ref. 2, that 

saP = 2t[a{J]Yvy, (6.10) 

which is in general true only in the pole-dipole 
approximation if L is taken as an arbitrary world line. 

If this is used in (6.9), they thus become only approxi­
mate equations of motion. However, if L is taken as 
the world line of the center of mass of the body so 
that VIZ = 0, then (6.10) is exact. This suggests that 
the neglect of the higher moments throughout, as in 
the earlier theories, may be justifiable when used in 
conjunction with a suitable definition of the center 
of mass, but this is by no means obvious and needs to 
be more thoroughly investigated to validate these 
methods. 

The validity of the present procedure is independent 
of any definition of the center of mass, but difficulties 
occur if we try to use 

(6.11) 

which is the most natural candidate, because of our 
defining 7T1Z and SIZP as integrals over a hyperplane 
orthogonal to VIZ, rather than 7T1Z as in Ref. 2. This 
makes it more difficult to see whether or not (6.11) 
determines a unique world line. But we do not 
discuss this point further here. (Note added in proof 
The present treatment can be modified to use hyper­
planes orthogonal to 7T

1Z
, and then this difficulty 

disappears.) 

7. INTERPRETATION OF THE MOMENTS 

From (5.9), (5.3), and (4.20) we see that 

7T1Z(S) = r (TIZ{J + AIZJ{J) d~{J' (7.1) 
)1:(8) 

where 

AIZ(X) ~ frP(Z + ur),.P duo (7.2) 

If the term in (7.1) involving JIZ were absent, 7T 1Z would 
be the usual definition of the momentum vector, e.g., 
as given by Aharoni. 20 Let us look at this extra term 
in the "local rest-frame," i.e., in coordinates in which 
VIZ = b~ at the point of interest, where bp is the 
Kronecker b symbol. Then using (2.7), 

AO(x) = - f E • ds, (7.3) 

where the integral is taken along the straight line 
joining z(s) to x. This may be interpreted as the 
"electrostatic potential" of x relative to z(s), and is 
precisely this in the static case when the integral is 
path-independent. The electromagnetic contribution 
to 7TO being 

f AOJo d3x, (7.4) 

20 J. Aharoni, The Special Theory of Relativity (Oxford University 
Press, New York, 1959), Chap. 4. 
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it may thus be interpreted as the excess potential 
energy of the charge distribution due to its being 
spread out over what it would be if all the charge were 
concentrated at z(s). Thus for 1T0, this extra term has a 
simple interpretation that makes it seem very natural. 
For the space components 1t = (1Tl, 1Ti ,1T3), we do 
not have as natural an interpretation, but for them 
(7.1) is reminiscent of the relation 

1t = mv + eA (7.5) 

between the canonical momentum and velocity for a 
charged particle, although our expression (7.1) is 
gauge-invariant, whereas (7.5) is not. 

We also have, from (5.16), (5.9), (5.3), and (4.20), 
that 

ssP = r [r"'(TPY + BPJY) - rP(T"'Y + B"'JY)] dl:.y , 
JIb) 

(7.6) 
where 

B"'(x)~ fUrp(Z + ur)1 duo (7.7) 

If the terms in J'" were absent, this would be the usual 
definition of the spin tensor, e. g., as given by Aharoni,20 
which supports our terminology, but this time the 
electromagnetic contribution seems to have no simple 
interpretation. 

Before considering the other inertial moments, the 
J' .. 's, we discuss the electromagnetic moments. 
From (3.9) we see directly that 

q = f J'" dl:."" (7.8) 

which agrees with the usual definition of the total 
charge of the body. To interpret the Q'" 's, we 
decompose them with respect to v"', setting 

and 
Elll'" "' .. +1 ~t Q"'l" . ", .. +lPVp (7.9) 

(7.10) 

for n ~ 0, where 
Bp ~f <5p - vllvp (7.11) 

is the operator projecting orthogonally to Vll and we 
write the kernel B only once in a repeated product of 
projection operators. Then the E""'s are totally 
symmetric, the M""s have the symmetries (3.41) of 
the Q'" 's, and both are orthogonal to Vll on all 
indices. IIi the local rest frame, we find from (3.39), 
(3.8), (3.9), and (3.4) that 

and 

Mal" ·a .. bc = fral . •• ra"r[bJcl(l - r' V) d3x, (7.13) 

where Latin indices run from 1 to 3. When our 
reference line L is straight, i.e., Vll = 0, these agree, 
respectively, apart from numerical factors, with the 
electric and magnetic moment tensors defined by 
Bloch,21 and so our Q"" s are a natural relativistic 
generalization of Bloch's moments into a single 
electromagnetic moment tensor. We may call (7.9) 
and (7.10) the electric and magnetic parts of Q"'l ... Il .. PY, 

and they have, respectively, i(n + 2)(n + 3) 'and 
(n + 1)(n + 3) linearly independent components. 

Finally, the J"" 's may be interpreted by a de­
composition similar to that used for the Q'" 's, in 
which we set 

Ill' • ·1l .. +1 ~ Jill' . ·1l .. 1l .. +lPlln+lY V V 
P - P Y' 

Ill" ·1l .. +lPY W BPYJlll" . 1l,,1l .. +l6KA V (7.14) I-" - KA d, 

-"1' •• Il .. Pyd< W _BPy6< 11l1' •• "' .. KA/lV 
U - KA/lV" • 

The p ... 's are totally symmetric, the 1-" •.• 's have the 
symmetries (3.41) of the Q'" 's, the (1'" 's have the 
symmetries (5.30) of the J" . 's, and again, they are all 
orthogonal to Vll on all indices. If Jil = 0 and we choose 
a world-line L with bll = 0, they are given in the (now 
global) rest frame by 

al'" a .. +I = ! n + 3 fr"'l •.• ra"+lToo d3x, 
p 4 n + 1 

I-"al ... a .. +lbc = ~ : : ~ f ral ••• ra .. +lr[bTclO d3x, 

(1"'1" ·a .. bede = f ral •.• ra"r[bTcl[dre] d3x, (7.15) 

and they have, respectively, i(n + 3)(n + 4), (n + 2) X 

(n + 4), and !(n + 1)(n + 4) linearly independent 
components. As TOO, Tao, and Tab are the mass, 
momentum, and stress parts of TIlP, we call p' ",1-" ••• , 
and (1'" the mass, momentum, and stress parts of 
J"', respectively. The electromagnetic contributions 
that occur when J'" =F 0 again seem to have no simple 
interpretation, but from our considerations for 1T1l, 

they seem to be associated with the potential energy 
of the body in the electromagnetic field. 

8. SUMMARY AND DISCUSSION 

We have shown that a charged body moving in an 
electromagnetic field pP in a flat space-time may be 
completely described by (i) a set of inertial moments 

1T"',S"'P, and J"'1"'Il"Py6< for n~O, (8.1) 

11 F. Bloch, in Werner Heisenberg und die Physik UMerer Zeit 
(Vieweg und Sohn, Braunschweig, 1961), p. 93. 
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where 1T1Z and SIZ/I are the momentum vector and spin 
tensor, respectively, and (ii) a set of electromagnetic 
moments 

q, and QiIl"' ·1Z..JI7 for n ~ 0, (8.2) 

whereq is the total charge, which satisfies the symmetry 
and orthogonality conditions (5.30), (5.35), (3.41), 
and (3.43). These moments are defined with respect to 
an arbitrary world-line L, and they are given as 
explicit integrals of the energy-momentum tensor Trt./I 

and the charge-current vector Jrt. through (5.29), (5.9), 
(5.3), (5.2), (4.20), and (3.4) for the inertial moments 
and (3.44), (3.9), (3.8), and (3.4) for the electro­
magnetic moments. If L is chosen to be the world line 
of a suitably defined center of mass of the body, the 
moments become uniquely determined. We have 
shown that TIZ/I and Jrt. are completely determined by 
these moments, and that the only relations between 
them imposed by the "generalized conservation 
equations" 

0/lTrt./I = -p/lJ/I and ort.Jrt. = 0 (8.3) 

are the conservation of charge 

dq/ds = 0 (8.4) 

and the equations of motion 

d7'l'rt./ds = _rprt. and dSrt./I/ds = 21T[rt.V/l] - 2rp[IZ/I], 

(8.5) 

where rprt. and 2rp[rt./I] are, respectively, a force and a 
couple given explicitly through (4.16) and (4.8) in terms 
of the applied electromagnetic field Frt./I and the electro­
magnetic moments (8.2). When the body is small 
compared with a typical length scale for the external 
field, we have obtained the approximate expressions 

.l.rt. /lFrt. ~ 1 /11'''/1 7[~ Frt.] 
'f' = qv '/1 + k -m P U/l1"'/lp '7 s(1l 

fJ-1p! 
(8.6) 

and 

.l.rt./I ? 1 71' •• 7 rt.6[~ F/I] 
'f' = k - m P U 71 • •• 7p ·6 .(11 

1>=0 p! 
(8.7) 

for rprt. and rprt./I, where 

m/l1'" /I .. rt. = [2n/(n + l)]Q(/ll'" /In),". (8.8) 

One important question, however, remains un­
answered: What conditions other than the symmetry 
and orthogonality properties and the equations (8.4) 
and (8.5) must be satisfied by a set of tensors for them 
to be the moments of an extended body containing no 
singularities? We saw in Sec. 3 that for the moments 
I" there defined, if all but a finite number of them 
are known, the rest are uniquely determined, and 
clearly the same argument can be applied to the more 
complicated expressions for Trt./I and JIl in terms of the 
moments (8.1) and (8.2). We have obtained en route 
certain necessary conditions, e.g., that the sum of the 
infinite series (3.31) must have an asymptotic form 
given by (3.35), and there will be a similar condition 
for the inertial moments, but it is probable that 
stronger conditions than this are required for suffi­
ciency. We must leave this question open, but we close 
with the conjecture that, given any finite set of tensors 
with the necessary symmetry and orthogonality 
properties, we can find a Trt./I and a Jrt. that has these 
among its moments. 
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It is shown t~at if the spectrum of p~ysical part.i~le rest masses contains neither accumulation points 
nor the zero pomt, then the number of dIfferent posltJve-(X Landau surfaces that enter any bounded portion 
of ~e phys!cal ~egion .o.f any muIti~le-parti~le scattering process is finite. This implies that if the 
physlca.I-.reglOn smgulantJes of scattenng functIOns are confined to the closure of the set of points lying 
on p.osltJve-~ Landau surfa~s, then the scat.tering functions are analytic at almost all points of the 
phY~lcal regIOn .. Th~ pro~f I~ made. by provmg an equivalent property of systems of classical point 
partIcles scattenng vIa pomt mteractlOns. 

I. INTRODUCTION 

THERE are a number of reasons for believing that 
the physical-region singularities of scattering func­

tions are confined to the closure .At + of the set of 
points lying on positive-IX Landau surfaces. This 
restriction holds for the terms of the perturbation 
expansion in field theory.! It also follows directly from 
a macroscopic causality condition on the mass-shell 
S matrix.2 And recent works have shown how, in 
simple cases, the singularities on positive-IX Landau 
surfaces are precisely the ones that emerge from the 
assumption that the only physical region singularities 
of scattering functions are those generated by the 
unitarity equations.3 

The supposition that the physical-region singulari­
ties of scattering functions are confined to .At + does 
not immediately ensure that the scattering functions 
are anywhere analytic; the conceivable alternative is 
that the positive-IX Landau surfaces are everywhere 
dense in the physical region. 

For the simplest case of the scattering of two initial 
particles into two final particles, each positive-IX 
Landau surface is a normal threshold manifold 
which is a manifold lying at a value of the total center~ 
of-mass energy Ethat equals the sum of the rest masses 
of a set of the physical particles. If the spectrum of 
the physical-particle rest masses does not include the 
value zero and has no accumulation points, then the 
number of these manifolds entering any bounded 

* This work was done under the auspices of the U.S. Atomic 
Energy Commission. 

1 L. D. Landau, Nucl. Phys. 13, 181 (1959). 
• C. Chandler and H. P. Stapp, "S-Matrix Causality Conditions 

and Physical-Region Analyticity Properties" (to be published). 
a P. V. Landshoff and D. I. Olive, J. Math. Phys. 7, 1464 (1966); 

M. J. W. Bloxham, Nuovo Cimento 44, 794 (1966); P. V. Landshoff, 
D. I. Olive, and J. C. Polkinghorne, J. Math. Phys. 7, 1600 (1966). 
J. Storrow, Nuovo Cimento 48A, 593 (1967): J. Coster and H. P. 
Stapp, "Physical-Region Discontinuity Equations" (submitted to 
J. Math. Phys.). 

portion of the physical region is finite. This ensures 
that the set of points not lying on .At + is everywhere 
dense; almost every physical-region point has a 
neighborhood that contains no point lying on any 
positive-IX Landau surface. 

The object of the present work is to show that this 
result carries over to reactions of arbitrary numbers 
of particles. It is shown that if the spectrum of 
physical-particle rest masses contains neither the 
value zero nor accumulation points, then the number 
of different positive-IX Landau surfaces entering any 
bounded portion of the physical region is finite. Since 
the complement of the closure of any single positive-IX 
Landau surface is everywhere dense in the physical 
region,2 the same is true of any finite sum of such 
surfaces. Thus the assumption that the physical-region 
singularities are confined to .At + entails that each 
scattering function be analytic at almost every point 
of the physical region. 

The result just stated was used in a recent work of 
the author on the crossing properties of the S matrix.4 

It has also been a tacit assumption in many other 
works in analytic S-matrix theory. 

Coleman and NortonS have recently emphasized 
that the set of physical-region points lying on the 
positive-IX Landau surface corresponding to a Landau 
diagram D is precisely the set of points such that the 
classical point-particle multiple-scattering process 
pictured by D is dynamically possible. By definition, 
each point on a positive-IX Landau surface of a given 
process is a point (in the space of the external energy­
momentum vectors of this process) such that the 
Landau equations! associated with a corresponding 
Landau diagram D are satisfied. But the Landau loop 

4~. P. Stapp, "<?rossing, H.er~itian Analyticity and the Con­
nectIOn Between Spm and StatIstIcs," Lawrence Radiation Labor­
atory Report UCRL-16816 (1966). 

5 S. Coleman and R. Norton, Nuovo Cimento 38, 438 (1965). 
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equations are precisely the requirement that the 
Landau diagram D can be converted into a space­
time diagram l> of the same structure by simply 
replacing each line Li of D by the "space-time" vector 
rxjqi, where qi and rxi are the momentum-energy vector 
and parameter rx associated with line L i . The param­
eter rxi is considered to be a proper time divided by 
the mass of particle i, and the positive-rx condition 
corresponds to the requirement that the particles 
move forward in time. 5 The other two Landau 
equations ensure that the energy-momentum con­
servation laws are satisfied at each vertex and that 
each particle has the correct mass value. The space­
time locations of the classical particles are not re­
stricted, but those of the external particles are 
in fact determined by the gradient to the Landau 
surface. 2 

By virtue of this Coleman-Norton correspondence 
the number of Landau surfaces that enters a given 
portion of the physical region is the same as the 
number of classical point-particle multiple-particle 
scattering processes that are dynamically possible in 
this portion of the physical region. However, it may 
happen that several different multiple-scattering 
processes give Landau surfaces that exactly coincide 
with one another. Such Landau surfaces are, in our 
terminology, not "different" and need be counted only 
once. 

As an example, suppose the sum of the masses of a 
set of physical particles Sl is equal to the sum of the 
masses of a set of physical particles S2' If the particles 
of the set Sl are all relatively at rest, then this set can 
convert into the set of particles S2' all relatively at 
rest. An unlimited number of conversions back and 
forth between these two sets of relatively-at-rest 
particles can evidently take place without affecting the 
kinematical situation. This permits an unlimited 
number of different Landau diagrams to be compat­
ible with certain fixed points in momentum space. 
However, the Landau surfaces corresponding to these 
different diagrams all lie exactly on top of one another, 
and hence are not different. Since it is the number of 
different Landau surfaces that must be shown finite, 
various Landau diagrams (or their corresponding 
physical processes) that differ only by conversions of 
this type can be considered equivalent, and collisions 
effecting such conversions (called trivial collisions) can 
be disregarded. This fact is used continually, without 
explicit mention, in the following proofs. 

The possibility of selection rules can be ignored, as 
they would only decrease the number of possible 
processes. Each particle can therefore be identified by 
its mass alone; an interchange of the identities of 

particles of the same mass would not alter a Landau 
surface. 

n. PROOF FOR A ONE-DIMENSIONAL WORLD 

A proof is given first for a world of one space and 
one time dimension. Let the space and time coordi­
nates be called x and t and consider a plot of the 
particle trajectories on a two-dimensional x-I diagram. 
The trajectory lying at the most positive value of x is 
called the first trajectory and its slope is called the 
velocity of the first particle. This trajectory will 
generally have a number of straight line segments 
joined at points called the collisions of the first 
particle. The trajectory lying at the second highest 
value of x is called the second trajectory, and its 
slope is called the velocity of the second particle. 
There may, of course, be several particles that trace 
out a segment of the first trajectory. Their velocities 
are all equal to the velocity called the "velocity of the 
first particle," etc. 

At each collision of the first particle the velocity of 
the first particle increases. This fact is obvious in the 
collision center-of-mass frame, and is carried to the 
general frame by a Lorentz transformation. 

Let S(E) be the set of all multiple-scattering proc­
esses (of point particles with point interactions) 
possible with a total center-of-mass energy less than 
E, and let N(E) be the least upper bound on the num­
ber of collisions of the first particle for processes in 
S(E). Our main problem is to show that N(E) is finite 
for finite E; the remainder of the proof is then easy. 

Let m > 0 be the mass of smallest-mass particle. 
For 2m < E < 3m only two-particle processes are 
contained in S(E). In this case we have N(E) = 1; 
a system consisting of just two particles can evidently 
have at most one collision of the first particle. Let El 
be the least upper bound on the values of E such that 
N(E) is finite. Then the requirement that N(E) be 
finite for finite E is equivalent to the requirement that 
El be infinite. 

Suppose El is finite. Then for any positive integer 
n there must be a reaction RN at center-of-mass 
energy E < El + (mIn) with at least N = n2 collisions 
of the first particle. In this reaction the total change in 
VI' the velocity of the first particle, cannot be more 
than 

which is the change it would have if both an initial 
and final energy of El + m were divided between 
two minimal mass particles. Pick out the n collisions 
of the first particle of RN that give the greatest change 
in VI' or, more generally, such that the smallest change 
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bVI in these n collisions is not smaller than the largest 
change bVI in the remaining collisions. These n 
collisions divide the first trajectory of RN into n + 1 
segments at least one of which has at least n - 1 
collisions. The change bVI at each collision of the 
first particle occurring in the interior of any of these 
n + 1 segments must be less than Il Vln, since other­
wise the total variation of VI would be more than Il V. 
Thus we have shown that for any positive integer n 
there is in S[E1 + (min)] a reaction Rn- 1 with n - 1 
collisions of the first particle such that the bVI at each 
of these collisions is less than Il Vln. 

Any given reaction may have a portion in which the 
particles can be divided into groups such that the 
particles in each group collide only with each other. 
For any reaction in S(E1 + m) the number of collisions 
of the first particle in any such portion must be 
bounded, since otherwise the least upper bound El 
could be lowered. Thus for sufficiently large n it is not 
possible that the particles of the reaction R n_ 1 just 
constructed are divided into groups of particles that 
interact only among themselves; all the particles of 
Rn- 1 are connected to one another by collisions, for 
sufficiently large n. 

By virtue of the above arguments, if E1 is finite, there 
must be, for every positive integer n, a reaction R n- 1 

at a center of mass energy E < E1 + (min) having 
n - 1 collisions of the first particle, and such that at 
each of these n - 1 collisions the change bVI of VI is 
less than Il Vln. In this reaction R n- 1 , let bi be the 
maximum magnitude of the difference between the 
velocity of the first particle and the velocity of the sec­
ond particle at the ith collision of the first particle. 
And let b be the greatest of the bi . Because bV1 is less 
than Il Vln it follows that b must be less than bll Vln, 
where b is (E1 + m)lm. This limit comes from the 
optimal case in which the second particle has the least 
possible mass m, and the first particle has mass E1 , 

which is an upper bound. 
Between collisions with the first particle the velocity 

of the second particle must increase monotonically. 
It follows from this that the difference in velocities of 
the first and second particles must always be less than 
IJ, and hence also less than bll Vln. 

In order that the velocity of the second particle 
always differ by less than bll Vln from the velocity of 
the first particle, the maximum change of velocity of 
the second particle in a collision with a third particle 
must be less than 2b1l Vln. This means, in turn, that 
the velocity of the third particle can differ from that 
of the second by at most 2b21l Vln. (In the special case 
where the third and second particles can simulta­
neously collide with the first particle, the condition on 

the velocity of the third particle is more stringent.) 
Reapplication of the same arguments shows that 

the difference between the velocities of the third and 
fourth particles is always less than 4b31l Vln, and so on. 
Since the total number of particles in the reaction 
must be less than b = (E1 + m)lm, it follows that the 
velocities of all the particles of Rn_ 1 must, in the 
center of mass frame, be less than CIl Vln, where 
C = 1(2b)b is a constant determined by E1/m. From 
this limit on the center-of-mass velocities one obtains 
as an upper bound on the center-of-mass kinetic 
energy the value6 l(E1 + m)(CIlVln)2. 

According to the above result, the kinetic energy of 
the particles of R n- 1 approaches zero as n approaches 
infinity. This requires that E1 be equal to the sum of 
rest masses of some set of physical particles, and 
that for n larger than some finite value L, the sum of 
the rest masses of the particles of Rn- 1 be equal to 
E1. The limit L is the greater of the two values L1 
and L 2, where L1 is defined by [£1 - E1 - (miLl)] = 
0, £1 being the smallest sum of rest masses that is 
greater than E1 , and L2 is the least upper bound on 
values of n that satisfy 

E(n2) - 21 :::;; l(EI + m)(CIlVln)2, 

where 21 is the greatest sum of particle rest masses 
that is less than E1, and E(N) is the least upper bound 
on values of E' such that N(E') is less than or equal to 
N. That L2 is finite is ensured by the fact that E(N) is 
a nondecreasing function of N that approaches E1 
as N becomes infinite. For n larger than L1 , the condi­
tion E < E1 + min ensures that the sum of the rest 
masses of particles of R n- 1 is not larger than E1 • For 
n larger than L 2 , the bound on the kinetic energy 
ensures that the sum of the rest masses of particles of 
Rn- 1 is not less than E1 • Thus for n larger than L, the 
sum of the rest energies of particles of Rn- 1 is precisely 
E1 • 

Take n greater than L. Then the kinetic energy is 
E = E - E1 • But then the total variation of the 
velocity of the first particle in R n- 1 is bounded by the 
value Ilv defined by6 im(llvI2)2 = E. 

We now repeat the arguments given before, but 
with Rn_1 = Rr2 in place of RN and with Ilv in place 
of IlV. In place of the earlier bound l(El + m) X 

(CIlVJn)2 on the kinetic energy, we now get 
l(El + m)(CllvJr)2, That is, we have, for n larger than 
L, 2 2 

E < t(E
1 
+ m)(CIlV) = 4(E1 + m)C E • 

r men - 1) 

This gives n - 1 < (2b)2b+1, which requires n, and 
hence N(E), to be finite for finite E. 

• Relativistic formulas are used throughout. 
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Since N(E) is finite, the finite number of collisions 
of the first particle divides any reaction into a finite 
number of subreactions. In each of these subreactions 
the first trajectory is separated from the other trajec­
tories. Thus the previous argument can be applied to 
the subreaction, but with the second trajectory in 
place of the first, etc. One concludes, then, that the 
number of collisions of the second particle is bounded 
by [N(E) + 1]2. 

Proceeding in this way one concludes that the 
total number of collisions is bounded, if the center­
of-mass energy E is bounded. Since also the number of 
different types of particles that can enter into reactions 
in a bounded center-of-mass energy region is bounded, 
the total number of different types of reactions that 
can occur in such a region is bounded, in the one­
dimensional case. 

ID. EXTENSION OF ONE-DIMENSION PROOF 
TO THE THREE-DIMENSIONAL CASE 

The foregoing proof for the one-dimensional case 
can be easily generalized to the three-dimensional 
case. To do this we consider simultaneously the first 
x trajectory, the first y trajectory, and the first z 
trajectory. These are the trajectories lying at the 
largest values of x, y, and z, respectively. 

A "triple" is a sequence of collisions (in their 
natural order) that includes at least one collision of the 
first x particle, at least one collision of the first y 
particle, and at least one collision ofthe first z particle. 
A "sequence of triples" is a sequence of collisions (in 
their natural order) that are separated into an ordered 
set of triples such that the final collision of any triple 
is earlier than the earliest collision of the next triple. 

Let N(E) be the least upper bound on the number 
of triples in sequences of triples for reactions in See). 
Let E1 be the least upper bound on the values of E 
such that N(E) is finite. Suppose (contrary to fact) 
that EI is finite. Then for any positive integer n there 
must be a reaction RaN in S[EI + (min)] with a 
sequence of at least 3N = 3n2 triples. Pick out those 
n triples that contain the collisions of the first x 
particle with the n largest values of t5vi",. Here t5vi", is 
the change in the x component of velocity of the first 
x particle. Pick out also those n triples that contain 
the n collisions of the first y particle with the largest 
t5v ill • Do the same also for z. These 3n triples separate 
the reaction RaN into at most 3n + 1 (sub)reactions, 
at least one of which, called R n- 1 , must contain at 
least n - 1 triples. 

In the reaction R n- 1 the maximum possible change 
of t5vi ", at any collision of the first x particle is less than 
!:J. Vln for exactly the same reasons as before. This 

bound holds also for the changes t5vill and t5viz • Thus 
the same arguments as in the one-dimensional case 
now give -i(E1 + m)(C!:J.Vln)2 as an upper bound on 
the center-of-mass kinetic energy of R n- 1 , where C 
is again t(2b)b. 

Continuing as before, one concludes that EI must 
be equal to the sum of rest masses of some set of 
physical particles, and that for sufficiently large n, 
the sum of the rest masses of the particles of R n- I , must 
be precisely EI • Thus the center-of-mass kinetic 
energy for Rn- I is again E = E - E1 for sufficiently 
large n. 

If the kinetic energy is E, then the total variation of 
Vi'" in R n- 1 is no more than !:J.v defined (tm)(t!:J.v)2 = E. 

From this one concludes, by the same argument as 
before, that N(E) cannot become infinite at finite E. 

From the fact that N(E), the maximum number of 
triples in See), is finite, it follows that the maximum 
number of collisions of reactions in See) is finite. To 
show this we proceed as follows: For any reaction in 
See) let II be the greatest time such that the sub­
reaction consisting of the portion of the reaction 
occurring at t < II contains no triple. Then let 12 be 
the largest time such that the portion of the reaction 
occurring in the interval II < I < 12 contains no triple. 
Let la, 14 , ••• , In be defined in the analogous way. 
This sequence of times must terminate at a time In 

with n < N(E), where N(E) is the maximum number of 
triples for reactions in See). 

The times Ii divide the original reaction into a set 
of no more than [N(E) + 1] subreactions each of 
which contains no triple. But a subreaction that 
contains no triple must have a first x, y, or z trajectory 
that is disjoint from the other x, y, or z trajectories, 
respectively. This implies that the particles of each of 
the various subreactions must separate into groups 
such that the particles of each group interact only 
with each other. And at least one of these groups must 
be confined to a single x,y, or z trajectory. The number 
of these independent groups into which a subreaction 
divides is evidently no greater than Elm, which is an 
upper bound on the number of particles in reactions 
in SeE). 

The above analysis takes the original reaction into 
no more than (Elm)[N(E) + 1] independent (i.e., 
self-interacting) new reactions. The same analysis is 
next applied to each of these independent new reac­
tions. For reactions that are confined to a single x, y, 
or z trajectory, one uses, however, "doubles" instead 
of "triples." Doubles are the two-dimensional analog 
of triples; one eliminates the x, y, or z coordinate if 
the reaction is confined to an x, y, or z trajectory, 
respectively. The number of doubles (and analogously, 
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of singles) in reactions in SeE) are shown to be bounded 
by essentially the same argument as was just given for 
triples. In fact, the bound N(E) obtained previously 
for the number of triples is also a bound on the 
number of doubles (and also on the number of singles). 

The original reaction is separated at the first stage 
of the analysis into no more than (E/m)[N(E) + 1] 
independent new reactions. Each of these is separated 
at the second stage into no more than (E/m)[N(E) + I] 
new independent reactions. One continues in this way 
until the stage at which no further decomposition is 
obtained. This must occur after no more than E/m 
iterations, since the energy of a part that decomposes 
at a given stage must have been reduced at every 
earlier stage by at least m, due to the separation into 
independent parts. Thus the total number of inde­
pendent reactions that are picked out altogether is no 
more than 

A(E) == {(E/m)[N(E) + l]}(E/ml+l. 

Also, the total number of times ti singled-out in the 
entire course of the analysis is bounded by A(E). 

Each (nontrivial) collision of the original reaction 
occurs at one of the times ti singled-out in the above 
analysis. For, on the one hand, the only collisions that 
are eliminated at any stage of the analysis are those 
occurring at one of the singled-out times. On the other 
hand, the analysis does not terminate as long as any 
nontrivial collision remains. In the first place any 
independent part that is not confined to a single x, 
y, or z trajectory must contain a triple, since otherwise 
a trajectory can be separated out. Thus the analysis 
cannot terminate as long as there are still independent 

parts not confined to an x,y, or ztrajectory. Similarly, 
all parts confined to a single x, y, or z trajectory must 
be reduced, before the analysis terminates, to parts 
lying on at least two trajectories. These parts lying on 
two trajectories are confined to one-dimensional 
subspaces. For such parts the analysis proceeds until 
the first trajectory becomes the same as the last 
trajectory, since otherwise the first trajectory of an 
independent part must have a collision. One is left, 
finally, with only trivial collisions. 

The conclusion from the above arguments is that 
the collisions of any reaction in SeE) are confined to 
a set of times ti , the number of which is no more than 
A(E). Furthermore, the number of different types of 
particles that can participate in reactions in SeE) is 
also finite, due to the spectral conditions on the 
particle rest masses. (Particles of the same mass can 
be identified, as mentioned in the Introduction.) But 
a finite number of different particles colliding only at 
a bounded number of different times can give only a 
finite number of different types of reactions. In 
particular, if mq(E)/Eis the number of different kinds of 
particles with rest energy less than E, then the number 
of different possible collisions at a single given time 
ti is no more than [2q(E)]2E/m. Thus the total number 
of different types of multiple-scattering reactions 
involving collisions at no more than A(E) different 
instants of time is no more than (2q)2EA/m. This upper 
bound on the number of different types of collisions 
possible in the portion of the physical region lying at 
center-of-mass energy less than E could be lowered 
with but little extra effort, should the need arise. 
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The convergence of the Bremmer series expansion for the solution of the one-dimensional Helmholtz 
equation with varying wave number is investigated. It is proved that the series converges provided the 
quantity £G is sufficiently small, where £ measures the relative rate of change l/kS(dk/dx) and G the 
relative total change of the wave number k. An exactly soluble example is discussed in order to show 
that convergence fails if the above criterion is significantly relaxed. It is shown that if the Bremmer 
method is applied to the calculation of the time-dependent response to an externally imposed signal, 
the series is convergent at any finite time after the signal is turned on. 

I. INTRODUCTION 

THE Bremmer series was originally constructedl in 
order to obtain an expression for the reflection 

coefficient of the one-dimensional Helmholtz equation, 

d24>ldx2 + k2(x)4> = 0, (1) 

in the interval - 00 < x < 00, where k 2(x) is greater 
than zero and approaches constant values at infinity. 
The virtue of this series is that it can be derived from 
a simple physical picture based on Huygens' principle. 
At every point in the medium where dkjdx ':;6 0, a 
wave is partly reflected and partly transmitted. The 
lowest order term 4>iOl is calculated by neglecting the 
further history of all the reflected "wavelets." 4>io, is 
then found to be the first-order WKB solution for 
forward propagation. The next term, 4>~l/, is composed 
of a coherent superposition of the reflected wavelets 
propagating in the negative direction, where again 
the wavelets generated by additional reflections are 
ignored in this order. The next term, 4>i2), represents 
a correction to the transmitted wave 4>io, and gives the 
contribution from wavelets that have undergone just 
two reflections and then propagate to + 00, and so on. 
Thus the principle of the Bremmer series is that the 
total field is composed of a coherent superposition of 
multiply reflected wavelets, where the reflection 
coefficient is determined by local gradient parameters. 

This principle has been used by others in equations 
more complicated than Eq. (1). For example, Bellman 
and Kalaba2 have used a variation of the method to 
study 2Nth-order differential equations. Aamodt and 

* University of California, San Diego, California. 
t General Atomic Div. of General Dynamics Corp., San Diego, 

California. 
~ Max Planck Institut fUr Physik und Astrophysik, Munich, 

Germany. 
1 H. Bremmer, The Theory of Electromagnetic Waves, A Sympo­

sium (Interscience Publishers, Inc., New York, 1951), pp. 169-179. 
2 R. Bellman and R. Kalaba, J. Math. Mech. 8, 683 (1959). 

Book3 have studied a fourth-order differential 
equation for a plasma fluid and Berk, Horton, 
Rosenbluth, and Sudan' apply the Bremmer method 
to obtain wave reflection arising from the Vlasov 
equation. We see that the Bremmer method can be 
applied to a large class of problems where mathe­
matical proofs and alternative descriptions6•6 are 
difficult to obtain, and it is therefore important to 
establish the regime of validity of the Bremmer 
method for the simplest case of application, the 
Helmholtz equation. 

It has been established that the Bremmer series is a 
solution of the Helmholtz equation (or in the paper of 
Aamodt and Book, the fourth-order fluid equation) 
if the series converges.2•3 However, previous conver­
gence proofs have used very general properties of k(x) 
and as a result have obtained sufficiency criteria for 
convergence only if the total change of k is of order k 
itself. For example, the convergence criteria obtained 
by Bellman and Kalaba2 for c.ontinuous k are 
k 2 > a2 > ° and S~oo Ik'i dx < 2a, and by Atkinson? 
for continuously differentiable k(x) , k2 > 0, and 
S~oo Ik'jkl dx < 7T. Atkinson also shows that there 
exists continuously differentiable k(x) for which the 
Bremmer series diverges if S~oo Ik'jkl dx > 7T. How­
ever, since physically interesting forms of k arise that 
violate the above convergence criteria, we investigate if 
stronger convergence statements exist when more 
information is given about k(x) and k'(x) than just 
their continuity. 

3 R. E. Aamodt and D. L. Book, Phys. Fluids 9, 143 (1966). 
• H. L. Berk, C. W. Horton, M. N. Rosenbluth, and R. N. 

Sudan, ICTP preprint, Trieste (1966). 
6 F. L. Ince, Ordinary Differential Equations (Dover Publications, 

Inc., New York, 1956), p. 520. 
6 G. Knorr and D. Pfirsch, Max-Planck-Institut fUr Physik und 

Astrophysik, MPI-PAE/P115/65, 1965. 
1 D. Atkinson, J. Math. Anal. Appl. 1,255 (1960). 
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Specifically, it is known that the first term of the 
Bremmer series is the lowest-order WKB solution, 
and hence we might expect that the Bremmer series 
converges when the WKB approximation 

k'(x)/k2(x) « 1 

is applicable even when the criteria of Bellman, 
Kalaba, and Atkinson are violated. Here we present a 
convergence proof that when applied specifically to 
the case when the WKB approximation is valid, has a 
much greater range of convergence than previously 
obtained. However, we can show by means of a 
specific example that if the change of k is sufficiently 
large, the Bremmer series diverges. 

It is perhaps surprising that a method apparently 
based on physical construction should break down for 
a range of parameters that is physically sensible. To 
throw some light on this problem, we show that the 
Bremmer method does not break down if we treat 
the Helmholtz equation as a Laplace transform of the 
wave equation. We then show that the inverse 
Laplace transform, which depends on time, converges 
absolutely. 

II. CONVERGENCE OF THE BREMMER 
SERIES 

Bremmer has shown that if k(x) is finite, non­
vanishing, and piecewise smooth in the interval 
-00 < x < +00, and 

k{x) --+ k_ = const (x --+ - (0), 

k(x) --+ k+ = const (x --+ + (0), 

then a solution of the Helmholtz equation can be 
written as 

(2) 

where c/>l and c/>2 satisfy the relations 

Here {J = J~oo (Ie- - k) dx, exp (i{le-x - (J)] is an 
incident wave of unit amplitude and zero phase at 
x = 0, and rand t are the reflection and transmission 
coefficients. 

The solution with different boundary conditions is 
obtained by varying the amplitude of the incident 
wave or introducing the first-order WKB solution 
for propagation in the negative direction, c/>~O). An 
outline of the derivation of the Bremmer Eqs. (3) 
and (4) is given in Appendix A. 

When (3) and (4) are solved by the obvious iteration, 
the Bremmer series results. However, first it is con­
venient to define the new variables 

~(x) = 21'" key) dy, 

Ul(X) = c/>l(X)(k~:»)! exp [ -iSo"'k(y) dy J 
ulx) = c/>2(X)(~:)f exp [il"'k(Y) dy l 

In terms of these, we have 

Ul(~) = 1 + f~oo d1]B{1])e-i"u2{1]), (7) 

U2(~) = - Loo d1]B(1])ei "u1(1]), (8) 

where 

B( 1:) _ 1- dk _ ~ dk 
S" - 2k d~ - 2k2 dx . 

Equations (7) and (8) are solved by iteration if we 
put 

(9) 
and define 

and 

ui2n)(~) = foo d1]B{1])e-i"u~2n-1l(1]) (10) 

c/>l(X) = c/>iO)(x) + 1"'00 dx' 2~~::; P*(x', X)c/>2(X'), (3) 
U~2n+1l(~) = _ LOO d1]B{1])ei 'lui2n){1]). 

(4) Then formally c/>2(X) = - dx' -- P{x', X)c/>l(X'). f. oo k'(x') 

'" 2k(x') 

(11) 

Here the p* denotes the complex conjugate and 

P(x', x) = [k(X')]! exp [-if.'" key) dY], 
k(x) ",' 

(5) 

In (3), c/>iO) is the first-order WKB solution 

c/>iO)(x) = [k~~)r exp [i L"'k{Y) dy 1 
The boundary conditions satisfied by this solution 

are that c/>(x) asymptotically approach the forms 

c/>{x) = eitk-"'-P) + re-ik-'" (x--+ -(0), 

c/>(x) = eik+'" (x --+ (0). 

00 

Ul(~) = Z ui2n)(~), (12) 
n=O 

00 

U2(~) = Z u~2n+l)(~) (13) 
n=O 

satisfy Eqs. (7) and (8). Equations (10) and (11) may 
be combined to connect successive orders in the 
expansion of U1 alone: 

ui2n+2)(~) = -f~ d1]B(1])e-i'li
oo 

d1]'B(1],)ei 'l'ui2n){1]') 
-00 'I 

= L: d1]'f,(1]')ei 'l'G($, 1]')ui2n)(1]'), (14) 
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where 

{F(~)' ~ < TJ', 
G(~, TJ') = F(TJ') , ~ ~ TJ', (14a) 

F(~) = foo dTJe-i'lf,(TJ)· (14b) 

Suppose temporarily that k(x) increases monotoni­
cally from k~ to k+ and define a new independent 
variable 

s =fs dTJf,(TJ) = ! fS dk. 
-00 2 -00 k 

Thus s(~) is just lIn [k(~)lk_]; s( - (0) = 0 and 
o ~ s ~ lIn (k+lk_) = a. Equation (14) becomes 

u~2n+2'(s) = - I dtK(s, t)U~2n'(t), (15) 

where 
K(s, t) = eis(t)G[~(S), ~(t)]. (16) 

By a well-known theorem,8 the series (12) converges 
if the operator k has the following norm less than 1: 

fdS L7

dt IK(s, t)12 < 1. (17) 

By (16) this condition is 

Lads I dt IF[~(t)]12 + IdS IF[e(s)]1 2 (a - s) < 1. 

(18) 

Now let f,(e) take on values less than zero so that 
f, = 0 at a discrete set of points. We now define the 
total logarithmic variation of k from - 00 to e as 
twice the quantity 

see) = foo dTJ 1f,(TJ)I· 

Thus we have a one-to-one correspondence between ~ 
and s. Equation (14) now takes the form 

ui2n+2'(s) = - La dtK(s, t)ui2n'(t), (15') 

where 
K(s, t) = oc(t)eis<t'G[e(s), ~(t)]. (16') 

Here oc(t) is the sign of f,[W)] and a = s( (0). The 
remaining arguments are as before and the general 
convergence criterion is given by (18) with s, a, and 
K(s, t) as redefined above. 

We now investigate the implications of (18). If we 
have a bound IFI~ for IF(t)12, then (18) becomes 

!a2 IFI~ax < 1. (19) 

By the definition (14b) of F it is clear that 

IF(s) I ~ s ~ a. 

8 F. E. Riez and B. Sz-Nagy. Functional Analysis (Frederick 
Ungar Publishing Company, New York, 1955), p. 147. 

So we have the sufficiency criteria. 
(A) If f,(x) is finite and piecewise smooth, then 

a < (i)* 

implies the convergence of the Bremmer series (12). 
It is clear that the same criterion applies to (13). 

Criterion (A) is slightly more restrictive but 
essentially the same as that given by Atkinson. 7 

However, it is important to determine whether the 
Bremmer series converges in cases where the relative 
change in k is large. Notice that if k is sufficiently 
slowly varying, the usual WKB approximation is valid, 
and we would expect the Bremmer series to converge 
by its construction. Hence, we assume f,(e) «1 and 
introduce the following definitions in order to classify 
k(e). A function f(x) is defined to be gentle in the 
small quantity EO if f'(x)lj(x) = EOOC(X), where oc(x) is 
order 1. Similarly f(x) is said to be very gentle in EO if 
j"(x)lj(x) = E~P(X), jJ(x) = 0(1) and so on. 

Now suppose If,(e) I ~ E « 1 for all e. Let f,(x) be 
gentle in EO' Then integrating (14b) by parts, we have 

F(~) = if,(e)e-iS - i foo dTJf,'(TJ)e-i
", 

IF(~)I ~ I f,(e) I + I EfoodTJf,(TJ)oc(TJ)e- i
" I 

~ E + EOC food1J 1f,(TJ) I 

< E[1 + oca]. 

Then (1'9) yields the criterion 
(B) Iff,(e) is gentle in E = max I f,(e) I , then 

(l)laE(1 + oca) < 1 

implies convergence of the Bremmer series. Continuing 
to integrate by parts, we find the following. 

(C) If f,(e) is very gentle in E, then 

(l)laE(1 + paE) < 1 

implies convergence. 
(D) If f,(e) is very very ~entle in E, then 

(!)lEa < 1 

implies convergence. 
It is thus clear that for "sufficiently gentle" wave­

numbers k, the natural measure of convergence is Ea. 
Note that the gentleness of any order criterion can be 
slightly violated without changing the effective 
convergence criteria. For example, if in a small region 
of ~, say ~~, f, changes rapidly but the total change 
~f, in this region is much less than 1, then the con­
vergence criterion (B) is still valid. 

Before going on, it is interesting to compare the 
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Bremmer formulation with that of Knorr and 
Pfirsch.6 They show that Eq. (1) is equivalent to 

w(~) = woe;) + ! fa) d; sin !(; - ;,)/(~')w(~'), 
(20) 

where w(~) = kl(x)cp(x) and 

2 tfk (1 dk)2 
1(;) = kde - kd;' 

At; '" - 00, w(;) '" woe;) = exp (;;/2); this bound­
ary condition corresponds to making the upper limit 
in (8) - 00 instead of 00. Then writing 

1(;) = 2k-1.E:. (.1. dk) 
d; kl d; 

and integrating by parts, we obtain 

we;) = ei e/2 -i~ d;'[~ sin i(; - ;')w(;') -a) k 

k' 
- - cos !(; - ;')w(;') 

2k 

-~fJir sin l(~ - ;')W(;')} (21) 

From the Bremmer equations with boundary con­
ditions modified as noted above, we get 

where 

But 

= ei S/
2 + f~a) d~'E(~') [WBW) cos i(; - ;') 

+ icp(;') sin l(~ - ~')] 

icp(;) = 2[w~(~) - E(~)WB(;)]' 

so wand WB both satisfy Eq. (21); and thus WB = w. 
In Ref. 6 it is shown that the series obtained by 
iterating (20), starting with wo, converges absolutely 
provided only that 

L:'/(~)' d~ < 00. 

As shown by the example of Sec. III, this is certainly 
not true for the Bremmer series obtained in the 
reflection problem. The difference is traceable to the 
definition of the boundary conditions in the two cases. 
Because the Bremmer problem includes specification 
of the behavior of the solution at ± 00, each order 
of the iteration process (14) involves integration over 
the whole range of variation of k(~) and effects can 
accumulate from the entire ~ axis; in the series of 

Knorr and Pfirsch, the value of w(~) depends on an 
iterated integral from the boundary at - 00 to ~ only. 
Thus it is possible to majorize the series with an 
exponential series, implying absolute convergence. 
We return to this point in Sec. IV. 

~. SPECIAL ~LE 

Let us consider as a special case the following 
example that can be solved exactly and readily 
expressed in terms of the Bremmer series. Consider 

-00 < ~ < 0, 

o ~ ~ ~ ~o, 
~o < ~ < 00. 

For this example, (7) and (8) become 

Ul(~) = 1 + - dTje-i"u2(Tj), E l~ 
2 0 

(22) 

(23) 

From the first derivatives of (22) and (23), we obtain 
the relations 

U~(~) = iEe-i~u2(~)' 

u~(~) = ld~ul(~)' 

(24a) 

(24b) 

Using these relations we derive the following 
differential equation for Ul(~): 

u~(~) + iu~a) - tE2Ul(~) = O. (25) 

[This is a special case of the equation 

(
k' kif) k' 

u~(~) + k - k' + i u~(~) - 4k2 Ul(~) = 0 

that would be derived for arbitrary k(~).] 
We obtain the appropriate boundary conditions 

from (22), (23), and (24a): 

(26) 

The exact solution for Ul(~) is then found to be 

e-h~[(y + 1)e-1iY(s-L) + (y _ l)eliY(~-L)J 
u1a) = , 

2[y cos cp - i sin cp] 

where y = (1 - E2)1 and cp = iy~o. 
(27) 

If we substitute this solution into (23) and integrate, 
we find that u2(;) is given by 

U2(~) = _Ee
is/2 

sin [ty(~o - m . 
[y cos cp - i sin cp] 

(28) 

We obtain the Bremmer series either by expanding 
(27) and (28) in powers of E or directly iterating (22) 
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and (23). The first few terms are 

u~o)(;) = 1, 

u~l)(;) = _(£/2i)[eiio _ eli], 

uiZ)(;) = (£2/4i)[; _ i(ei(io-s) _ eiSO)], 

U~B)(;) = -(£B/8i)[-2i;oeiso + i;(eiSO + elS) 
+ eiso _ eis + e2i(so+s)]. 

Notice that U~l)(O) is a good approximation to the 
reflected wave if £2;0 « 1. The next approximation to 
the reflection is significant only if ;0 = 21Tn + t5 
where t5 ~ £2;0' 

We see that the Bremmer series is a power series in 
£ in this example. The radius of convergence of this 
power series is given by the value of £ closest to zero 
for which u1(;) or us(;) is singular. Both the points 
£ = 1 and the zero of 'Y cos I/> - i sin I/> seem likely 
candidates. However, the point £ = I can be elim­
inated since, near £ = 1, Ul(;) and uz(;) can be 
expressed as a convergent power series in I' = (1 - £2)!. 

However, both (27) and (28) are even in I' and hence 
the power series is in 1'2 = 1 - £z, which is also a 
power series in £. 

We now try to approximate the root ofthe equation 

(1 - £2)! cos [i-(1 - £2)t;0] = i sin [!(I - £2)t;0]. 

By squaring this equation and using trigonometric 
identities, this equation can be written in the form 

cos2 {[!(1 - £2)t];0} = 1/£2. (29) 

Let us assume the root occurs where £2;0 »1 but 
£4;0 «1. The square root of (29) can then be 
expressed approximately by 

cos (l;o) cos (!£2;0) + sin (l;o) sin (-!£2;0) = ±(1f€). 

If we define p = _i£2 and assume that ;0 = 
l1T(2n + 1), where n is an integer, we find 

and therefore, 
(30) 

Hence, if £ is small, the above approximations can be 
satisfied, and consequently the Bremmer series for our 
example diverges for a sufficiently large change in k. 

The range of convergence of our special example 
should be compared with the criterion (D) of Sec. II. 
For our example, the total maximum logarithmic 
variation of k is given by (1 = £;0 so that from (30) 
the convergence criterion of our example is 

£(1 < In (tll£\), 

while the general criterion is (3/2)t£(1 < 1. This 

shows that the bounds of the previous section are 
almost optimal. 

IV. TIME-DEPENDENT REFLECTION 
PROBLEM 

It is of interest to consider how the Bremmer series 
can be applied to wave equations having both space 
and time dependence. We consider the simplest form 
of a one-dimensional wave equation 

{ 
02 02 

} -z - c2(x) -2 "P(x, t) = O. 
ot OX 

(31) 

We investigate the response of this equation to a 
localized source turned on at time 1 = O. Using a 
technique similar to one employed by Nyquist9 in 
circuit theory, we show that the time-dependent 
Bremmer series for "P converges absolutely. 

If c(x) is constant, we find that the normal mode 
solutions described by (31) are waves propagating in 
either direction without dispersion, i.e., OJ/k constant. 

Suppose now that l/c(x) satisfies the restrictions 
placed on k(x) in Sec. II (positive, finite, piecewise 
smooth). In addition, we assume that c(x) is constant 
from - 00 to some point on the real axis, and choose 
Xo inside this interval. At 1 = 0, we begin to generate 
a time-dependent signal at the point Xo. Thus on the 
right-hand side of (31) there is a source term in the 
form 

S(x, t) = t5(x - xo)0(/)/(/). (32) 

[0(/) is the Heaviside step-function.] We assume that 
/(/) is integrable, 

I Loof(t) dt I < 00, (33) 

and impose the initial conditions 

"P(x, 0) = (o"P/0/)(x, 0) = o. 
Equation (31) with the source term (32) can now be 

solved by means of Laplace transformations. Defining 

¢>(x, OJ) = Loo dteiwt"P(x, t), (34) 

etc., with the inversion 

"P(x, t) = J.. r dOJe-iwtl/>(x, OJ), (35) 
21T J1 

where I is a contour in the complex OJ-plane above all 
singularities of I/>(x, OJ), there results 

-OJ21/>(x, OJ) - c2(x)(d21/>/dx2)(X, OJ) = t5(x - xo)/(OJ) 

• H. Nyquist, Bell System Tech. J. 11, 126 (1932). 



                                                                                                                                    

1616 H. L. BERK, D. L. BOOK, AND D. PFIRSCH 

or 
(cJ2c/J/dX2) + k2(X)c/J = S(w)<5(x - xo). 

k(x) = w/c(x), 

By the assumption (33) and the conditions on c(x), we 
(36) can bound "PiO) : 

Here 

Sew) = -c-2(xo)f(w), 

and/(w) is the Laplace transform of/(t). 
The solution of (36) is 

(37) 

where c/Ja is the Green's function for a source localized 
at Xo and c/JH is a solution of the homogeneous 
equation. The former is readily found in a neighbor­
hood of Xo using the fact that at xo, k(x) = ko is a 
constant: 

c/Ja(x) = Be-iko(IZ-IZO) (x < xo), (38a) 

= Beikg(lZ-lZo) (x> xo), (38b) 
where 

B = S(w)/2iko = -[c(xo)/2i]/(w). (39) 

Causality requires that c/JH be the solution of the 
reflection problem for a wave of amplitude B incident 
from the left at x = Xo of the form (38b). [By trans­
forming back from w to t, we see that if c/J has a term 
like exp (-ikx) at + 00, "P does not vanish for t < 0.] 

We can now use the Bremmer techniques of Sec. II 
to solve for c/JH: 

c/J = c/Jl + c/J2' 
where c/Jl and c/J2 satisfy (3) and (4) except that c/JiO) is 
multiplied by a factor B. We define T(X) = f:o dx/c(x), 
the time required for a wave to propagate from X o 
to x. In terms of the new variable, (3) and (4) become 

U(T, w) = B + loT dT'&(T')e-2iWT'V(T'), (40) 

(41) 

where 
&(T) = (1/2k)(dk/dT). 

As before, an infinite series of functions Un' Vn in 
(w, T) space is obtained by iteration of (40) and (41.) 
These yield a corresponding series ~("Pi2n), "P~2n+l» in 
(T, t) [or (x, t)] space on application of the Laplace 
inversion formula (35). Thus, using (39), 

"PiO)(T, t) = L ~: e-iCDtc/J(O)(T, w), 

= r dw e-iCDt[~]!eiCDTB(W)' (42) 
JI27T k(T) 

= C-l(XO)[~]! tdt'f(t). 
2 k(T) Jo 

(43) 

Note that [ko/k(T)]! = [C(T)/CO]! is independent of w 
because of the absence of dispersion. For t < T(X), "PiO) 
vanishes, indicating that the signal does not have 
time to propagate from Xo to x. 

Likewise, applying (35) to the recursion relation for 
successive terms in the expansion of u, 

U2(n+l) = r dT'&(T')e-2iCDT'f,00 dT"&(T")e2iWT"U2n(T"), Jo T' 

(44) 

we have 

"P~(n+l)(T, t) = -f dW e- iCDt [ ko ]*eiCDT 
127T k(T) 

x r dT'&(T')e-2iCDT'jOOdT"&(T")e2iWTII 
Jo r' 

x [k~:')] * e-iCDT" c/Ji2n)( T", w) 

= - r dT' &( T')j 00 dT"&( T") Jo r' 

x [~~::r "Pi
2n

)(T", t - T - T" + 2T'). 

(45) 
The following assumptions are now made: 

I&(T) 1 ~ E, 

[k(T")/k(T)]* ~ K 

(46) 

(47) 

for all T, T"; both (46) and (47) certainly hold for 
physically reasonable choices of c(x). 

We show by induction that the series 

00 

2 "Pi2n)(T, t) = "Pl(X, t) 
n~O 

is majorized by a series which converges as an 
exponential series, and therefore itself converges 
absolutely for any finite t, T. 

Suppose 
"Pi2n)(T, t) = 0, T > t, (48) 

1 "Pi2n)(T, t)1 ~ (E2nK n/n! 22n)M(t - T)n(t + T)n, 

(t > T). (49) 

By (48), the integrand vanishes in (45) unless the 
variable T" satisfies 

T' ~ T" ~ T' + t(t - T). (50) 

But (50) can only hold if t > T, so that (48) is true 
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also for V'~(nH). We are left with 

\V'~(n+l)(T, t)\ 

= liT dT'&(T')j,T'+!(t-T)dTII&(TII)[k(T
II

)]! 
o T' k(T) 

X V'i2n)(T", t - T - Til + 2T') I 

i

T f,T'+!(t-T) E 2nK n 

~ dT' dT"E2K --2- M(t - T + 2T't ° T' n! 2 n 

x (t - T - 2T" + 2T,)n 

E2(nH)K n+1 1T 
~ 2 M(t + Tt dT' 

n! 2 n 0 

j,

T'+!(t-T) 
X dT"(t - T' - 2T" + 2T')n, 

T' 

E2(nH) K nH 
~ M(t + T)n+1(t _ T)n+1. 

(n + I)! 22(n+1l 

Clearly, (43) is a special case of (49) and, for '1'1°), (48) 
follows from (42). So the induction is complete and 

In entirely analogous fashion we show that 

V'~2n+l)( T, t) = 0, T > t, 
and 

V'~2n+1)(T, t) = I L!(t+rl dT'&(T')(~~~;t 

X V'i2n)(T', t - T' + T) I 

f,

!(t+rl (E2K)n 
~EK dT'M-

2
-

T 2 nn! 

X (t + T)n(t - 2T' + T)n, 

= -- ---(t + T)n -- . 
MEK (E2K)n (t _ T)n+l 

n + 1 n! 2n 2 
So 

I ~o V'~2n+1)(T, t) I 
2ME-1 

:5: --{exp [!E2K(t + T)(t - T)] - I}. (52) 
t+T 

Together (51) and (52) comprise the result sought. 
It is clear from the proof just presented that 

convergence is a consequence of the finite speed of 
propagation. The region in coordinate space which 
can contribute wavelets to the total Bremmer wave in 
any given order is limited by the condition T(X) < t, 
in contrast to the situation of Sec. II. In that case there 
is no initial point in time; waves have had effectively 
an infinitely long time in which to traverse all of 
coordinate space, and wavelets of any order of 
multiple reflection come from all points in space where 
k' ~ o. Thus it is possible to find the terms in the 
Bremmer series increasing with order, so that the 
series diverges. 

Because the idea of a finite speed of propagation is 
central to the above proof, it should be possible to 
generalize the argument to cases where the wave 
equation describes propagation in dispersive media, 
provided that the dispersion relation is such that w/k 
is bounded. 

We see that the Bremmer series for the Helmholtz 
equation is simply a formal mathematical expression. 
Only when time is brought into the picture can the 
Bremmer series be viewed strictly as a physical 
construction. Hence, only in the time domain is the 
Bremmer series guaranteed to be absolutely convergent, 
and it is not surprising that, for the Helmholtz equa­
tion, the Bremmer series can diverge. 

v. CONCLUSION 

We have presented a proof that greatly improves the 
convergence criterion for the Bremmer series of the 
Helmholtz equation in the case that 

1 »&(;) == (2k)-1 dk/d; = (2k2)-1 dk/dx 

and &(;) is sufficiently gentle. In principle the method 
of proof should be applicable to higher-order 
differential equations and similar convergence criteria 
should be obtained. 

It is important to determine if the first term for the 
reflected wave cp~l) is a good approximation to the 
exact solution. It is clear from our equations that if 
&(;) formally can be ordered in some small dimension­
less parameter, say E, then the Bremmer series is 
asymptotic in small E. Thus if the reflection is not 
exponentially small, we have CP2 = cP~l) + O( E3). In 
fact, the example of Sec. III demonstrated this 
relationship explicitly. However, if &m is sufficiently 
gentle and smooth, the reflection coefficient is indeed 
exponentially small. Then each term in the Bremmer 
expansion for cpz is exponentially small, and it is not 
clear if the first term dominates the remaining ones. 

It is interesting to observe that the higher-order 
WKB solution can be obtained from the Bremmer 
series. Each term of the Bremmer series in x space is 
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explicitly given by 

If &(~) « I and is arbitrarily gentle, these integrals 
are asymptotically evaluated by integrating by parts. 
Now the WKB expansion is an asymptotic power 
series in £ when the derivatives satisfy dr&/d~r __ £1'+1. 

Hence the nth-order WKB term is obtained by 
collecting the terms obtained by performing n partial 
integrations of the above integrals. Notice that all 
terms calculated in this way will be proportional to 
exp [i~(x)/2] and hence appear to be forward propa­
gating waves, even though 1>2' the backward propa­
gating wave, contributes to the result. An exponentially 
small term proportional to exp [-i~(x)/2] is obtained 
from 1>2 only if the integral is evaluated with greater 
precision. For large negative ~, where & ~ 0, the 
partial integration of 1>2 yields arbitrarily small terms, 
and only then does the exponentially small term 
dominate. 
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APPENDIX A. DERIVATION OF THE 
BREMMER SERIES 

stepwise approximation k*(x) 

k*(x) = k_, x S; 0, 

= ki' Xi-l < X S; Xi' (AI) 

= k+, x> b. 
For a "wave" propagating from left to right [i.e., a 
solution that looks locally like exp (ikx)], there is a 
reflection coefficient at the step at x = Xi: 

To = (ki - ki+1)/(ki + ki+1) (A2) 

and a transmission coefficient 

ti = 2ki/(ki + ki+l) = 1 + Ti . (A3) 

Similarly, for waves propagating from right to left we 
have T; and t; obtained by interchanging k i and k. + 1. 

Let 1>(a) = 1, so as to satisfy the boundary condition 
of unit amplitude in the incident wave at x < 0; then 
the pure transmitted (unreflected) wave is given by 

1>iOl = 1>la)eiklAa:tleikp1a:t2· .• eikj1a:-a:jl (A4) 

for Xi < X S; Xi+l. Also, for the first-order reflected 
wave, 

1>?I(X) = ! Ti1>~01(Xi)P2(Xi' x) (AS) 
i 

where the summation is carried out over Xi > x. The 
propagators PI and P2 are given by 

i 
P1(Xi , x) = II eikzAa:t!eikjla:-a:jl, (A6) 

!=i 
where Xi < Xj < X ~ x j+1' and 

i 
P2(Xi , x) = II e-ikzAa:t;e-ikj+1IIlJ,llJl, (A7) 

!=j 
where Xi-l < X ~ Xj < Xi and 

t; = (2ki+1)-1(ki + k H1). 

In general, 

1>i2nl(x) = ! r;1>~2n-1)(Xi)P1(Xi' x), (AS) 

where 

Q:il:s;z 

1>~2n+11(X) = ! ri1>i2nl(Xi)Plxi, x), 
x/'>::t 

r; = (ki+1 - ki)/(ki + ki+1). 

(A9) 

Now let p, the number of steps, become very large. 
In this limit k*(x) ->- k(x) and the sums go over into 
integrals, and in place of (A4) (k' == dk/dx) we get 

We begin with Eq. (1) and review a derivation of 
the Bremmer equation. 1 Suppose k(x) > kmm > 0 1>iOl(X) = 1>1(a) exp (ikAx>[l - k{~XJ 
for all x, and suppose 2k1 

k(x) = k_, X ~ 0, 

k(x) = k+, x> b, 

with 0 < b, where k_ and k+ are constant. For p, 
a positive integer, define ~x = (b - o)/p and Xj = 
a + j~x, 0 ~ j ~ p. Let ki == k(Xi)' and define the 

X eik2Aa:[ 1 - k~XJ ... 

= 1>1(a) exp [i! ki~X - ! k;~XJ 
2ki 

-+ 1>1(a)[k~~)r exp (iLa: k ax') (A4') 
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(the lowest-order WKB solution). Similarly, 4>~2'P+1)(X) = - f dx' k'~~') 4>i2'P)(x')P(x', x), 

4>~l)(x) = - f dx' ki~') P(x', x)4>iO)(x,), 

P(Xl' x2) = [k(Xl)]1 exp (-i f"'sk dX), 

(AS') = _ [k(x)r1 f dx' k~~:) 4>i2'P)(x') 

k(x2) )"'1 
(A6') x exp (iL"'k(Y) dY). (A9') 

4>i2'P)(x) = i"'dX' :~ P*(x', X)4>~2'J}-1)(X'), 

JOURNAL OF MATHEMATICAL PHYSICS 

If we formally sum these series, we get the Bremmer 
integral equations 

J.
'" k'(x) 

4>l(X) == 4>iO)(x) + a dx --u;- P*(x',x)4>z(x'), (AIO) 

4>2(X) = - dx' -- P(x', X)4>l(X'). (All) J,
b k'(x') 

'" 2k 
One can easily verify by substitution that the solution 
of (AW) and (All) satisfies (1). 
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1. INTRODUCTION 

SOLUTIONS to the monoenergetic neutron trans­
port equation for a critical bare slab reactor have 

been obtained independently by Mitsisl and Zelazny.2 
Both authors used the normal mode method of Case3 

to cast the solution for the neutron distribution 
function into the form of a singular eigenfunction 
expansion, and found a Fredholm integral equation 
for the continuum coefficient. The analysis of both 
authors was based on the assumption of isotropic 
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scattering in the laboratory system of coordinates 
and constant cross sections throughout the medium. 
The extension of Case's method to arbitrary ani­
sotropic scattering has been carried out by Mika.4 

In principle, any problem that can be solved 
subject to the assumption of isotropic scattering can 
also be solved using Mika's approach, which is to 
expand the scattering kernel in Legendre polynomials. 
Unfortunately, this technique loses most of its 
practical utility if more than the first few terms of the 
expansion are retained. This is due to two reasons: 
(1) certain identities which are very useful in simpli­
fying the final analytical results in the case of isotropic 
scattering no longer apply for anisotropic scattering; 

'J. R. Mika, Nucl. Sci. Eng. 11,415 (1961). 
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(the lowest-order WKB solution). Similarly, 4>~2'P+1)(X) = - f dx' k'~~') 4>i2'P)(x')P(x', x), 

4>~l)(x) = - f dx' ki~') P(x', x)4>iO)(x,), 

P(Xl' x2) = [k(Xl)]1 exp (-i f"'sk dX), 

(AS') = _ [k(x)r1 f dx' k~~:) 4>i2'P)(x') 

k(x2) )"'1 
(A6') x exp (iL"'k(Y) dY). (A9') 

4>i2'P)(x) = i"'dX' :~ P*(x', X)4>~2'J}-1)(X'), 

JOURNAL OF MATHEMATICAL PHYSICS 
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and (2) the roots (diffusion lengths) of a complicated 
transcendental expression must be found numerically 
in the case of anisotropic scattering. 

In this paper we develop a perturbation-theoretic 
method with which solutions to the neutron transport 
equation can be obtained for systems which display 
small departures from homogeneity and/or small 
amounts of anisotropic scattering. 

The plan of the succeeding sections is as follows. 
We begin by showing how the problems of anisotropic 
scattering and nonconstant cross sections can be 
formulated in such a way that perturbation theory is 
applicable. Perturbation theory is then applied to 
recast the problems into a form where the perturbation 
is introduced as inhomogeneous terms in an infinite 
set of transport equations. It is then shown that these 
equations may be solved by means of a generalized 
Green's function. The Green's function is derived in 
two ways: by eigenfunction expansion, and by con­
verting to singular integral equations. The two forms 
of the Green's function that result from these pro­
cedures are compared numerically. 

2. STATEMENT OF THE PROBLEM 

For an unrellected source-free slab the monoener­
getic steady-state transport equation has the form 

I' 01jJ(x, 1') + 1jJ(x,l') = C(X)f+l/Cl" -+ 1')1jJ(x, 1") dl". 
ax 2 -1 

(2.1) 
Here 1jJ is the neutron distribution function, I' the di­
rection cosine of the neutron velocity vector, x the 
optical distance from the center of the slab, c(x) the 
mean number of secondary neutrons emitted from a 
collision event, andf(u' -+ 1') is the scattering kernel. 
If the slab is taken to be of width 2b centered about 
the origin, the appropriate boundary conditions are 

1jJ(b,l') = 0, I' < 0, (2.2) 
and 

1jJ(X,I') = 1jJ( -x, -1'). (2.3) 

In the case in which the mean number of secondaries 
c(x) is not a constant, but the scattering is isotropic, 
it is easy to cast the problem into a form in which the 
inhomogeneity can be handled by perturbation 
theory. We write 

c(x) = C + Eg(X), (2.4) 

where c is a constant and E a small parameter. The 
transport equation takes the form 

I' 01jJ(x, 1') + 1jJ(X, 1') = ~ f+l1jJ(X, 1") du' 
ax 2 -1 

+ E g(X)f+l1jJ(X, 1") dl". (2.5) 
2 -1 

When the mean number of secondaries is constant, 
but the scattering is anisotropic, we can obtain a 
formulation suitable for the application of perturbation 
theory by assuming that we have a mixture of 
scatterers, some of which scatter isotropically and 
some of which scatter anisotropically. The transport 
equation becomes 

o1jJ(x,l') + ."IX ) = ~!BO + V~!f+l."IX ') d ' 
I':J '1'\ ,I' 2'" '1'\ ,I' I' 

uX "'t -1 

~ani80f+l + _8 _ 1(1" -+ 1')1jJ(X, 1") dl", (2.6) 
2~t -1 

where ~8' ~f' and ~t are the macroscopic scattering, 
fission, and total cross sections, respectively, and v 
is the mean number of neutrons released from a 
fission event. If we define 

c - (~i80 + ~ani8o + v~ )~ 
- 8 • II ..... t' 

_ ~ani801(~i80 + ~ani8o + v~ ) 
E- 8 I 8 8 I' 

FCI"; 1') = fCl" -+ 1') - 1, 

then Eq. (2.6) takes the form 

01jJ(x,l') + ( ) 
I' ax 1jJ x, I' 

(2.7) 

(2.8) 

(2.9) 

= £ f+l[1 + EFCI"; 1')]1jJ(X, 1") dl". (2.10) 
2 -1 

The parameter E lies in the range (0, 1) and is small 
when the fraction of secondary neutrons due to 
anisotropic scattering is small. It is therefore suitable 
as the basis of a perturbation expansion. 

Of course, both the inhomogeneous medium 
problem and the anisotropic scattering problem can 
be solved simultaneously; it is only necessary to 
use the same expansion parameter for each pertur­
bation. This is possible because the parameter E is 
arbitrary in the inhomogeneous medium case. 

3. APPLICATION OF THE PERTURBATION 
MEmOD 

Both Eqs. (2.5) and (2.10) may be reduced to a 
more tractable set of equations by making the 
substitutions 

00 

1jJ(x,l') = ! 1jJm(X,I')Em, (3.1) 
m=O 

00 

c = ! CjEI, (3.2) 
1=0 

and equating equal powers of E. It follows from the 
arbitrariness of E that the 1jJm must satisfy the same 
boundary conditions as 1jJ. When this procedure is 
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applied to Eq. (2.5) the result is 

Bo"Po(x, ft) = 0, 

Bo"Pm(x, ft) = Rm(x), 

(3.3) 

(3.4) 

where we have introduced the operator Bo defined such 
that 

Bo"P = ft - + "P - J tp{x, ft') dft' O"P C i+
1 

ax 2 -1 
(3.5) 

and 

i+1 

Rm(x) = tg(x) -1 "Pm-1(X, ft') dft' 

m-1 i+1 
+ t ~ Cm_1 -1 "PzCX, ft') dft'· (3.6) 

Similarly, when the procedure is applied to Eq. (2.10), 
we obtain Eq. (3.3) plus 

Bo"Pm(x, ft) = Qm(x, ft), (3.7) 
where 

m i+1 
Qm(x, ft) = t i~. Cl -1 "Pm-I(X, ft') dft' 

m-1 i+1 + t ~ C, -1 "Pm-H(X, ft')F(p" ft') dft'· (3.8) 

Both cases are seen to result in the same type of 
problem. Equation (3.3) is the unperturbed problem, 
solved by Mitsis and Zelazny. 

4. SOLUTIONS OF THE UNPERTURBED 
PROBLEM 

For easy reference, we present solutions to Eq. 
(3.3), subject to the boundary conditions, Eqs. (2.2) 
and (2.3), as found by Mitsis,5 with several minor 
extensions. To avoid confusion with the expansion 
coefficients in the perturbation series we denote the 
nth eigenfunction and eigenvalue of Eq. (3.3) as 
X,,(x, ft) and 2Yn (n = 0, 1, .. '). Thus 

OX,,(x, ft) ( ) 
BoX,,(x, ft) = ft ax + x" x, ft 

- y"i+1Xn(X,ft') dft' = O. (4.1) 
-1 

Mitsis was interested only in the everywhere­
positive solution Xo(x, ft) and the corresponding 
mean number of secondaries required for criticality, 
Yo (given the half-thickness b). However, all eigen­
functions obeying the symmetry condition, Eq. (2.3), 
were implicit in his results. 

In addition to the symmetric eigenfunctions, a 
denumerably infinite set of antisymmetric eigen­
functions exist which satisfy, instead of Eq. (2.3), the 

• G. J. Mitsis, Argonne National Laboratory Report No. ANL-
6787 (1963). 

condition 
"P(X, ft) = -"P( -x, -ft)· (4.2) 

Mitsis found these solutions also, in the context of the 
critical sphere problem, where they play the role of 
a "density transform." 

Using the notation of Case,s the elementary 
solutions of Eq. (4.1) are 

"P±(x, ft) = [y,,'IIo/('IIo =F ft)]e=!=z/yO, (4.3) 

"Py(x, ft) = {P[y,,'II/('II - ft)] + ).('II)~('II - ft)}e-z/V, 

(4.4) 

where the symbol P indicates that the principal value 
is to be taken upon integration, and ).('11) = PA('II), 
where 

A(z) = 1 - Y"z ft. f
+1 d 

-l(Z -ft) 
(4.5) 

The numbers ±'IIo are the (pure imaginary for 
2y" > 1) roots of the transcendental equation 
A(z) = O. In addition, the following notation is 
needed. 

X(z) = _1_ exp {~. f\n [A:(p,)] ~}, (4.6) 
1 - z 2m Jo A (p,) ft - z 

g(2y", ft) = I/A+(p,)A-(p,), (4.7) 

where the functions A ± (p,) are the boundary values of 
the function A(z) as z -- ftE( -1, + 1) from the upper 
and lower half-planes, respectively. 

The eigenfunctions X2" are given by 

X2..(X, ft) = a2,,[ "P+(x, ft) + "P_(x, ft)] 

+ f~lA2"('II)"PY(X' ft) d'll, (4.8) 

where a2" is an arbitrary constant and A2,,('II) is the 
solution to the following Fredholm equation. 

A2,,(p,)eb
/P. = -('II~ - ft~(l - 2Y2n)X( -ft)g(2Y2n, ft) 

x {a 2n ["P+( -b, ft)X('IIo) + "P-( -b, ft)X( -'1'0)] 

+ f1
y2n'llX( -'II)A2n('II)e-

b
/
Y 

d'll}. (4.9) 
Jo 'II + ft 

The constants Y2n must satisfy the awHliary condition 

a2neb/YOvo[X('IIo) - e-2b/YO X( -'110)] 

= f 'IIX( -v)A2..('II)e-b
/
Y d'll, (4.10) 

given the half-thickness b. 
The antisymmetric eigenfunctions X2n+1 are given by 

X2n+1(X, ft) = a2n+l["P+(X, ft) - "P-(x, ft)] 

+ f:1A2,,+b)"PY(X'f') dv, (4.11) 
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where a2n+1 is an arbitrary constant and A 2n+1(v) is 
the solution to the following Fredholm equation. 

A2n+I(p)eb/1l = -(v~ - p,~(1 - 2Y2n+l) 

X X( -P,)g(2Y2n+I' p,) 

X {a2n+1[tp+(-b,P,)X(Vo) - tp_(-b,p,)X(-vo)] 

_ (I Y2n+1VX( -V)A2n+l(v)e-0/v dV}. (4.12) 
Jo v+.u 

The constants Y2n+1 must satisfy the auxiliary condition 

a2n+leb/vovo[X(vo) + e-20
/ vo X( -'1'0)] 

= - fVX(-V)A2n+l(V)e-0/v dv, 

given the half-thickness b. 

5. SOLUTIONS TO THE PERTURBATION 
EQUATIONS: THE GENERALIZED 

GREEN'S FUNCTION 

The above reduction of both Eqs. (2.5) and (2.10) 
by the perturbation method led to a system of equations 
having the general form 

Botpo(x, p,) = 0, (5.1) 

Botpm(x, p,) = Sm(x, p,), m > O. (5.2) 

In both cases, Sm had the following two properties: 
(1) Sm is a functional containing tpm-I, tpm-2, ... ,11'0' 
but not 'I'm; and (2) Sm is a function of Cm, Cm- 1 , ••• , 

eo· Thus, ifwe solve for 11'0,11'1, ... ,tpm-l successively, 
then Sm will contain one degree of freedom: em. 

To derive an expression for em' we introduce the 
operator BJ, adjoint to Bo, and the function tpJ, 
adjoint to 11'0' satisfying 

Bt t _ Il otp1(x, p,) + 11l t(x Il.) 
011'0 - -r- ox TO, 1". 

- cof+! tpJ(x, p,') dp,' = O. (5.3) 
2 -I 

The function tp~ satisfies the adjoint boundary 
condition 

tp~(b, p,) = 0, p, > 0, 

and the symmetry condition 

(5.4) 

tp~(x, p,) = tpJ( -x, -p,). (5.5) 
As usual, 

(11'0, BJtpJ) = (tpJ, Botpo), (5.6) 

where we use the Dirac notation for the scalar 
product: 

f
+O f+1 

<I, g) = -0 dx -1 dp,(fg). (5.7) 

We are interested in the everywhere positive solutions 
to Eqs. (5.1) and (5.3); thus, 

tpo(x, p,) = xo(x, p,), -leo = Yo, (5.8) 

and, as is easily seen by comparing the equations 
and boundary conditions for 11'0 and tp~, 

tpJ(x, p,) = tpo(x, -p,) (5.9) 
and 

(5.10) 

We obtain a necessary condition for the solubility 
of Eq. (5.2) by noting that since (tpZ, Botpm) = 
(tpm' BZtp6) = 0, we have 

(tpJ, Sm) = O. (5.11) 

This expression fixes the constant Cm , and thus 
specifies Sm completely. With Sm known, we turn to 
the solution of Eq. (5.2) for tpm. The fact that this 
equation is inhomogeneous suggests the use of a 
Green's function. The Green's function in the 
ordinary sense does not exist for this problem, 
however, due to the existence of a nontrivial solution 
to the corresponding homogeneous equation. We 
therefore employ the notion of a generalized Green's 
function.6 

We define the generalized Green's function for our 
problem as the solution to the equation 

BJKt(x, p, I xo) = b(x - xo) - Po(x)Po(xo), (5.12) 

subject to the (adjoint) boundary conditions 

Kt( -b, p, I xo) = Kt(b, -p, I xo) = 0, p, < o. 
(5.13) 

We have defined 

Po(x) = L:1tpo(X, p,) dp" (5.14) 

and chosen the normalization of Po(x) such that 

f/~(X) dx = 1. (5.15) 

The definition of the generalized Green's function 
differs from that of the ordinary Green's function in 
the term Po(x)Po(xo). This term renders the right-hand 
side of Eq. (5.12) orthogonal to tpo(x, p,), which is 
required for precisely the same reason that Sm(x, p,) 
must be orthogonal to tpJ(x, p,). 

To show that Kt suffices to solve the perturbation 
equations, take the scalar product of Kt with Eq. 
(5.2), with the result 

Pm(x) = (Kt(x', p,' I x), Sm(x', p,'» 

+ (tpm(x', p,'), Po(x'»Po(x), (5.16) 

• R. Courant and D. Hilbert, Methods of Mathematical Physics 
(Interscience Publishers, Inc., New York, 1953), Vol. I, p. 356. 
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where 

(5.17) 

Equation (5.16) reflects the fact that "Pm (Pm) is 
arbitrary to within an additive multiple of "Po (Po)' 
Given the normalization of the solution to the 
unperturbed equation, "Po(x, f.L), and of the solution 
to the perturbed equation, "P(x, f.L), all the "Pm are 
specified uniquely. If, for example, we require that 

i+O 

-0 Po(x)p(x) dx = 1, (5.18) 

then it follows immediately from Eqs. (5.15) and 
(3.1) that 

("Pm, Po) = f~/m(X)Po(X) dx = 0, m > 0. (5.19) 

Since Kt is arbitrary to within an additive multiple 
of "P~ , we can demand that 

f/O(X)(Kt(X', f.L' I x), Sm(x', f.L'» dx = 0, (5.20) 

from which it follows that 

Pm(x) = (Kt(x', f.L' I x), Sm(x', f.L'». (5.21) 

Given Pm(x) , Eq. (5.2) becomes an ordinary differ­
ential equation in x for "Pm' The solution is 

"Pm(x, f.L) = ; f:b e(lI-''')tl'[~ Pm(Y) + Sm(Y, ft) ] dy, 

f.L ~ 0. (5.22) 

We have therefore shown that the generalized Green's 
function Kt, if it can be found, suffices to solve the 
perturbation equations, Eq. (5.2). 

In discussing the construction of the generalized 
Green's function in the sequel, we demand that the 
orthogonality condition ("Po, Kt) = 0 hold. Although 
this will not in general satisfy Eq. (5.20), we can, 
having calculated Pm(x) from Eq. (5.21), always add 
on that multiple of Po(x) which will satisfy Eq. (5.19). 
Also, from a practical point of view, we are generally 
more interested in the change of shape in the neutron 
density that will result from a given perturbation than 
in O( E) changes in normalization. 

6. CONSTRUCTION OF THE GENERALIZED 
GREEN'S FUNCTION: METHOD OF 

EIGENFUNCTION EXPANSIONS 

It is known that the functions X~(x, f.L) do not form 
a complete set in the variables x and f.L.7 We can, 

? B. Davison, Neutron Transport Theory (Oxford University Press, 
London, 1958), p. 436. 

nevertheless, express the generalized Green's function 
as an infinite sum of these functions by first converting 
the equation for Kt to a Fredholm integral equation, 
and then applying well known theorems. We define 

f+1 

~ix) = -1 xix, f.L) dft, (6.1) 

t J+l t ~n(x) = -1 Xn(X, f.L) dft = ~n(X)' (6.2) 

f+1 
at (x I Xo) = -1 Ktcx, ft I Xo) df.L. (6.3) 

Of course, ~o(x) = Po(x). Substituting from Eq. (6.3) 
into Eq. (5.12) and taking Gt as known, we obtain 
an ordinary differential equation in x, with the 
solution 

Kt (x, f.L I xo) = Co (±bexp (X - X') G\x' I xo) dx' 
2ft)'" ft 

± u(±xo 1= x) (X - xo) exp --
f.L f.L 
2 t 

- - Po(xo)"Po(X, f.L), f.L ~ 0, (6.4) 
Co 

where u(x) = 0, x < 0, and u(x) = 1, x > 0. Now 
integrating over ft, we obtain the desired Fredholm 
equation 

d(x I xo) = ~ (0 E1(1x - yl)d(y I xo) dy 
2)-0 

2 + E1(1xO - xl) - - Po(xo)Po(x), (6.5) 
Co 

where E1 is the first exponential integral, 

En(z) = ff.Ln-2e-ztl' df.L. (6.6) 

In the same way, the Boltzmann equation for X! may 
be reduced to the following (well known) Fredholm 
equation for CPn: 

~nCx) = YnfoE1('X - yI)CPn(Y) dy. (6.7) 

Noting that E1(1x - yl) is a symmetric, nondegen­
erate, quadratically integrable kernel; it follows 
immediately8 that the Y n form a denumerably infinite 
set of real eigenvalues, with a corresponding set of 
eigenfunctions ~n' 

It is 110t known that the CPn form a complete set on 
the interval (-b, +b). However, by virtue of the 
properties listed above, the Hilbert-Schmidt theorem 
applies [Ref. 8, p. 110] and the resolvent kernel may 

8 F. G. Tricomi, Integral Equations (Interscience Publishers, Inc., 
New York, 1957), p. lOS. 
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be written [Ref. 8, p. 115] 

) 
~ Cp".{x)Cp..(xo) 

H(x, y; Yo) = -El(lX - yj + yo~ ( )' 
,,_1 y" Yo - Y .. 

(6.8) 
The solution for Gt is 

t I 2 G (x xo) = Eilx - xol) - - Po(x)Po{xo) 
Co 

+ ~ CP..(x)cp,,(xo) 
YOk ' 

"-IY"<y,, - Yo) 
(6.9) 

where we have made use of the equality 

J:bE1(lXO - yl)&{lx - yl) dy = ~o CP"(X~,,(xo) . 
(6.10) 

If we assume the validity of the bilinear formula 
(which holds if the cP" form a complete set) 

E
1
{1x - xol) = I cp,,(x)CP .. (Xo) , 

".,,0 y" 

then Eq. (6.9) takes the elegant form 

d(x I xo) = I cp,,(x)cp,,(Xo) , 
,,=1 71" - Yo 

(6.11) 

(6.12) 

The numerical results presented below indicate that 
this is in fact a valid representation. 

Finally, we may substitute from Eqs. (6.9) and 
(6.12) into Eq. (6.4) to obtain 

K\x,p I xo) = p-l[U{p)U{xo - x) - u{ -ft)u(x - xo)J 

(6.13) 

and 

(6.14) 

Equations (6.12) and (6.14) are the simplest forms 
for numerical computation, but Eqs. (6.9) and (6.13) 
would be expected to converge more rapidly, due to 
the explicit representation of the singularity of Kt 
and because y" increases with n. 

The idea of solving perturbation equations by 
eigenfunction expansions is, of course, well known. 
The advantage of the generalized Green's function 
formulation is that it allows one to do the analysis 
once and for aU, and obtain results by means of the 
simple formula, Eq. (5.21). The objection to this 
analysis is that now, in addition to truncating the 
perturbation expansion in E', we must also truncate 

the eigenfunction expansion for the generalized 
Green's function. It is desirable to have a closed form 
expression for Kt, even if it is too complex to be 
used easily in applications, in order to determine how 
much error is introduced in the truncation of the 
eigenfunction expansion in selected cases, and to 
estimate the number of terms of Eqs. (6.13) or (6.14) 
that should be retained. This expression is derived in 
the next section. 

7. THE METHOD OF SINGULAR INTEGRAL 
EQUATIONS 

In this section we obtain an expression for the 
generalized Green's function by solving two coupled 
singular integral equations. Briefly. the method used 
is to convert the integro-differential equation into the 
coupled singular integral equations, and then convert 
these into a pair of coupled Fredholm equations. 
The latter may be solved by iteration. The generalized 
Green's function is given by a closed form expression 
involving two functions related to its boundary values. 
The solution to the Fredholm equations yields these 
functions. The general methods used here were 
developed by Leonard and Mullikin\) and by Mitsis,li 
whose work related to the unperturbed critical 
problem. 

Instead of solving Eq. (5.12), we solve for the 
function K satisfying the equation 

BoK{x, P I xo) = t5(x - xo) - Po(xo)Po(x), (7.1) 

subject to 

K( -b, p I xu) = K(b, -p I xu) = 0, ft> O. (7.2) 

We can always recover Kt by using the relation 
Kt(x, ft I xu) = K(x, -ft I xo). Defining 

i
+1 

G(x ! xo) = -1 K(x, P I xu) dft, (7.3) 

we see that G(x I xu) = Gt(x I xo)· 
We obtain dual singular integral equations from 

which the function K can be determined by starting 
from a pair of equations similar to the pair, Eq. (6.4). 
Using Eq. (7.3) in Eq. (7.1), we obtain 

K(x, ft I xo) = Co flll G(y I xo) exp (Y - X) dy 
2p JFb ft 

± exp -- - - Po{xo)V'o(x, p), u(=Fxo ± x) (xo - X) 2 
p ft Co 

p ~ O. (7.4) 

Consider the analytic continuation of Eq. (7.4) onto 

• A. Leonard and T. W. Mullikin, Rand Corporation Report 
No. RM-32S6-PR (1962). 
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the complex p. plane. Since the integrand in the 
integral term of Eq. (7.4) is an analytic function of p 
in every closed contour not enclosing the origin, and 
is a continuous function of the integration variable y, 
it follows that the integral itself is an analytic 
function of p within every closed contour not en­
closing the origin. lO Referring to Eq. (5.22) (putting 
m = 0), we see that 1J'0 is an analytic function of 
p ¢ 0 for the same reason. The second term on the 
right-hand side of Eq. (7.4) is also an analytic function 
of p. ~ O. It follows that Eq. (7.4) with P > 0 
generates a function K1(x, z I xo) analytic for all 
z ¢ 0, and withp. < o generates a function K2(x, z I xo) 
also analytic for z ~ O. In no case shall we evaluate 
Kl on the negative real axis of the z plane or K2 on the 
positive real axis. So expressions involving integrals 
of K over the range pE( -1, + 1) are unambiguous, 
and we need not append subscripts for real values of 
z. With these conventions, we write 

K/c(x, z I xo) = Co ('" G(y I xo) exp (Y - X) dy 
2z J'Fb Z 

± exp -- - - Po(xo)1J'o(x, z), u(±x =fxo) (xo - X) 2 
z z Co 

k = {~. (7.5) 

Equation (7.5) can be converted into two singular 
integral equations by the following procedure. 
Substitute for G on the right-hand side from the 
expression 

G(x I xo) = f [K(x, 'III xo) + K(x, -'II I xo)] dv, (7.6) 

and invert the y and'll integrations. The y integration 
may be performed explicitly by substituting for K 
from Eq. (7.4). After the y integration has been 
performed, it is possible to identify certain groupings 
of terms in such a way that G is again eliminated in 
favor of K. The details are omitted here since the 
analysis is very similar to that performed by Mitsis5 

in finding a singular integral equation satisfied by 1J'0. 
The result of the above manipulations is the equation 

A(z)K/c(x, z I xo) - L:1 (!co)v~~': I xo) dv 

= -exp (=f b ± X) (1 (!co)vK(=fb, =flv xo) dv 
z Jo 'II ± z 

± exp -- - - Po(xo)"Po(x, z), u(±x =f xo) (xo - X) 2 
z z Co 

k = g. (7.7) 

10 E. T. Copson, Theory of Functions of a Complex Variable 
(Oxford University Press, London, 1935), p. 108. 

In the above we have made use of (the analytic 
continuation of) an equation for 1J'0 found by Mitsis: 

A(p.)1J'o(X, p) - pf+l (!co)V1J'o(x, 'II) dv 
-0 'II - P 

_ (:r b ± X) 11 (!co)'JI1jJ(b, 'II) d - -exp ,-- 'II, 
P 0 v±p 

(7.8) 

Using the Plemelj formulas ,11 we obtain the equation 
corresponding to Eq. (7.7) for z = p in the real 
interval (-1, + 1). The result is 

A(p)K(x, P I xo) - pf+l (ico)vK(x, 'III xo) dv 
-1 'II - P 

= f(x, p I xo), (7.9) 
where 

f(x, p I xo) = -exp (=f b ~ X) 

X (1 (tco)vK(1=b, 1='111 xo) dv ± u(±x 1= xo) 
Jo 'II ± p p 

X exp (XO - X) - ~ Po(xo)1J'o(x, p), 
p Co 

p ~ O. (7.10) 

Equation (7.9) amounts to dual singular integral 
equations on the partial ranges (-1,0), (0, 1). We 
may, however, obtain an explicit representation of 
K in terms of its boundary values by treating Eq. (7.9) 
as a single equation. 

To solve Eq. (7.9) we introduce the complex 
transformation 

N(x, z) = ~ f+l (!co)vK(x, 'III xo) dv. (7.11) 
2m -1 'II - Z 

Since K(x, z I xo) is analytic for z ~ 0 and continuous 
at z = 0, it follows that we may proceed in the usual 
fashion to conclude that 

(a) N(x, z) is an analytic function of z in the plane 
cut from -1 to +1, 

(b) N(x, z),....., liz as z -- 00, 

(c) N < const/lz =f W, y < 1, as z-- =flo 
Using the Plemelj formulas, for p E (-1, + 1), 

N+(x, p) + N-(x, p) = ~ pf+l (ico)vK(x, 'II I xo) dv, 
m -1 'II - P 

(7.12) 

N+(x, p) - N-(x, p) = tcopK(x, pi xo). (7.13) 

Substituting the above into Eq. (7.9), we obtain the 

11 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, 
Ltd., Groningen, The Netherlands, 1953), p. 27. 
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following Hilbert boundary value problem 

N+(x ) _ A+(P) N-(x ) = coft!(x, ft/ xo) (7.14) 
,ft A-(ft) ,ft 2 A-(P) , 

where we have used the identity 

A±(,,) = ).(,,) ± (!i1T)C", (7.15) 

which follows from an application of the Plemelj 
formulas to Eq. (4.5). Equation (7.14) has been 
solved by Mitsis5 with a different inhomogeneous 
term. The result is 

N(x, z) = XI(~) [ao(x) + a1(x)z 
2m 

+ (+1 (!co)"!(x,,, / xo) d,,], (7.16) 
J-1 Xt(")A-(,,)(,, - z) 

where 
X1(z) = A(z)/[(,,~ - z2)(1 - co)]; (7.17) 

ao(x) and alex) are at this point arbitrary. 
To evaluate the functions ao(x) and a1(x) we take 

advantage of the analytic properties of K in the 
complex ft plane. Note that 

N(x, ±'I'o) = ~. f+1 (lco)"K(x, " 1 xo) d". (7.18) 
2m -1 " =F "0 

Using the analyticity of K and the definition of "0' 
we have from Eq. (7.9) that 

f+l (!co)"K(x, 'I' 1 xo) d - f( ± 1 ) 
" - - x, "0 Xo, 

-1 " =F "0 
(7.19) 

so 
N(x, ±"o) = - (1/21Ti)/(x, ±"o I xo). (7.20) 

Since there are two forms of /, one for ft > 0 and one 
for ft < 0, a question arises as to which is the 
appropriate form to use for ft = "0 or ft = -"0' The 
answer is that it makes no difference: both forms are 
equal to the left-hand side of Eq. (7.19) and hence to 
each other. In what follows we consistently use the 
expression valid for ft ~ 0 when substituting ±"o. 
Of course, the above consideration implies a con­
straint on the allowed form of /' which in turn must 
relate to the necessity of the inhomogeneous term 
ofEq. (7.1) being orthogonal to "P~. This statement has 
not been proven, however. 

Combining Eqs. (7.20) and (7.16), we obtain the 
result 

lex, ±"o 1 xo) = - XI(±'I'o>[ ao(x) ± al(x)"O 

+f+1 (!co),,!(x, " I Xo) d,,]. (7.21) 
-1 Xt(")A-(,,)(,, =f "0) 

This provides us with two equations for the two 
unknowns ao and a1 • We may find K by use of Eqs. 

(7.13) and (7.16). The result is 

K( I) - ao(x) + a1(x)ft 
x, ft Xo - 2 2 

("0 - ft )(1 - co) 
1 

+ )'(ft)g(co, ft)!(x, ftl xo) + ( 2 2\(1 ) 
"0 - ft) - Co 

X pf+1 (!co)'I'!(x,,, 1 xo) d". (7.21') 
-1 xt<,,)A -(")(11 - ft) 

This result expresses K in terms of its boundary values 
through f It remains to find f 

We now derive a pair of coupled Fredholm 
equations, the solutions of whiCh will yield the 
function/(x, ftl xo). Putting x = ±b in Eq. (7.9) we 
have 

).(p)K(±b, ±ft/ xo) _ P (1 (!co)lIK(±b, ±1I 1 xu) dll 
Jo 11 - ft 

= !(±b, ±ftl xo), ft ~ O. (7.22) 
Introducing the transforms 

Nib, z) = ~ (1 (lco)"K(±b, ±" 1 xo) d", k = {I, 
2m Jo " - z 2 

(7.23) 
we proceed as before: Equation (7.22) is reduced to a 
Hilbert problem which has been solved by Mitsis 
with a different inhomogeneous term. The result is 

Nk(b, z) = X(z) [OCib) + (1 (!co)lI!(±b, ±'I'lxo) dll], 
21Ti Jo X+(lI)A-(")(lI - z) 

k = {~. (7.24) 

The numbers ocl(b) and oc2(b) are at this point arbi­
trary. Now put 

I" (b 1 ) -_ -blZi1 (!co)lIK(±b, ±1I1 xo) d 
Jk ,z Xo e . ", 

o 11 + z 

k = {~. (7.25) 

Then from Eq. (7.10) 

!(x, ft/ xo) = -exp ( - ;)!2(b, ftl xo) 

+ _u(,,-x_-_x=o) (xo - X) exp -- , 
ft ft 

2 
- - Po(xo)"Po(x, ft), ft > 0, (7.26) 

Co 

!(x, ft/ xo) = -exp ( - ;) !l(b, -ft/ xo) 

u(xo - x) (xo - X) - exp --
ft ft 

2 
- - Po(xo)"Po(x, ft), ft < O. (7.27) 

Co 

Thus, given/J.(b, ftl xo) and/2(b, ftl xo), the function 
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lex, p, I xo) is determined. These functions are the 
solutions to the Fredholm equations which are 
obtained by noting that 

fk(b, z I xo) = 21Tie-b,zNib, -z), k = 1,2, (7.28) 

and substituting into Eq. (7.24). The result is the 
following pair of coupled Fredholm equations: 

fI(b, p, I xo) = e-b/"X( -p,>[ IXI(b) + FI(b, p,) 

_ (1 (tco)ve-
b
/
v
f2(b, v I xo) dV], (7.29) 

Jo X+(v)A-(v)(v + p,) 

flb,p,1 xo) = e-b/"X(-P,)[1X2(b) + F2(b,p,) 

_ (1 (tco)ve-b/"fI(b, v I xo) dv], (7.30) 
Jo X+(v)A-(v)(v + p,) 

where p, > O. The functions FI and F2 are defined by 
the equation 

Fib,p,) =f{e±("'OH)/V - ~ Po(xo)v"Po(b, V)} 

X (tco) dv ,k = 1,2. (7.31) 
X+(v)A-(v)(v + p,) 

The constant IXI(b) may be determined by substituting 
p, = Vo in Eq. (7.22) to obtain 

(1 (tco)vK(b, V I Xo) dv = -feb, Vo I xo). (7.32) 
Jo V - Vo 

Using Eq. (7.26) to evaluate the right-hand side of 
this expression and Eq. (7.24) for the left-hand side, 
we obtain an equation expressing IXI(b) in terms of 
the constant /2(b, Vo I xo) and an integral of the 
function/2(b, v I xo)· Similarly, we may put p, = -vo 
in Eq. (7.22) and derive an expression for IXI(b) in 
terms of/I(b, Vo I xo) and an integral of/I(b, v I xo)· 

We now examine the Fredholm equations, Eqs. 
(7.29) and (7.30). We introduce the function fP, 

fP(p,) = iI(b, p, I xo)e-b/", (7.33) 

and the integral operator J defined such that 

J = e-2b/"X( _p,) (1 (tco)VfP(v) dv (7.34) 
fP Jo X+(v)A-(v)(v + p,) 

Then the result of substituting for /2 into Eq. (7.29) 
from Eq. (7.30) is, formally, 

fP = G + J2 fP , (7.35) 

with an obvious definition of G. The Neumann series 
solution to Eq. (7.35) is 

fP = G + J2G + J'G + . . . . (7.36) 

To examine the convergence of this expansion we 

obtain a bound on the right-hand side: 

IfPl = IG +J2G +J'G +···1 
~ IGI + IJ2GI + IJ'GI + ... 
~ max IGI [1 + IJ211 + IJ'11 + ... J 
~ max IGI [I + (maxJl)2 + (maxJI)' + ... J. 

The Neumann series for fP (hence /1) converges if 
max Jl < 1. Leonard and MullikinI2 have shown 
that the required inequality 

£9 max [XC _p,)e-2b/" (1 v dv ] < 1 
20::;,,::;1 Jo X+(v)A-(v)(v + p,) 

(7.37) 

holds whenever 1 < 2be, i.e., 2b > 0.368. This 
corresponds to a Co in excess of 2.6, and therefore 
includes all cases of practical interest. Obviously, 
the same procedure could be followed to show that 
/2 may also be expressed in a convergent Neumann 
series. 

It is apparent that the foregoing results are rather 
highly implicit, necessitating an iterative procedure 
in addition to that required to solve the dual Fredholm 
equations. This does, of course, place a limitation on 
their practical usefulness. It should be noted that 
a similar situation exists for the "solution" to the 
unperturbed problem. The auxiliary .condition in the 
latter case depends upon the continuum coefficient 
Ao(v), which is the solution to a Fredholm equation 
itself depending upon the eigenvalue yo, but the 
eigenvalue is determined from the auxiliary condition 
(given b). Thus an "outer iteration" is also required 
in this case. 

The reason that only a single Fredholm equation 
needs to be solved in the case of the unperturbed 
problem is that the duality which is introduced as a 
result of having a separate relation between "Po and 
Po [see Eq. (5.22)J for the two partial ranges of p, can 
be removed by a consideration of the symmetry of "Po • 
It is shown below that it is possible to define a sym­
metric generalized Green's function which has the 
same property of depending on only a single Fredholm 
equation. 

8. THE SYMMETRIC PART OF THE 
GENERALIZED GREEN'S FUNCTION 

In the interest of both simplicity and clarity the 
numerical results in the next section relate to the 
asymptotic part (as b -- (0) of the function 

f
+1 t . 

G+(x I xo) = -1 K+(x, P, I xo) dp" (8.1) 

where KJ is the symmetric part of Kt. 

11 Ref. 9, p. 17. 
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The symmetric part of Kt is given by 

K:(x, I-' I xo) = UKt(x, 1-' I xo) + Kt( -x, -I-' I xo)]· 
(8.2) 

An equation for K! may be derived by writing Eq. 
(5.12) once for x and 1-', once for -x and -I-', and 
adding the results, making use of Eq. (8.2). The 
result is 

BoK:Cx, 1-' I xo) = 1<5{x - xo) 

+ 1<5{x + xo) - Po{x)Po{xo). (8.3) 

It is easy to see that if "Pm is symmetric, Eq. (5.16) 
still holds. "Pm will be symmetric if the term Sm in 
Eq. (5.2) is symmetric. This is always true for the case 
in which the perturbation is due to anisotropic 
scattering. It will also be true in the case of non­
constant cross sections, if the perturbation is distrib­
uted symmetrically. It is also true that if Sm is 
antisymmetric, then the antisymmetric part of Kt 
suffices to determine the (antisymmetric) "Pm' This 
fact is of little practical value, however, since an 
antisymmetric perturbation of the cross section does 
not imply an antisymmetric Sm. 

If it is only G+ that is desired, it is convenient to 
separate the function KJ out at the level of singular 
integral equations. Thus, if we write Eq. (7.9) twice, 
once for x and I-' and once for -x and -I-', and add 
the results, we obtain 

)"{f-t)K+{x, I-' I xo) - pf+1 (lco)"K+{x, " I xo) d" 
-1 " - I-' 

= -e-OJ/P!+{b, ±I-' I xo) + H{±x, ±I-' I xo), 

I-' ~ O. (8.4) 

We have introduced the definitions 

(8.5) 

This equation may be treated in precisely the same 
way as Eq. (7.9). We introduce the complex trans­
formation 

N+{x, z) = ~ f+1 (lco)"K+{x, " I xo) d", (8.7) 
2m -1 " - Z 

and obtain 

N+{x, z) = Xl(~) [(3o{X) + {31(X)Z 
2m 

fo (lco),,!+{b, -" I xo)e-OJ/Y 

- d" 
-1 Xi{")A-{,,){,, - z) 

l 1 (lco),,!+{b, " I xo)e-OJ/v 

- d" 
o Xi{")A-(,,){,, - z) 

+fo (lco)"H( -x, -" I xo) d" 
-1 Xi{")A-{,,){,, - z) 

+ r1 
(lco)"H{x," I xo) d"J. (8.8) 

Jo Xt{")A-{,,){,, - z) 
To find {30 and (31 we again put I-' = ±"o in Eq. (8.4) 
and obtain 

21TiN+{x, ±"o) = e'f'OJ/vO!+{b, "0 I xo), - H{±x, "0 I xo), 

(8.9) 
We have used the same convention in making this 
substitution as before [see discussion following 
Eq. (7.20)]. Equation (8.9) may be substituted into 
Eq. (8.8) to obtain two equations in the two unknowns 
{30 and {31' The solution for {30 is 

(3o{x) = !+(b, "0 I xo) cosh (~) 
X 1{"0) "0 

1 
- -- [H{x, "0 I xo) + H( -x, "0 I xo)] 

2Xbo) 

+ coCco - 1) f,,2g(CO' ,,) cosh (~) !+(b, " I xo) d" 

coCco - 1)l1 2 ( ) - "gco,1-' 
2 0 

x [H{x,,, I xo) + H{ -x, " I xo)] d". (8.10) 

We do not write down the corresponding expression 
for (31 (x), since it is not needed in the derivation of G+ . 

From the definition of G+, it is clear that 

G+{x I xo) = 21Ti(2Jco)N{x, 0). (8.11) 

Putting z = 0 in Eq. (8.8) and using Eq. (8.1O), we 
obtain, after some simplification, 
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This is an exact expression for G+ in terms of the yet 
to be determined function I+(b, 111 xo). Comparison 
of the definitions of 1+,/1' and 12' Eqs. (8.5) and 
(8.25), and use of Eq. (8.2) leads to the result 

I+(b, 111 xo) = H/l(b, 111 xo) + 12(b, 111 xo»)· (8.13) 

We can therefore obtain a single Fredholm equation 
for 1+ by adding Eqs. (7.29) and (7.30). Putting 

oc+(b) = Hoc1(b) + oc2(b»), (8.14) 

F+(b, f-L) = HF1(b, f-L) + F2(b, f-L)], (S.15) 

we have 

f+(b'f-L 1 xo) = e-b/JlX(-f-L{oc+(b) + F+(b,f-L) 

_ (1 (!co)lIe-
b
/

V

f+(b, 111 xo) dll]. (8.16) 
Jo X+(lI)A-(lI)(lI + f-L) 

This determines G+ completely. From Eq. (8.16) 1+ 
is O(e-b/Jl) as b - 00. It follows that the first integral 
on the right-hand side of Eq. (8.12) can be neglected 
far from boundaries, since the integrand is O(e-(b-.J)fJl). 
It is in this sense that we compute the "asymptotic" 
part of G+. Note that our results will be asymptotically 
exact no matter how small the quantity Ix - xol > 0, 
so long as Ix - bl is sufficiently large. Thus our results 
are not comparable with diffusion theory without 
further simplification, and may be expected to be very 
good for thick enough slabs. . 

The simplification of Eq. (8.12) for the asymptotIc 
part of G+ (f+ = 0) is straightforward with the 
following exception: it is necessary to evaluate the 
asymptotic part of 1/lo(x, f-L) at f-L = ± 110. Examination 
of Eqs. (4.8) and (4.3) (n = 0) shows that if we con­
sider the asymptotic part of 1/l0 to be given by the 
right-hand side of Eq. (4.8) exclusive of the integral 
term, then it has simple poles at ±1I0 • This difficulty 
can be circumvented by considering the asymptotic 
part of 1/l0 to be given by Eq. (5.~2) (m = 0, So ~ 0) 
with Po replaced by the asymptotIc part of Po. Smce 
the latter function is continuous, the right-hand side 
of Eq. (5.22) is analytic for all f-L :;06 o. Subject to this 
convention, Eq. (S.12) becomes 

G+(x I xo) ~ A cos (...£) _ X1(0) 
11101 211101 COX 1(1I0) 

X {Sin (IX + xol) + sin (IX - xol) 
11101 IVol 

_ Sa! cos (~)x sin (~)} + -2
1 (1 g(co, v) 

IVol IVol Jo v 

X {exp ( _ Ix ~ xol) + exp ( _ Ix ~ xol)} dv. 

(S.17) 

The notation ~ means asymptotically exact as b - 00. 

Since the asymptotic part of Po is proportional to 
cos (x/I vol), the constant A is arbitrary. 

9. NUMERICAL COMPARISON OF THE THREE 
FORMS OF THE GREEN'S FUNCTION 

The even part of Eq. (6.9) is 

G+(x 1 xo) = !E1(1x - xol) + !E1(1x + xol) 

~ () ( ) + ~ CP2n(X)CP2n(Xo) 
- Po x Po Xo Yo "'" . 

Co n=1 Y2n(Y2n - Yo) 
(9.1) 

The even part of Eq. (6.12) is 

G ( 1 ) 
- ~ CP2n(X)CP2n(Xo) 

+xxo -"'" . 
n=1 Y2n - Yo 

(9.2) 

In the following the above expressions for Gt are 
referred to as A and B, respectively. Equation (8.17) 
is referred to as C. In calculating with forms A and B, 
we use the asymptotic parts of the CP2n (putting the 
integral terms equal to zero). The following calcu­
lations were done for a slab of half-thickness 
b = 4.196. The corresponding Co is 1.034. We choose 
Xo = 2.0. 

Figure 1 shows a comparison of forms Band C. 
Shown are one-, two-, and four-term expansions 
(the three-term expansion differed very little from the 
two-term). The agreement between the two forms is 
seen to be rather good for the four-term expansion 
(we are trying to represent a logarithmic singularity 
with continuous functions). It should be remarked 
that the curves resulting from the eigenfunction 

. .. .. 

2.0 

1.5 

1.0 

J 0.5 

O~--~~~----~~~, -X­
I (MEAN 

I ~:~~S) 

-1.5 

FIG. 1. Comparison of the closed form (expression C) with. an 
eigenfunction expanded form (expression B) of the generalIzed 
Green's function. 
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expansion are not orthogonal to Po{x) because only 
the asymptotic parts were taken, and the correct 
extrapolation distances used. Since we are free to add 
an arbitrary multiple of Po{x) to form B, it is clear 
that we could shift the curves upward to agree better 
with form C. In Fig. 2 we compare forms A and C. 
The general agreement between the four-term expan­
sion and form C is seen to be excellent. As mentioned 
above, we can improve the agreement by adding on 
a multiple of Po{x) to form A. This is shown in Fig. 3. 
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FIG. 2. Comparison of the closed form (expression C) with an 
eigenfunction expanded form (expression A) of the generalized 
Green's function. 
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FIG. 3. Comparison of the closed form (expression C) with a 
renormalized four-term eigenfunction expansion (expression A) of 
the generalized Green's function. 
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Drukarev has transformed the Fredholm equation that is the Green's function formulation of the 
solution of the Schrodinger equation into a Volterra equation. The present paper exhibits the corre­
sponding result for the Dirac equation. The advantages of this technique in the numerical evaluation 
of phase shifts (and wavefunctions) are discussed. 

1. GREEN'S FUNCTION 

THE Green's function. formulation of the Dirac 
equation for a central potential was given by Rose. l 

Denoting as usual by Fir and Glr the radial functions, 
by Fo/r and Go/r the free-space functions (regular solu­
tion), and by Fo/r and Go/r the corresponding irregular 
solution, 

F = F{1 + f~(FFo + GGo)Vdr'] 

+ FoSor(FFo + GGo)Vdr', (1a) 

G = F{1 + L~(FFo + GGo)Vdr'] 

+ GoI(FFo + GGo) V dr', (1b) 

where explicitly, 

Fo = S(IC)[(E - l)/k]!krjzc_K)(kr), (2a) 

Go = [(E + l)/k)!krjz(K)(kr), (2b) 

and the irregular solutions are obtained by replacing 
the Bessel functions by Neumann functions (i.e., 
jz ~ yz)· More generally (as Rose points out), Fo 
and Go could be wavefunctions of a potential Vo 
(typically, a Coulomb potential), in which case V in 
Eqs. (1) would be replaced by V - Vo. 

2. DRUKAREV TRANSFORMATION 

Following Drukarev's approach,s Eqs. (1) are 
rewritten as 

F = F{1 + So"'(FFo + GGo)Vdr'] 

- FoI(FFo + GGo)Vdr' 

+ FoI(FFo + GGo)V dr', (3a) 

• Work supported by the National Aeronautics and Space 
Administration under Contract No. NASw-1235. 

1 M. E. Rose, Phys. Rev. 82, 389 (1951). 
2 G. F. Drukarev, Zh. Eksperim. i Teor. Fiz. 25, 139 (1953). 

G = F{1 + So"'(FFo + GGo)Vdr'] 

- GoI(FFo + GGo)Vdr' 

+ GoI(FFo + GGo)V dr'. (3b) 

The change of variable 

cp = CF, r = CG 

is then introduced, where 

(4) 

C = [1 + So'" (FFo + GGo)V dr'T1 

= [1 + C"lloo(CPFo + rGo)Vdr'T: (5) 

or, on inverting, 

C = 1 - Sooo(cpFo + rGo)V dr'. (6) 

Equations (3) then reduce to a coupled pair of 
Volterra equations. With the convenient notation 

C(r) = 1 - I( cpFo + rGo)V dr', (7a) 

S(r) = - I(CPFo + rGo)Vdr', (7b) 

the. Volterra equations are 

cp(r) = C(r)Fo(r) - S(r)Fo(r), (8a) 

r(r) = C(r)Go(r) - S(r) Go(r). (8b) 

Asymptotically, 

r f'J [(E + l)/k)![C sin (kr - /(IC)7T/2) , 

- S cos (kr - /(IC)7T/2»), (9) 

G = c-1r", [(E + l)/k)![sin (kr - /(IC)7T/2) 

- (SIC) cos (kr - /(IC)7T/2»), (10) 

leading to the identification 

S(oo) i"'(CPFo + rGo)V dr' 
tan ~ = -- = - (11) 

K C(oo) 1-So"'(cpFo+rGo)Vdr' 

1631 
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For the alternative normalization convention 

G""' [(E + l)/k]t sin [kr - 1(1C)(1I-/2) + ~.J 
= [(E + l)/k]l[cos ~/C sin (kr - 1(IC}rr/2) 

+ sin ~/C cos (kr - I(K)rr/2)], 
there results 

cos ~/C = C(OO)/[C2(OO) + S2(OO)]t, 

sin ~/C = S(OO)/[C2(OO) + S2(OO)]t. 

(12) 

(13) 

3. COMPUTATIONAL CONSIDERATIONS 

The formal properties of this approach have been 
fully discussed previously for the Schrodinger 
equation,3 and the arguments carryover. Some 
remarks pertinent to numerical solution are presented 
here. 

(I) There is no normalization problem, as the 
solutions start out with the free-space functions. 

(2) The direct numerical solution of the radial equa­
tions requires numerical integration for the wavefunc­
tions which (away from the origin) are oscillatory-a 
delicate procedure. Here, the numerical integration 
is for the slowly varying functions qr) and S(r) , 
the oscillatory behavior appearing in terms of 
analytic functions (the spherical Bessel and Neumann 
functions, expressible as sines and cosines times 
polynomials in l/r). 

(3) The integration procedure directly yields S(r) 
and C(r), integrals whose limits are sin <5 and cos <5. 
This integral representation of the phase shift con­
verges faster and more dependably than does the 
determination of the phase shift by matching the wave 
to its asymptotic form. 

(4) If the potential cuts off at r = a, then for r > a 
Eqs. (8) become 

per) = C(a)Fo(r) - S(a)Fo(r), 

r(r) = C(a)Go(r) - S(a)Go(r), 

(l4a) 

(14b) 

yielding directly the appropriate analytical form for 
the wavefunctions, not only their numerical value at 
the cutoff. 

(5) The last observation leads into a simple iterative 
device for improving on a foreshortened solution. 

a H. Brysk. Phys. Rev. 133, B1625 (1964). The reader is referred 
to this article for extensive references. 

From Eqs. (7), 

C(oo) = C(a) - Loo(pFo + rOo)Vdr', (ISa) 

S(oo) = Sea) - L<X>(pFo + rGo)Vdr'. (ISb) 

Suppose now that the numerical integration has been 
stopped at r = a, but the potential extends beyond. 
The contribution from the tail to the phase shift can 
be evaluated approximately by carrying out the 
integral in Eq. (15) with p and r represented by 
Eqs. (14). If the potential is given analytically (or is 
fitted to an analytic expression for r > a), the integral 
may be carried out analytically. If the error in the 
phase shift upon truncation at r = a is of order E, 

after this approximate evaluation of the tail contri­
bution there will be an error of order fi2 only. 

(6) Suppose the Dirac equation has been solved by 
some other numerical technique up to r = a, 
yielding the un normalized wavefunctions 

Fu = NF, Gu = NG, (16) 

with N the normalization constant. Define 

Cu(r) = CNC(r), Suer) = CNS(r). (17) 

Then, in view of Eq. (4), multiplication of Eqs. (8) by 
CN gives 

Fu(r) = Cu(r)Fo(r) - Su(r)Fo(r), 

Gu(r) = Cu(r)Go(r) - Su(r)Go(r). 

(18a) 

(lSb) 

From Eqs. (18) at r = a, the values of Cu(a) and Su(a) 
are known. Then the counterparts of Eqs. (15), 

Cu(oo) = Cu(a) - i<X>(FuFo + GuOo)Vdr', (19a) 

SuCoo) = Su(a) - i<X>(FuFo + GuGo)V dr', (19b) 

permit the integration to be carried forward. The 
phase shifts are still obtained from Eq. (13), which 
applies equally well to the unnormalized (subscripted) 
C's and S's. The wavefunctions (if desired) now 
require normalization. This possibility of switching 
integration schemes is of particular interest in the 
case of singular potentials (such as a screened Coulomb 
potential) for which the Volterra equation formulation 
is troublesome at the origin. 
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Possible ways of constructing field-theoretic operators satisfying the commutation relations of the 
inhomogeneous Lorentz group are investigated along lines laid down by Dirac. They can be satisfied 
in both the instant form, in which operators representing rotations and translations in space remain 
unchanged, and the point form, in which operators representing the homogeneous Lorentz group G! 
remain unChanged, provided one can find a causal Hamiltonian density such that [H(t, x), H(t, y)] is 
proportional to !5(x - y) and which transforms as a scalar under G! . Less restrictive sufficient conditions 
in the instant form are found, similar to those of Dirac. The commutator can be proportional to 
derivatives of !5(x - y) if the coefficients on the derivatives satisfy a certain condition. The only way 
found to satisfy these conditions for an interaction Hamiltonian constructed from fields for identical spin 
l particle (in the interaction picture) is to have the commutator proportional to !5(x - y), which implies 
local coupling with no derivations. The possibility of having relativistic theories in the instant form 
without causality is also investigated for the case of a four-fermion interaction Hamiltonian constructed 
from creation and annihilation operators for a spin l particle, but no definite conclusion is arrived at. 

INTRODUCTION 

I T is a well-known fact that the local four-fermion 
(4F) interaction Hamiltonian 

H' = J d3x'Ij)p(x)O"'PN(X)'Ij),(X)O,,'PV<x), (1) 

0" = 1'''(1 + ;1'0) 

leads to a nonrenormalizable S matrix. One might, 
therefore, attempt to modify the Hamiltonian in some 
fashion so that the resulting S matrix will become 
renormalizable. For this reason, and also because 
of the intrinsic interest that 4F Hamiltonians have, 
we have initiated a search for 4F Hamiltonians which 
give a causal and relativistic theory.l In the first two 
sections we consider rather general methods of 
obtaining a relativistic and causal theory for any type 
of field theoretical Hamiltonian. Then, in the third 
section, we specialize to a Hamiltonian constructed 
from the creation and annihilation operators of a 
single type of spin t fermion. 

We do not find any startling new results in this 
paper, in particular no 4F Hamiltonians giving a 
renormalizable S matrix are found, but rather con­
sider it to be a guide to the difficulties and possibilities 
of constructing a relativistic theory with a 4F inter­
action Hamiltonian. 

If a physical theory is to be relativistic, then there 
must be a set of unitary operators2- 4 U(A, a) obeying 

• Work performed under auspices of the U.S. Atomic Energy 
Commission. 

1 We consider only the proper inhomogeneous Lorentz group and 
thus do not deal with parity or time reversal. 

I P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
a P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962). 
, L. L. Foldy, Phys. Rev. Ill, 275 (1961). 

the group multiplication law of the inhomogeneous 
Lorentz groups (IHLG), i.e., 

U(A', a')U(A, a) = U(A'A, A'a + a'), (2) 

U(A-l, -A-la) = U-l(A, a) = U*(A, a), (2a) 

where U(A, a) is the operator representing the trans­
formation A from the homogeneous Lorentz group 
G! followed by the translation a. The method normally 
employed for finding operators satisfying Eq. (2) is 
to find operators satisfying the commutation relations 
which the infinitesimal generators (IG's) of the 
IHLG must satisfy, and this is essentially the method 
we use. That is, we suppose that when A is very near 
the identity I and a" is nearly 0, then° 

U(A, a) = U(I,O) + i{a"P" + (JiJi + viki}, (3) 

where Oi' Vi are very small numbers, Pi is the IG of 
translations along the ith axis, Po = H is the IG of 
time translations, Jt is the IG of rotations about the 
ith axis, and Ki is the IG of "velocity boosts" along 
the ith axis. The multiplication laws (2) then imply 
that these IG's must satisfy certain commutation 
relations [Eq. (9)]. 

The implication when one uses IG's is that the 
physical systems will be specified on some surface, 
called the initial sldace, and then the IG's will be 
used to integrate forward and find the state of the 
system on a different surface. The usual initial surface 

5 A word about our summation convention: Repeated p. and v 
subscripts indicate a covariant sum, i.e., a' b = aobo - a • b = 
a"b" = a"b" = a"b"; repeated IX and {J subscripts indicate a normal 
sum from 1 to 4 while repeated j and j subscripts indicate a sum 
from 1 to 3. 
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is a constant-time surface and one uses the Hamil­
tonian to find the state of the system on a later 
constant-time surface. Other less familiar choices of 
initial surfaces are possible, however; we use the 
hyperboloids x~ - X2 = d 2

, where d 2 is a positive 
constant. 

The question of what initial surface to use is tied 
in with how one tries to satisfy the commutation 
relations. If we assume that some subset, which must 
also be a subgroup, of the U(A, a) remains the same 
as the free operators6 when the interaction is "turned 
on," then the IG's of this subgroup also remain the 
same and hence some of the commutation relations 
are automatically satisfied. Dirac has suggested,2 and 
we follow his suggestion, that the subgroup left the 
same should be a subgroup, called an initial subgroup, 
which leaves an initial surface invariant because the 
initial subgroup is not involved in integrating the 
system forward and thus does not involve the inter­
actions. If the initial subgroup is one which leaves the 
initial surface t = const invariant (the set of all 
rotations and translations in 3-space), then J and P 
remain the same while Hand K are changed. This 
gives the instant form of Dirac. We have a somewhat 
more symmetrical-looking situation in the case where 
the initial surface is one for which x2 is a constant, for 
there J, K remain the same while H, P are changed to 
give the point form of Dirac. 

In both the instant and the point form, three sets of 
commutation relations are automatically satisfied 
because the initial subgroup is unchanged, and four 
more can be satisfied by assuming the interaction 
Hamiltonian is the integral, over the initial surface, 
of a Hamiltonian density having certain transforma­
tion properties under the initial subgroup. The 
remaini,ng two commutation relations are quadratic 
in the Hamiltonian density and it is here that all the 
difficulties are concentrated. These quadratic relations 
can be satisfied in the instant form provided the 
density H(x) transforms as a scalar under U(O)(A, 0), 
where A belongs to Gl, and 

f d3x d3Y(Xi - Yi)[H(x), H(y)] = 0, (4a) 

f d3x d3y(x,YI - xiYi)[H(x), H(y)] = O. (4b) 

And they can be satisfied in the point form, provided 

• Free operators are those which transform free states (i.e., states 
before the interaction Hamiltonian is "turned on") from one 
coordinate system to another. The free Hamiltonian is just the 
kinetic energy part of the Hamiltonian with the interaction part 
equal to O. Free operators will be denoted by a 0 superscript. 

H(x) is again a scalar under U(O)(A, 0) and 

Id3x d3y(Xi - Yi) [H(x), H(y)] = 0, 
Xo Xo 

Xo = (xt + d~l, Yo = (y2 + d2)1, J2 > O. (5) 

There are various ways to proceed in attempting to 
satisfy Eqs. (4). The most general method is to write 
H(x) as an integral in momentum space over products 
of four creation and/or annihilation operators times a 
function of the four momenta [Eq. (38)] and then 
obtain conditions on the function implied by Eq. (4). 
This is done in Sec. 3. The general conditions obtained 
are too difficult to work with, however, and so we are 
led to try a somewhat simpler approach. 

Since the difference between any two points on 
either of the initial surfaces we have used is never 
timelike, it would seem that one could try to satisfy the 
commutation relations by letting 

[H(x), H(y)] = 0, (x - y)2 < 0, (6a) 

[H(t, x), H(t, y)] = ac5(3)(x - y) + hiJ/c5(3)(X - y) 

+ C;;OiOlc5(3)(X - y) + .. " (6b) 

where the series is a finite one in 15(3), and its derivatives 
and a, hi' Cil , ••• are functions of x, y, t.7 

In Sec. 1, we discuss possible ways of satisfying the 
commutation relations in the instant form. The general 
line of discussion follows Dirac3 and holds for any 
interaction Hamiltonian. The interaction Hamiltonian 
is written as 

H' = f d3xH(x) 

with H(x) a scalar under Gl and Eqs. (6) are assumed 
to hold. A sufficient condition on the coefficients 
a, h, C,' •• of Eq. (6b) is found such that the Hamil­
tonian density will give a relativistic (and causal) 
theory. The only 4F densities we find which satisfy 
the equation, however, have h = C = ... = 0 and 
are the usual local ones: 

s 
H(x) = I GmHm(X), 

m=l 

Hm(x) = tP(x)A~m)tp(x)tP(x)A~m)VJ{x), (7) 

A(l) = I, A(2) = iys, A13
) = Y,P 

A (4) - • A(S) -
/l - 'YoY/l' /lV - a/lV ' 

where the G m are arbitrary real constants. 
Possible methods of satisfying the commutation 

7 The requirement that Eq. (6a) holds is called (microscopic) 
causality because one should be able to. simultaneously measure the 
energy density at points of spacelike separation. If this is to be so, 
then evidently the energy-density operators at spacelike separations 
must commute. 
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relations in the point form are discussed in Sec. 2. 
Again all of the discussion holds for any interaction 
Hamiltonian. The only way found to obtain a rela­
tivistic theory in this form was to suppose that 

H' = f d'xO(xo)c5(x2 - m~H(x)xo (8) 

with H(x), a scalar under Gl, satisfying Eqs. (6a) and 
(6b) with b = c = ... = 0; i.e., the density must be 
that described in Eq. (7). 

Instead of using a causal Hamiltonian in the instant 
form and obtaining conditions on the coefficients a, 
b, c, ... , one can go directly to Eqs. (4) and see what 
conditions they imply on the Hamiltonian. This is 
done in Sec. 3 for 4F in~eraction Hamiltonians, but 
the conditions derived there are too complicated to 
yield any further information. 

1. THE INSTANT FORM 

If we are to have operators satisfying Eq. (2), then 
the 10 IG's of Eq. (3) must satisfy the commutation 
relations 

[Pi,Pi ] = 0, (9a) 

[Ji , Pi] = i€w!' k' (9b) 

[Ji , Jj ] = i€ij~k' (9c) 

[H,P;] = 0, (9d) 

[H,J;] = 0, (ge) 

[P;, K i ] = -ic5iiH, (9f) 

[Ji , K i ] = i€ii~k' (9g) 

[H, K i ] = -iPi , (9h) 

[Ki , K i ] = - i€;i~k· (9i) 

The assumption of the instant form is that U(R, a) = 
U(O'(R, a), where R belongs to 0(3), and thus J, P 
remain the same as in the free case. This implies that 
the first three commutation relations are satisfied. 

Equations (9d)-(9g) are the infinitesimal forms of 
the transformation rules of H, Ki under U(O'(R, a). 
For example, (9d) and (ge) can be derived from 
U(R, a)U(O, ao)U-l(R, a) = U(O, ao) for very small a, 
ao, and R near the identity. It is more convenient to 
use the fully integrated forms of Eqs. (9d)-(9g) rather 
than having to calculate J, P and then calculate their 
commutators with H, K, so, for these equations, we 
substitute 

U(O'(1, a)HU(O,-l(1, a) = H, 

U(O)(R, O)HU(O)-\R, 0) = H, 

U(O)(1, a)Kp(Ol-l(I, a) = Ki + aiH, 

U(Ol(R, O)Kp(O)-\R, 0) = RilKi. 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

We are assuming that H is the sum of a free plus an 
interaction part, and so Ki will also be the sum of a 
free plus an "interaction" part, i.e., 

H = H(O) + H', (11 a) 

K; = K!O) + K;. (lIb) 

Since the free operators evidently satisfy Eq. (10), we 
must have 

U(O)(1, a)H'U(O)-\I, a) = H', 

U(O)(R, O)H'U(O)-\R, 0) = H', 

(12a) 

(12b) 

U(°'(1, a)K;U<O)-\I, a) = K; + aiH', (12c) 

U(O)(R, O)K;U(O)-\R, 0) = Ril K~. (12d) 

The commutation relations (9h) and (9i) are the 
difficult ones to satisfy in the instant form, so we defer 
a discussion of them until after we have shown how 
to satisfy Eqs. (12). 

We start out with the general form 

H' = f d4x!(xox)H'(x), (13) 

where 
U(O)(I, a)H'(O)U(ol(l, -a) = H'( -a), (14) 

and derive 

U<°'(1, a)H'U<O)(I, -a) = f d4x!(xO, x + a)H'(x). 

If the right-hand side is to equal H', then we must 
have findependent ofx so thatf = f(xo). We can then 
integrate over Xo and replace S dxof(xo)H'(x) by H(x) 
to obtain 

H' = f d4
xc5(xo)H'(x) = f cfxH(x) (15) 

as the most general form for H' allowed by Eq. (lOa). 
A necessary and sufficient condition that the H' 

of Eq. (15) satisfy Eq. (12b) is that H(x) be a scalar 
under rotations from 0(3) i.e., 

U<ol(R, O)H(x)U<O)-l(R, 0) = H(Rx), R E 0(3). (16) 

It is not difficult to find the most general solution to 
(12c), for we see that the difference between any two 
K~ satisfying it commutes with P. Thus the most 
general solution is any particular solution plus any 
operator commuting with P. One can show, by using 
Eq. (14), that a particular solution is 

K~ = f cfxxiH(x). (17) 

The particular solution of Eq. (17) is the only one we 
use (see, however, footnote 8); we do not add onto 
it any operator commuting with P. 
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From (16), we see that the K~ of Eq. (17) satisfies 
Eq. (12d). This leaves us with the two difficult com­
mutation relations (9h) and (9i) to satisfy. 

Mter subtracting off the free parts of these equations, 
they read 

[H<OI, K:J + [H', K~OI] + [H', K~] = 0, (18a) 

[K~OI, KD + [K;, K}OI] + [K~, Kj] = O. (18b) 

All the difficulties in satisfying these equations lie in 
the terms [H', K~], [K~, K;], which are quadratic in 
the Hamiltonian density. If we assume that they are 
both 0 (it is not necessary that they be 0, but they are 
o for the solutions we find), then we must have 

[H<OI, K~] + [H', K:OI] = 0, 

[K<OI K'] + [K' K<OI] - 0 "; i'; - . 

(19a) 

(19b) 

Equation (19) can be made to hold if we require that 
H(x) transform as a scalars under the whole of Gl 
[and not just the subgroup 0(3) as in Eq. (16)], i.e.: 

U<ol(A, O)H(x)U<OI-l(A, 0) = H(Ax), (20) 
for then 

[K~OI, H(x)] = xi[H(OI, H(x)] - xo[Pi , H(x)], 

[in analogy with the IG Ki = i(xJ}t + tax,) in space 
time] and thus (setting X o = 0), 

[H<OI, K;] - [K~OI, H'] 

= f d3x[xi[H(OI, H(x)] - xi[H(OI, H(x)]] = 0, 

[K~OI K] - [K~OI K~] 
"; "3 

= f d3x[XiX; - xix,][H<OI, H(x)] = O. 

Finally, we must consider the terms [H', K'] and 
[K~, K;] which are quadratic in the Hamiltonian 
density. Although these terms do not have to be 0, 
there will be certain parts of them which must vanish 
for a .4F density. ThaUs, [H', K~] and [K~, K;] will 
contain terms proportional to b*3 d*3 (for example) 
and the coefficients on these terms must be 0 if Eqs. 
(18a) and (I8b) are to hold. This argument can be 
used to find necessary conditions [see Sec. 3, Eqs. (45) 
and (46)] on the Hamiltonian. These conditions 
however, appear to be too complicated to work with: 
so we drop this general approach and retreat to a 
somewhat simpler one. 

Under the assumptions ofEqs. (15) and (17), we have 

[H', K~] = J d3x d3YYi[H(x), H(y)] 

= - t f d3x d3Y(Xi - Yi)[H(x), H(y)], (21) 

8 We could be slightly more general here by adding a term L· 
onto the K; of Eq. (17), where [L i , P] = 0 and L transforms as K' 
in Eq. (I0d) under rotations. Equation (18) can then be satisfied 
provided [H', K;] = [K; , K;] = 0, t5(xo)[KJo, + L i , H(x)] = 
t5(xo)x,[H(O" H(x)], and [L" K?] + [Ki"', L i ] + [L" L i ] = O. 

[K~, Ki] = t J d3x d3Y(XiYi - xiYi)[H(x), H(y)], 

(22) 

which suggests that the use of a causal Hamiltonian 
density might provide a method of obtaining 

[H', Ka = [K;, Ki] = O. 

We therefore assume that Eq. (6b) holds and obtain 
for [H', K~] 

[H', K~] = - t f d3x d3y(xi - Yi) 

X (a + biOi + Citiloilll + dililiaoilliia + .. ')/53(x, y), 

where, as in Eq. (6b), a, b, ... are functions of x, y 
and the partials are with respect to x - y holding 
x + y constant. If we now integrate by parts, we 
obtain 

[H', K;] = - t f d3x d3y/53(xi - Yi) 

X [(x. - Yi)(a - aibi + oili.bitls + ... ) 
+ (-bi + oi.(Ciia + CIli) - 0;110 

X (diil ;, + dilii, + dill,.) + ... )]. 
The first term, proportional to (Xi - Yi)' integrates to 
o since x~(x) = 0, but the rest of the integral is not 
automatically O. If we require that [H', K~] = 0, then 
this introduces the condition on the coefficients 
b, c, ... that 

[b, - oi.(CH• + cio') + oioi.(dilai, + di•H • + dial,i) 

+ ... ]X=7 = O. (23) 

We can deal with [K:, K;] in a similar manner and 
find that Eq. (23) also guarantees that it is O. 

Thus we have found sufficient conditions on a 
Hamiltonian density (4F or any other kind) so that 
it will give a relativistic theory. The conditions are 
that it transform as a scalar under Gl and that it 
satisfy Eqs. (6b) and (23). This is similar to the 
conditions that Dirac obtains for a relativistic theory. 

The only densities we have found which satisfy 
these conditions are those of Eq. (7), which have 
b = C = ... = o. 

2. THE POINT FORM 

In the point form, we assume U(A, 0) = U<ol(A, 0) 
for all A in Gl. This implies that the commutation 
relations (9c), (9g), and (9i) are satisfied. The com­
mutation relations (9b), (ge), (9f), and (9h) are the 
infinitesimal forms of 

U(oI(A, O)U(O, a)U<ol-I(A, 0) = U(O, Aa), 

which states that the Pp (with H = Po) transform like 
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a vector under Ueo)(A, 0), i.e., 

Ueo)(A O)P U(O)-l(A 0) = A-Ip (24) 
'Il ' p,v v· 

We again assume that (lla) holds so that we must 
have 

P - peO) + P' (25) 
",- '" "" 

where the P!O) are the IG's of U(O)(O, a). Since the 
P!O) satisfy Eq. (24), we must have 

U(O)(A, O)P;U(O)-l(A, 0) = A;!P~. (26) 

There are, of course, a large number of ways to 
satisfy Eq. (26). One way is to modify the Hamiltonian 
of Eq. (43) (withf, g functions of k2) by replacing the 
first Oi by y", and the second by I to obtain P",. 
Another possibility, which gives a Hamiltonian more 
nearly like that of Eq. (15), is to suppose that 

P~ = I d4XXO~(X2 - d2)0(xo)H(x), (27a) 

P; = I d4XXi~(X2 - d2)0(xo)H(x), (27b) 

where H(x) is a scalar under Gl obeying Eq. (14), d2 

is a positive real number, and O(xo) is the step function 
which is 0 for Xo < 0 but 1 for xo> O. We restrict 
our attention to interaction momenta of the form of 
Eq. (27). 

The two commutation relations left to satisfy are 
(9a) and (9d). Since (9a) can be derived from (9d), 
(9f), (9h), we need only to satisfy (9d). After sub­
tracting [H(O), PJO)], Eq. (9d) reads 

[H(O), P;] - [P~o), H'] + [H', P;] = O. 

From Eq. (27), we obtain 

[H(O), Pi] - [P~O), H'] 

= I d4X()(XO)~(X2 - d2) 

X (x;[HCO ), H(x)] - Xo[P~O), H(x)]) 

= [ K~O).J d4XO(XO)~(X2 - d2)H(X)] = 0, 

and so we must evidently have 

[H', P;l = lId3x d3y (Yi - Xi) [H(x), H(y)] = 0, 
Yo Xo 

Xo = (x2 + d2)l, Yo = (y2 + d2)t. (28) 

One might possibly try to do the same sort of 
analysis for a general causal Hamiltonian density in 
this case as is done for the instant form in Sec. 3. But 
the resulting conditions on b, c, ... are considerably 
more complicated than in the instant form, so we will 
not pursue this possibility. 

We see that one solution to Eq. (28) is to have 
H(x) satisfy Eq. (6) with b = c = ... = O. This, 
coupled with the scalarity of H(x) under G~, gives 
sufficient conditions for the construction of a Hamil­
tonian, 

H' = I d3xH(x), Xo = (x2 + d~l, (29) 

which gives a relativistic theory in the point form" 
(for a 4F or any other kind of interaction Hamil­
tonian). As before, the densities of Eq. (7) satisfy 
these conditions. 

3. FOUR-FERMION HAMILTONIANS AND 
NECESSARY CONDITIONS ON THE 

HAMILTONIAN IN THE INSTANT FORM 

There are two aims in this section. One is to show 
how to construct densities from particle creation and 
annihilation operators which transform in a simple 
manner under U(O)(A, a) and the other is to give 
general conditions on the Hamiltonian implied by 
Eqs. (4). 

The interaction Hamiltonian is to be made up of 
sums of products of creation and annihilation oper­
ators for a spin l fermion. These are, respectively, for a 
particle with momentum p in spin state r (r = 1,2), 
b:(p), and br(P), and for an antiparticle d:(p), dr(P). 
The star denotes Hermitian adjoint and b, b*, d, d* 
satisfy the usual anticommutation relations, i.e., 

[b, b]+ = Cd, d]+ = [b, d]+ = [b, d*]+ = 0, 

[Mp), b:(p')]+ = [dr(P), d:(p')]+ = ~r8~(P - p'), 

plus the Hermitian adjoint relations. If we N-order 
the interaction Hamiltonian, it will consist of a part 
which is the sum of products of four creation and/or 
annihilation operators (the 4F part), a part which is 
the sum of products of two creation and/or annihila­
tion operators, and perhaps a constant. We give only 
the 4F part in momentum space because that is the 
only part one uses in finding necessary conditions 
that the Hamiltonian must satisfy. In both the instant 
and point forms, it is necessary that we know the 
transformation properties of the Hamiltonian under 
the free operators U(O)(A, a), so we discuss these 
properties for the creation and annihilation operators 
before giving the general form for the 4F part of the 
Hamiltonian. 

The transformation properties of a one particle state 
(without interaction) under Ueo) are 

Ueo)(A, a) Ip, r) = eiArJ-a IE(Ap)/E(P)II 

X Dr,(R(p, A) lAp, s), 

• We note that we do not need to assume Eq. (lla) for H ' /; we can 
drop the free part and still obtain a relativistic theory. 
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where Po = E(p) = (PI + ml)! (with m the mass of 
the base particle), R(p, A) is a rotation belonging to 
0(3), and D~lR) is a matrix representation of R in 
SU?. Since Ip, r) = b:(p) 10), we evidently have 

UIO)(A, a)b:(p)U IO)-I(A, a) 

= eiAf1·a 1 E(Ap)/E(P) 11 D~.(R(p, A»b:(Ap). (30a) 

The transformation properties of br(P) are obtained 
by taking the Hermitian adjoint of (30a): 

UIO)(A, a)b~(p)UIO)-I(A, a) 

= e-jAf1'a 1 E(Ap)/E(P) 1 1 Jj~.(R(p, A»b.(Ap), (30b) 

where the bar over Dr. stands for complex conjugate. 
The transformation properties of the antiparticle 
creation and annihilation operators are, similarly, 

UIO)(A, a)d:(p)U IO )-I(A, a) 

= ejM>-aJj:.(R(p, A»d:(Ap), (30e) 

UIO)(A, a)d~p)UIO)-I(A, a) 

= e-iAf1'a h;.(R(P, A»d:(Ap), (3Od) 

where D;.(R) is another representation of R in SU?. 
The quantities D(R(P, A», D'(R(P, A» depend 

upon p and A in a complicated way, and if we had to 
deal directly with them, life would be difficult. Fortu­
nately, however, it is possible to find linear combina­
tions, 

1J'~+)(p) = V~;j(p)brCp), 

lJ'~-)(p) = V~-:;.>( -p)d:( -p), 

Vi~+)(p) = O~:;>(p)b:(p), 
Vi~-)(p) = O~-:;>( -p)d~( -p), 

(31) 

of the creation and annihilation operators which 
transform in a simple way, and we therefore construct 
our Hamiltonian from the lJ"S rather than directly 
from the creation and annihilation operators. The 
U's in Eq. (31) are column vectors of length 4 
(the component being designated by at) which satisfy the 
Dirac equation 

(Y/lP/l - Em)V~d(p) = 0, _ ±1 
E - , 

O:£)(p)(Y/lP/l - Em) = 0, 

where O:')(P) = U;<l*(P). They also satisfy the con­
ditions 

EV~~Xp)V~~~(p) = [(m + EP"Y,,)/2mlt p, (32) 

O~~~(p)U~~:)(p) = Eb£.A.. (33) 

If the proper choice is made for the D, D', then the 

transformation properties of the lJ"s are [with U(O) = 
UIO)(A, a)] 

VIO)lJ'~+)(p)VIO)-1 

= [E(Ap)/E(p)]lS;;i(A)lJ'~+)(Ap)e-iAfl.a, 

V(O)lJ'~-)(p)U<O)-1 

= [E(Ap)/E(p)]lS;l(A)lJ'~-)(Ap)ei(Af1)oao+iJ\P .• , 

V IO) Vi~+)(p )V<O)-1 

= [E(Ap)/E(P)]tVi~+)(Ap)Sp..(A)eiAfl.a, 

U(O) Vi~)(p )UIO)-1 

= [E(Ap)/E(p)]tVi~-)(Ap)Sp..(A)e-i(Af1)oao-iAP'., 
(34) 

where S(A) is a 4 x 4 matrix satisfying 

S-l(A)Y/lS(A) = A/lvYv' (35) 

We can now build our Hamiltonian out of products 
of lJ"S and Vi's. The 4F part in both the instant and 
point form is 

H~F = f d4xf(x)H(x), (36) 

9 

H(x) = ~ H(x){i), (37) 
i=l 

with 

H(X)(l) = f d7'1234Vi~+)(1)Vi~+)(2)1J'~-)( +3)lJ'l-) 

x (+4)h (1) (1234)eix.(1+2-3-4)-iQ:o'(l+2+3+4) 
~" ' 

H(X)(2) = f d7'1234Vi~+)(l)Vi~+)(2)1J'~-)(3)lJ'l+) 
x (4)h (2) (1234)eix'(1+2-3-4)-i<l:o(1+2+3-4) 

(l128& , 

H(X)(3) = f d7'1234Vii+)(1)1J'~-)(2)1J'~-)(3)Vii-) 
x (4)h (3) (1234)eiX.(1-2-3+4)-i<l:o(1+2+3-4) 

~" ' 
H(X)(4) = f dT1234Vii+)(1)Vi~+)(2)1J'~+)(3)1J'1+), 

X (4)h(4) (1234)eiX.(1+2-3-4)-iQ:o(1+2-3-4) 
ex1234 ' 

H(X)(5 = f d7'1234Vii+)(1)1J'~-)(2)Vi~-)(3)lJ'i+) 
X (4)h(5) (1234)eix.(1-2+3-4)-iQ:o(l+2-3-4) 

(l123t , 

H(X)'6) = f dT12341J'i-)(1)1J'~-)(2)Vi~-)(3)Vil-) 
X (4)h!6) (1234)eiX.(-1-2+3+4)-i<l:o(1+2-3-4) 

(11234 , 

H(x)(7) = H(X),31*, H(X),SI = H(X)'21*, 

H(X)'9) = H(x)'l)*, (38) 

where we have made use of the Hermiticity of the 
Hamiltonian to obtain the last three equations. The 
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somewhat abbreviated notation used in Eqs. (38) is 

dTl = dSPl[m/E(Pl)]t, dT1234 = dTl dT2 dT3 dT4' 

1JI1(1) = V'IZ1(Pl), 

hlZlIu(1234) = h"'llZllZalZ,(Pl' P2' P3' pJ, 

exp {i[x. (1 + 2 - 3 - 4) - xo(1 + 2 + 3 + 4)]} 

= exp {i[X·(Pl + P2 - Ps - pJ 

- XO(PlO + P20 + P30 + P40)]}' (39) 

We note that the h(il can be assumed to be asymmetric 
in certain variables. If we look at H(x) (1) , for example, 
interchange Vii+l(1) with Vi~+l(2), and then exchange 
variables I and 2, we find that one can substitute 
!(hlZua.(1234) - h"'I18P134» for hlZ123P234). Actually, 
in H(x)<ll, one can substitute 

l(hl234 - h2134 - h12,s + h2143) 

for hl234 . 
We can now show how the densities transform 

under U(Ol(A, a). It follows from Eqs. (34) and (38) 
that Eq. (14) is satisfied, i.e., 

U(ol(l, a)H(x)(ilU(Ol(l, a) = H(il(X - a) (40) 

and 

U(Ol(A, O)H(x)(ilU(Ol-I(A, 0) = H'{i)(Ax), (41 a) 

where H'(il(x) has the same form as H(il(X), except 
h(il is changed to h/(il. If we look at the i = I case, 
for example, 

h~~!~.(ql' ... , qJ = SIZ11I1(A)S"'a{Js(A)Si8~a(A)Si,~.(A) 
h(ll (A-lq ... A-lq) {Jus. l' , , . 

The equations for the other h/(il are the same except 
for a permutation of the IX, (J indices. Equations (41) 
were derived by changing Api to qi in 

UCOl(A, O)H(il(X)U(Ol-,(A, 0). 

If H(il(X) is to transform as a scalar under Gi, i.e., 
if 

U(Ol(A, O)HW(x)U(Ol-I(A, 0) = HW(Ax), (42a) 

then we must have 

h~~!~.(1234) = h!!!a.(1234). (42b) 

It would perhaps be useful to correlate certain 
forms of the Hamiltonian in the more familiar con­
figuration space with their corresponding h(il in Eq. 
(38). As a rather general example, we suppose that 

H(x) = f d'yJi(X + y)F(y)Ji(X - y), (43a) 

where 

Ji(Z) = f d4w1JI{z + w) Oitp(Z - w)G(w), 

F(y) = f d4ke-ik'lif(k), 

G(w) = f d4ke-ik
'
W g(k), 

Oi = aI + ibY5' cy,. + i dY5Y,., 0,.., 

(43b) 

(43c) 

(43d) 

a, b, c, d real, (43e) 

V'(x) = f dT[V'(+l(p)e-i2>'~ + V'(-l( _p)ei2>.It], (43f) 

tP(x) = V'*(x)yo 

= f dT[Vi(+l(p)ei2>'~ + Vi(-l( _p)e-i2>'~]. (43g) 

[All of these densities are scalars under Gi, provided 
the! and g of Eqs. (43c) and (43d), respectively, are 
functions of k2 only.] We then find that 

h~!!8& = -O!llZaO!slZ,g(kl)g(kJf(ks), (44a) 
with 

k lO = PlO - P30' 

k 20 = P20 - p,o, k2 = P2 + p" 

~=fu-h+h-h, ~=~-~-~+~ 

h~~~u(1234) = -O!llZa 0!21Z , g(kl)g(k2)!(k3) 

+ 0!1'" O~B"ag(k~)g(k'J!(k~) (44b) 
with 

k lO = PlO - P30' kl = PI + Ps, 

k 2 = P2 + p" 

k~o = PlO + P40 

k~o = P20 - PaD, k~ = P2 + Pa, 

k~o = PlO - P20 - Pao - P40' k~ = PI - P2 + Pa - p, . 

We also deal with Hamiltonian densities made up 
of products of 1JI(x), Vi(x) (Eq. 43f, g), and their 
derivatives. The transformation properties of a few 
selected operators are 

U(Ol(A)V'(x)U(Ol-l(A) = S-l(A)V'(Ax), 

U(Ol(A)tP(x)U(Ol-\A) = Vi(Ax)S(A) , 

U(Ol(A)o~,.V'(x)U(Ol-\A) = A-;!oy. V'(Y)Y,. = A,..x., 

U(Ol(A)Vi(x)y,.V'(x)U(Ol-l(A) = A-;!Vi(x)y.V'(x). 

We see from these that the densities of Eq. (7) are 
scalars under Gi. Two more scalar densities are 

Vi(x)o,.V'(x)Vi(x)Y,.V'(x) + h.a., 

Vi(x)o,.1JI(x)Vi(x)o,.V'(x) + h.a. 
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The reason it is useful to work with densities 
constructed from products of "P, 1p and their derivatives 
is that it is a simple matter to construct causal densities 
from them. In fact, any finite linear combination of 
the densities 

DIJIlI8uhau.(x) = ( 0lh 1plJllx»( Op1"PIJI.(x» 

X (Ops 1p1Jl3(X»( Op,x"ix» 
is causal, where 0 p is a finite product of derivatives. 

Now we turn to the second goal of this section, 
namely, to find conditions on the h(i) of Eq. (3S) 
implied by Eqs. (ISa, b). We find conditions only on 
h(l), h(2), h(8), but the same methods can be used to 
find conditions on the other h(i). The quantity 
[H(x), H(y)] occurs in both [H', K~] and [K~, K~]. 
The commutator of the densities will contain terms 
proportional to b*8 d*8 and, after a lengthy calcula­
tion, we find the sum of all such terms to be [using 
the notation of Eqs. (3S) and (39)] 

M83(X, y) = f dT128567b:(I)b:(2)b:(3) 

X d:( - 5) d:( - 6) d:( -7) f d3P4fr123667(123567; 4) 

X [eiX'(2+3-7-4)+iy .(1+4-5-6) _ eiX'(1+4-5-6)+iy.(2+3-7-4)], 

where bt(l) = b:1(pJ and I is the function 

f = (J(+)(I) (J(+)(2) (J(+)(3)U(-)(5)U(-)(-6)U(-)(- 7) 
1,1 2,2 3,3 5,5 6,6 7.7 

X [hm6(1456)h~~~8(237S)[m + P4~O - P4' YJ 
P40 84 

+ hl:k(1654)h~~~8(327S)[-m + P;oYo - P4' YJ J 
P40 84 

with Ui,l(l) = U"lh(Pl)' If Eq. (ISa) is to hold, then 
we must have 

N33 = f d3x d3YYiM 33(X, y) = O. 

If we do the integration on x and then on P4' we 
obtain (to within multiples of i and 217) 

N33 = f d3YYif dT123567b:(I) .•. d:(7)eill'(I+2+3-5-6-7) 

X [f(4 = 2 + 3 - 7) - f(4 = 5 + 6 - 1)], 

where 1(4 = 2 + 3 - 7) means I evaluated at P4 = 
P2 + P3 - P7' Since NS3 is to be 0, it must have 0 
matrix element between all possible states and thus 
between 10) and 

(01 f d3pI2S567bl(l)b2(2)bs(3) 

X ds( -5) de( -6) d7( -7)grll8m(123567) 

in particular, where g is an arbitrary function. This 
implies that 

f dSYYi f dT123567geill'(1+2+3-5-6-7) A(123; 567) 

[f(4 = 2 + 3 - 7) - f(4 = 5 + 6 - 1)] = 0, 

where A(123; 567) indicates that the quantity in 
brackets is to be antisymmetric in the variables I, 2, 3 
and separately in the variables 5, 6, 7. Evidently the 
only way this can hold is if 

A(123; 567)[f(4 = 2 + 3 - 7) - 1(4 = 5 + 6 - 1)] 

= O. (45) 

Equation (42) is, therefore, a necessary condition on 
h(l), h(2), h(3), implied by Eq. (ISa). 

A similar necessary condition imposed by Eq. (ISb) 
can be found in an analogous manner. The only 
difference is that, when the integration on x is done, 
one obtains a derivative, with respect to P4, of a 
6 function rather than just a 6 function. The necessary 
condition is 

A(123;567) 

X [Of(4 = 2 + 3 - 7) _ of(4 = 5 + 6 - I)J = O. 

07>& 07>4' 
(46) 

Equations (42) and (43) are only one of a set of ten 
similar conditions on the h(i). The other nine arise 
because the coefficients on b*s d*2b, b*2 d*3 d, etc., 
must also be O. The author has not been able to obtain 
any simple conditions on the density which these equa­
tions imply, but would conjecture that they imply the 
density must be causal. 

4. SUMMARY 

In summary, we point out the various possible 
methods which have been suggested for satisfying 
the commutation relations of IHLG. '"the first point 
one must decide upon is what subgroup of IHLG to 
leave as free operators. If one would like a causal 
theory, the most logical choice is one which leaves an 
initial surface invariant, provided any two points x 
and y on the initial surface satisfy (x - y)2 ~ O. The 
two initial surfaces we have worked with are t = const 
and x 2 = d2

• (Another possibility suggested by Dirac2 

is the surface t - Xs = const, but we have not 
examined that case.) 

Once one has decided on what subgroup to leave as 
free operators, there are still a large number of 
possibilities. Let us examine the instant form first. 
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There, one is forced to write the interaction Hamil­
tonian as 

H' = f d'xl5(xo)H(x) = f d3xH(x), 

and H(x) must transform as a scalar under rotations 
in space. Then for the IG of velocity boosts, one has 
the general formula 

Ki = K~OI + K~ + L i , 

K~ = f d3xxi H(x), 

UCOI(R, O)LiUCOI-l(R, 0) = RilL" 

where Rbelongs to 0(3). The least complicated method 
of proceeding from this point is to assume L = 0, so 
the burden of satisfying the commutation relations 
falls entirely on H(x). 

If one assumes a 4F Hamiltonian density, then the 
equations 

[H', K~OI] + [H(OI, K;] + [H', K;] = 0, 

[K;, K~O)] + [KlO), Ki] + [K;, Ki] = 0, 

JOURNAL OF MATHEMATICAL PHYSICS 

imply certain conditions on it. They are too com­
plicated to deal with, however, and one is thus forced 
to fall back on causality. The above equations then 
give the condition (23) on the commutator of the 
densities. This condition, plus that of the scalarity of 
H(x) under the free Gl, is sufficient for a relativistic 
theory. 

In the point form, H' must be one of four quantities 
which transforms like a vector under the free G!. This 
gives a very wide possibility of choices for H'. The 
only one we examine, however, is the one in closest 
analogy to the instant form, namely 

H' = f d4xxoO(xo)l5(x2 - d~H(x). 

If [H(x, x), H(x, y)] is proportional to 15(3)(x, y), then 
this H' yields a relativistic theory. 

It would thus appear that the only simple way to 
have a relativistic theory is to have a causal Hamil­
tonian density. 
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Some Theorems Concerning the Phase Problem of Coherence Theory* 
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(Received 4 August 1966) 

The spectral density of a fluctuating light beam may be determined from the knowledge of both the 
modulus and the phase of the complex degree of self-coherence y(r) of the beam. The phase itself may 
be determined from the modulus and from the location of the zeros of the analytic continuation of y(T) 
in the lower half of the complex T plane. In the present paper results of an investigation are presented 
which show that the determination of the zeros is equivalent to the solution of a certain inhomogeneous 
eigenvalue problem of the Sturm-Liouville type on a semi-infinite frequency range. This eigenvalue 
problem is found to be equivalent to a certain stability problem in mechanics. Although no general 
technique for the solution of this type of an eigenvalue problem appears to be known, the new formu­
lation may be used to determine spectral profiles for which the associated degree of self-coherence has 
zeros at prescribed points in the complex T plane. Some illustrative examples are given. 

1. INTRODUCTION 

I T is known1.2 that the determination of the spectral 
density g( w) (0 ~ w < 00) of a fluctuating light 

beam is possible from the knowledge of the absolute 

• This work was supported by the Air Force Cambridge Research 
Laboratories. A preliminary account of some of the main results 
was published in a note by D. Dialetis and E. Wolf, Nuovo Cimento, 
47, 113 (1967). 

1 E. Wolf, Proc. Phys. Soc. (London) 80, 1269 (1962). 
S H. M. Nussenzveig, J. Math. Phys. 8, 561 (1967). 

value of the complex correlation function y{-r) 
( - 00 < T < 00) and the knowledge of the zeros of 
the analytic continuation of y in the lower half of the 
complex T plane. 

In the following we prove that the oetermination 
of the zeros is equivalent to the solution of a 
certain eigenvalue problem of the Sturm-Liouville 
type. 

It is well-known that in terms of the spectral density 
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There, one is forced to write the interaction Hamil­
tonian as 

H' = f d'xl5(xo)H(x) = f d3xH(x), 

and H(x) must transform as a scalar under rotations 
in space. Then for the IG of velocity boosts, one has 
the general formula 

Ki = K~OI + K~ + L i , 

K~ = f d3xxi H(x), 

UCOI(R, O)LiUCOI-l(R, 0) = RilL" 

where Rbelongs to 0(3). The least complicated method 
of proceeding from this point is to assume L = 0, so 
the burden of satisfying the commutation relations 
falls entirely on H(x). 

If one assumes a 4F Hamiltonian density, then the 
equations 

[H', K~OI] + [H(OI, K;] + [H', K;] = 0, 

[K;, K~O)] + [KlO), Ki] + [K;, Ki] = 0, 

JOURNAL OF MATHEMATICAL PHYSICS 

imply certain conditions on it. They are too com­
plicated to deal with, however, and one is thus forced 
to fall back on causality. The above equations then 
give the condition (23) on the commutator of the 
densities. This condition, plus that of the scalarity of 
H(x) under the free Gl, is sufficient for a relativistic 
theory. 

In the point form, H' must be one of four quantities 
which transforms like a vector under the free G!. This 
gives a very wide possibility of choices for H'. The 
only one we examine, however, is the one in closest 
analogy to the instant form, namely 

H' = f d4xxoO(xo)l5(x2 - d~H(x). 

If [H(x, x), H(x, y)] is proportional to 15(3)(x, y), then 
this H' yields a relativistic theory. 

It would thus appear that the only simple way to 
have a relativistic theory is to have a causal Hamil­
tonian density. 
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Some Theorems Concerning the Phase Problem of Coherence Theory* 
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The spectral density of a fluctuating light beam may be determined from the knowledge of both the 
modulus and the phase of the complex degree of self-coherence y(r) of the beam. The phase itself may 
be determined from the modulus and from the location of the zeros of the analytic continuation of y(T) 
in the lower half of the complex T plane. In the present paper results of an investigation are presented 
which show that the determination of the zeros is equivalent to the solution of a certain inhomogeneous 
eigenvalue problem of the Sturm-Liouville type on a semi-infinite frequency range. This eigenvalue 
problem is found to be equivalent to a certain stability problem in mechanics. Although no general 
technique for the solution of this type of an eigenvalue problem appears to be known, the new formu­
lation may be used to determine spectral profiles for which the associated degree of self-coherence has 
zeros at prescribed points in the complex T plane. Some illustrative examples are given. 

1. INTRODUCTION 

I T is known1.2 that the determination of the spectral 
density g( w) (0 ~ w < 00) of a fluctuating light 

beam is possible from the knowledge of the absolute 

• This work was supported by the Air Force Cambridge Research 
Laboratories. A preliminary account of some of the main results 
was published in a note by D. Dialetis and E. Wolf, Nuovo Cimento, 
47, 113 (1967). 

1 E. Wolf, Proc. Phys. Soc. (London) 80, 1269 (1962). 
S H. M. Nussenzveig, J. Math. Phys. 8, 561 (1967). 

value of the complex correlation function y{-r) 
( - 00 < T < 00) and the knowledge of the zeros of 
the analytic continuation of y in the lower half of the 
complex T plane. 

In the following we prove that the oetermination 
of the zeros is equivalent to the solution of a 
certain eigenvalue problem of the Sturm-Liouville 
type. 

It is well-known that in terms of the spectral density 
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function g(w) the correlation function y(-r) is given 
by3 

yeT) = L''''g(W')e-iTW
' dw', (1.1) 

where 1m '1' ~ 0. 
The spectral density function g(w) is real, non­

negative, and its integral is normalized to unity, i.e., 

(a) 

(b) 

(c) 

g(w) = g*(w), 

g(w) ~ ° for w > 0, 

L"" g( w') dw' = 1. 

(1.2) 

(1.3) 

(1.4) 

The correlation function has the following prop­
erties: 

(a) yeO) = 1. (1.5) 

(b) It is analytic and regular in the lower half of the 
complex '1' plane4 (1m '1' < 0). 

(c) y( -'1'*) = y*( '1'), (1.6) 

where '1' is real or complex with 1m '1' < 0. 
(d) It does not vanish for any value of '1' on the 

negative imaginary axis, i.e., for any '1' = -i{3, where 
(J> 0. 

Because of the property (c) satisfied by the cor­
relation function yeT) we conclude that if 

(1.7a) 
then also 

Y(-T:) = 0. (1.7b) 

We are interested only in the zeros of the correlation 
function in the lower complex T plane and on the real 
axis. We see that, because of property (b), they occur 
in pairs and, because of property (d), there are no zeros 
on the imaginary axis of the '1' plane. Hence we may 
restrict our discussion to values of TO = 0(. - i{3, 
which lie in the fourth quadrant and on the positive 
real axis of the complex '1' plane; i.e., 0(. > 0, (J ~ 0, 
and for which Y(TO) = 0, y( -T~) = 0. We confine 
our attention to this quadrant. 

From Eq. (Ll) we see that once the spectral 
density g(w) is defined for w ~ 0, the correlation 
function yeT) is completely determined and so are 

8 A similar relation exists in the quantum theory of coherence 
between the quantum mechanically defined coherence function 
and the power spectrum. [Cf. C. L. Mehta and E. Wolf, Phys. Rev. 
157,1188 (1967.] Hence our results apply both within the domain of 
classical and quantum mechanical theory of optical coherence. 

, This is true under the assumption that 

f'''ct) I y(7-)j" th < co. 

[Cf. E. C. Titchmarch, Theory of the Fourier Integral (Oxford 
University Press, New York, 1948), 2nd ed., p. 128.] 

the values TO (with Re TO > 0, 1m TO ~ 0) for which 
yeT) vanishes. 

2. THEOREM CONCE~G THE ZEROS 
OF THE CORRELATION FUNCTION 

We prove that the following statements are 
equivalent: 

(i) The correlation function yeT) vanishes for 
'1' = TO = 0(. - i{3, (0(. > 0, (3 ~ 0), i.e. 

(ii) 

where 

y(-ro) = 0. 

limeiTOCOY(TO' w) = 0, 
w-+"" 

yeT, w) = Lcog(w')e-iTw
' dw'. 

(2.1) 

(2.2) 

(2.3) 

(iii) There exists a unique real function tp(w; TO)' 
defined for ° ~ w < 00, which satisfies the differ­
ential equation 

tp"(w; To) - i(TO - T:)tp'(W; TO) 

+ TOT:tp(W; TO) = g(w) 

and the boundary conditions 

Here 

'1'(0; TO) = '1"(0; TO) = 0, 

'1'(00; TO) = '1"(00; TO) = 0. 

tp'(w; TO) = otp(w; TO)/OW, etc. 

(2.4a) 

(2.4b) 

(2.4c) 

(2.5) 

Before proving the theorem, several observations 
may be of interest: 

(a) Statement (i) is equivalent to the equation 

lim yCro, w) = Y(TO) = 0, (2.6) 
CO-+ ct) 

as we see from the definition (2.3) of the function 
Y( '1', w). Also e iroco = ePW+i(}tco, which oscillates as 
w ~ 00 and its absolute value increases beyond any 
bound. (If (3 = 0, it oscillates and its absolute value 
is unity.) From Eqs. (2.6) and (2.2) it may appear 
that the statement (li) is stronger than the statement 
(i), but as we show below, they are actually equivalent. 

(b) In Eq. (2.3), letT be a value for which yeT) does 
not vanish. Then 

lim yeT, w) = y(T) ¢ O. (2.7) 
co .... 0() 

Since eirco (with ReT> 0, 1m '1' ~ 0) does not tend 
to zero as w ~ 00, we conclude that the limit in 
statement (li) is zero only for values To for which 
Y(TO) = ° and for these alone. 

(c) Using the fact that 

Y*(T, w) = Y( -'1'*, w) (2.8) 
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and taking the complex conjugate of the Eq. (2.2), we In the last inequality we used Eq. (3.4). Finally, using 
obtain Eq. (3.5), it follows that the last expression in Eq. (3.6) 

lim e-iTO*"'r( -T:, w) = O. (2.9) tends to zero as w -- 00, so that 
<0-+"" 

Equations (2.2) and (2.9) are equivalent. 
(d) The relation between the function ?pew; TO) and 

the correlation function reT) is 

yeT) = (T - TO)(T + T:) L"" [-tp(w'; To)1e-iT"" dw'. 

(2.10) 
This relation is established later. We note that the 
integral on the right-hand side of (2.10) exists because 
of Eq. (2.4c). 

(e) The function ?pew, TO) is uniquely determined 
by the second-order differential equation (2.4a) and 
the boundary conditions (2.4b). It satisfies the 
boundary conditions (2.4c), too, if and only if TO is 
such that Y(TO) = O. This last remark is closely 
related to the statement (b) [Eq. (2.7)]. 

We see then that, for each TO for which Y(TO) = 0, 
there is an eigenfunction ?pew, TO) and an eigenvalue 
solution TO = ex. - i{3 of the system (2.4a)-(2.4c) of 
the Sturm-Liouville type. 

3. PROOF OF THE THEOREM 

First we show that the statement (i) implies 
the statement (ii). 

We have from (Ll) and (2.3) 

yeT) = yeT, w) + L""g(w')e-iTW' dw', (3.1) 

so that 

eiTWr(T) = eiT"'Y(T, w) + L""g(w')e-idW'-W) dw'. (3.2) 

Hence, if TO = ex. - i{3 (ex. > 0, {3 ~ 0) is a zero of 
r(T) , 

0= eiTOWY(To, w) + L"" g(w')e-iTO(w'-"') dw'. (3.3) 

Also for w' such that w' ~ w, we have 

le-iTO(W'-W) I ::;;; e-fJ(w'-"') ::;;; 1, (3.4) 
and 

L"',g(W')' dw' = L'" g(w') dw' ~ 0, (3.5) 

because of the properties (a), (b), and (c) of g(w). 
[See Eqs. (1.2), (1.3), and (1.4).] 

From Eq. (3.3) we obtain then the inequality 

leiTO<Or(To, w)1 = 1-L''''g(W')e-iTO(W'-W) dw' I 
::;;; LOOlg(w')lle-iTO(W'-W)1 dw' 

::;;; LOO,g(w')' dw', (3.6) 

lim eiTO"'y( TO, w) = O. 

Hence the statement (ii) is established. 
Now let us prove the converse statement, i.e., the 

fact that (ii) implies statement (i). 
According to (li), for each E > 0 there is an .N'(E) 

such that for every w > .N'(E) 

leiTO"'Y(TO' w)1 < E. 

Equation (3.7) implies that 

IY(To, w)lleiTO"'j < E, 

or, since le·rowl = efJ"', 

11'(7'0' w)l eP'" < E, 

i.e., 
Ir(TO, w)l < Ee-P'" ::;;; E, 

because 
e-fJ'" ::;;; 1 for {3 ~ 0, w ~ O. 

Hence 

which is what was to be proved. 

(3.7) 

This completes the proof that the statements (i) 
and (ii) are equivalent. 

Next we show that the statement (iii) implies 
the statement (i). [Because of the equivalence of 
statements (i) and (ii), we conclude that statement 
(iii) will also imply statement (ii).] 

For this purpose we make use of the identities 

L'" 1J!'(w'; To)e-irW' dw' 

= 1J!(w;To)e-iT"'- ?p(O;TO) + iTL"'?p(W';To)e-ir",' dw', 

(3.8) 

Lm 1J!"(w'; To)e-itm' dw' 

= ?p'(w; To)e-iTW - ?p'(O; TO) + iT[1J!(W; To)e-ir", 

-1J!(0; TO)] - T2 SoW?p(W'; To)e-iT<01 dw', (3.9) 

from which we obtain the identity 

IJ [?p"( w'; TO) - i( TO - T:)?p'( w' ; TO) 

+ TO'7':?p(W'; '7'o)]e-irm
' dw' 

- [1J!'(W, '7'0) + i{T - ('7'0 - '7':)}1J!(W; '7'o)]e-it", 

+ 1J!'(O; TO) + i{T - ('7'0 - T:)}1J!(O; '7'0) 

= (T - '7'O)(T + '7':) Lm[-1J!(W'; TO)]e-ir<o' dw'. 

(3.10) 
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Here ",(00, TO) is the function satisfying Eq. (2.4a)­
(2.4c). 

First we must show that these identities are mean­
ingful if ",(00, TO) is chosen as stated. The solution of 
Eq. (2.4a), subject to the boundary conditions (2.4b), 
is 

1· . • * VJ(w; TO) =.( + *) [e"OWy( TO, 00) - e-lTO Wy( -TO, 00)] 
, TO TO 

(3.11) 

defined for every 00 (0 ~ 00 < (0). Because of Eq. 
(2.8), we see that ",(00; TO) is real. From Eq. (3.11) it 
follows that 

,(.)_ 1 [iTOW( ) '" 00, TO - * Toe Y TO, 00 
TO + TO 

+ * -iTO· tJ) ( * )] TO e y -TO' 00 . (3.12) 

With the help of these two expressions and from the 
formula (2.4a) written in the form 

"'''(00; To) - g(w) 

= i( TO - T:)",'( 00; TO) - TOT: 1p( 00; TO)' (3.13) 

we conclude that ",(00, TO)' 1p'(w, TO), 1p"(w, TO) - g(w) 
are continuou~ functions of 00 in the range 0 ~ 00 < 00. 

From the continuity of these functions and from the 
existence of the integral Sg'g(W')e-iTW'dw', which has 
been assumed in Eq. (1.1), we conclude that also the 
three integrals 

LW 1p(w'; To)e-iTW' dw', 

LW ",'( 00'; To)e-iTW' dw', 

LW ","( 00'; To)e-iTW' dw', 

(3.14) 

which occur in Eqs. (3.8), (3.9), (3.10), exist for all 
pairs of complex values T, TO with 1m T ~ 0 and 
(Re TO > 0, 1m TO ~ 0). 

Now we assert that the integrals in Eq. (3.14) 
exist even when 00 - 00. From the identities (3.8), 
(3.9) we obtain, as 00 -+- 00, 

LOO ""(00'; To)e-iTW' dw' = iT LOO 1p(w'; To)e-iTW' dw', 

(3.1Sa) 

LOO "'''(00'; To)eiTW' dw' = -T2LOO ",(00'; To)e-iTW' dw', 

(3.1Sb) 

where (2.4b), (2.4c) were used. All we have to show 
then is that the integral S:",(w'; TO)e-iTW'dw' exists 
for T and TO as chosen above. Using Eq. (2.4a), the 

identity (3.10) becomes 

LW g( w')e-iT"" dw' 

- [1p'(w; TO) + i{T - (To - T:)}VJ(W; To)]e-iT'" 

+ [",'(0; TO) + i{T - (TO - T:)}",(O; TO)] 

= (T - TO)(T + T:) L"'[ -1p(w; To)]e-iTW dw, (3.16) 

and using (2.4b) and (2.4c), we obtain, as 00 -+- 00, 

yeT) == LOOg(W')e-iTW' dw' 

= (T - TO)(T + 1":) Loo [-1p(w'; To)]e-iT"" dw'. 

(3.17) 

The left-hand side of Eq. (3.17) is the correlation 
function yeT), which exists. Hence also the integral 
So""1p(w'; To)e-iTW'dw' exists for T, To such that 
1m T ~ 0 and Re TO> 0, 1m 1"0 ~ O. Moreover, 

(3.18) 

which was to be shown. [What we tried to show above 
was that each separate tcrmin the identities (3.8), (3.9), 
(3.10) exists, so that no cancellation of any meaning­
less expressions occurs.] Equation (3.17), which is 
identical to Eq. (2.10), proves the assertion (d). 

Finally let us prove that the statement (ii) 
implies the statement (iii). [Because of the equivalence 
of statements (i) and (ii) we conclude then that 
statement (i) also implies the statement (iii).] 

For this purpose we define the function 

( 1· . • * 1p W;TO) = .( + *)[etTO"'Y(1"o,w)-e-"O "'Y(-TO' 00)] 
, 1"0 TO 

(3.19) 

in the range 0 ~ 00 < 00. This function is real 
because of Eq. (2.8) and is uniquely determined once 
g( 00) is given (0 ~ 00 < (0). The first and second 
derivatives of this function are 

'( . ) _ 1 [ iTow ( ) 1p W,TO - * Toe yTo,w 
TO + TO 

+ * -iTO·W ( * )] Toe Y -TO, 00 , 

'P"( 00; TO) = g( 00) +. 1 * [_T~eiTOWy( TO, 00) 
I(TO+TO) 

(3.20) 

+ *2 -iTO·'" ( * )] (321) TO e y -TO, 00, . 

from which we conclude that the function 1p(w, TO) 
satisfies the second-order differential equation 

1p"(w; TO) - i(TO - Tci)1p'(w; TO) 

+ TOT:1p(W; TO) = g(w). (3.22) 
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Moreover it satisfies the boundary conditions 

1p(0, TO) = 1p'(0, TO) = ° (3.23) 
since 

1'( TO, 0) = 1'( -T:, 0) = O. (3.24) 

Equations (3.22) and (3.23) completely define the 
function 1p(w, TO)' and so they are equivalent to 
Eq. (3.19) by means of which this function is defined. 

Now assuming the statement (ii) [which is equivalent 
to Eqs. (2.2) and (2.9)] and taking into account the 
expressions (3.19) and (3.20) for 1p(w, TO) and 1p'(w, TO), 
we find that 

1p( 00; TO) = 1p' ( 00; TO) = O. (3.25) 

The reason why we must consider the function 
1p(w, TO) as well as its derivative as w -+ 00 is that 
1p(w, TO) is a real function while the limit in Eq. (2.2) 
implies in fact two conditions, since the expression 
eiToroY(To, w) is generally complex. The function 
1p(w, TO) is proportional to the imaginary part of this 
expression, while the function 1p'(w, TO) is proportional 
to a linear combination of its real and imaginary parts. 
Also if TO is not a zero of yeT), then certainly 1p(w, TO) 
and/or 1p'(w, TO) do not tend to zero as w -+ 00, as 
deduced from Eqs. (3.19), (3.20) and the statement 
(b). 

The results (3.22), (3.23), and (3.25) taken together 
are the statement (iii), which was to be proved. 

We have thus demonstrated that the statements 
(i), (ii), and (iii) are equivalent. 

From Eq. (3.17) we see what is the mathematical 
meaning of the function 1p(w, TO)' Let yeT) have a 
zero at TO (Re TO > 0, 1m TO ~ 0) (and consequently 
also at - T:) and let us set 

yeT) = (T - TO)(T + T:)Y(T, TO)' (3.26) 

Comparing this expression to Eq. (3.17), it follows 
that 

1
00 

I. -i10)' I 1'( T, 'To) = 0 [-1p( w ,'To)]e dw . (3.27) 

If the correlation function yeT) vanishes for T = TO, 
then the function -1p(w, TO) exists with the properties 
(iii). Then also Eq. (3.17) is valid (consequence of 
(iii)], and so is Eq. (3.27). We see then that the 
integral S.;"'[-1p(w'; To)]e-iT",'dw' of the function 
-1p(w, TO)' defined in the range 0 ~ w < 00, is the 
correlation function divided by (T - TO)(T + Tt). We 
note that the form of this integral is exactly the same 
as the one defining the correlation function in Eq. 
(Ll), except that the spectral density g(w) has been 
replaced by the function -1p(w, TO)' 

We also conclude that the existence of a zero TO of 
the correlation function is equivalent to the solution 

of an eigenvalue problem, since the function 1p(w, TO) 
with the properties (2.4) exists only if a zero of the 
correlation function 1'( 'T) exists. 

The statement (iii) does not make it in any way 
easier to find the zeros of yeT) in any particular case 
from the knowledge of the spectral density g(w). But 
it does solve the converse problem of allowing the 
determination of spectra g( w) such that the corre­
sponding correlation function yeT) has zeros at 
prescribed points TO' This is done by choosing an 
appropriate function 1p(w, TO) satisfying conditions 
(2.4b) and (2.4c) and then constructing g(w) ac­
cording to the formula (2.4a). 

So far we have confined our attention to the case of 
a single zero. Our analysis can, however, be extended 
to the case of several zeros and such a situation will 
be considered in another publication. 

4. PROPERTIES OF THE FUNCTION 1p(w; 'To) 

If we set TO = oc - ifJ (oc > 0, fJ ~ 0), the system 
(2.4) becomes 

1p"(w; TO) - 2{J1p'(w; 'To) + (oc2 + (J2)1p(W; TO) = g(w), 

(4.1a) 

1p(0; 'To) = 1p'(0; 'To) = 0, (4.1b) 

1p(00; TO) = 1p'(00; To) = O. (4.1c) 

Let us multiply Eq. (4.1a) by 1p'(w, TO)' Then 

H1p'2(W; TO)]' - 2{J1p'2(w; TO) + t(oc2 + (J2) 

X [1p2(W; TO)]' = g(w)1p'(w; TO)' (4.2) 

or, after integrating over the w range from 0 to wand 
on taking into account the condition ( 4.1 b), we find 
that 

!1p,Z( w; TO) + !( oc2 + fJ2)1p2( w; TO) 

= I' g(w')1p'(w'; TO) dw' + 2{J L'" 1p,2(W'; TO) dw'. 

(4.3) 

The left-hand side of this equation tends to zero as 
w -+ 00, and the integral S~1p'Z(w'; TO) dw' will be 
larger than some positive number M if w > WO' so 
that the expression 

!1p,2(W; TO) + !(OCZ + (JZ)1pZ(w; TO) 

L'" 1p,Z( w'; TO) dw' 

tends to zero as w -+ 00. From Eq. (4.3) it then 
follows that 

1'" g( w')1p'( w'; 'To) dw' 
fJ = -! lim 0 (4.4) 

ro~ 00 L'" 1p,Z( w'; TO) dw' 
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If the function 1p'(w; TO) is square integrable, then 

1 l~ g( w')1p'( 00'; TO) dw' 
(3 = - - (4.5) 

2 r~ Jo 1p,2(W'; TO) dw' 

Another property of the function "1'(00; TO) can 
be obtained from Eq. (2.10) if we set '1' = O. We then 
have 

l~ (' ) d' 1 1 1p W ; TO W = -* = 2 2 • 
o TOTO ex + (3 

(4.6) 

We see then that the function "1'(00; TO) is integrable. 
Let us solve the differential equation (4.1a) subject 

to conditions (4.1b). We have 

1p(w; TO) =! rOg(w')eP{(!HI)') sin ex(w - W') dw', 
ex Jo 

(4.7a) 
or, changing the variable ofintegration, 

1p(W; TO) =! ro g(w - w')ePOO' sin exw' dw'. (4.7b) 
ex Jo 

Let us restrict 00 to the interval 0 ~ 00 ~ 1T/ex. Since 
w' lies in the interval 0 ~ w' ~ w, we have 0 ~ 
00' ~ 1T/ex or 0 ~ exw' ~ 1T and 0 < sin exw' ~ 1. Re­
calling that the spectral density g(w) is nonnegative, 
we see that if 0 ~ W ~ 1T/ex, the integrand in Eq. 
(4.7b) is also nonnegative, and hence 

1p(w; TO) ~ 0 for 0 ~ W ~ 1T/ex. (4.8) 

The functions 1p(W; TO) and 1p'(w; TO) are con­
tinuous and they tend to zero as W -- O. Let us assume 
that 1p(w; 7'0) becomes negative for some range of 00 
values with W > Wo (certainly 000 > 1T/CX). Since the 
function 1p(w; TO) is continuous and tends to zero as 
W -- eo, it will certainly have a minimum for some 
wm > Wo where 

1p(wm ; TO) < 0, 

1p'(wm; 7'0) = 0, 

1p"(Wm ; TO) = g(wm) - (ex2 + (32)1p(Wm ; TO) > O. 

Now for some range of values of 00 with 00 > Wm • the 
function "1"(00; TO) will be positive (it is equal to zero 
when W = wm) and monotonically increasing. Since 
this function 1p'(w; TO) is continuous and tends to 
zero as W -- eo, it will certairily reach a maximum 
value at W = Wi > Wm , where 

and 

1p'(wi ; TO) > 0, 

1p"(Wi; TO) = 0, 

because (3 ~ 0 and g(w.) ~ o. But Wi is the first 
inflection point of the function 1p(Wt; To) which is 
closest to its minimum at W = W m , if we consider only 
values of W ~ Wm' We have then shown that: 

(a) The function 1p(w; TO> must have an inflection 
point that follows a minimum at W = Wm where 
1p(wm ; TO) < 0; 

(b) At the inflection point W = Wi > Wm' we must 
have 1p(w.; TO) > O. or 1p(W.; TO) = 0, if both fJ = 0 
and g(wi ) = 0; 

(c) In the interval Wm ~ W ~ w" the function 
1p'(w; TO) is monotonically increasing and positive, 
except at W = Wm' where 1p'(wm; TO> = O. Hence 
the function 

tp{W;TO) = tp{Wm;TO) + fOO 1p'(w'; TO) dw' 
Joo ... 

is also monotonically increasing in this interval. 
An immediate consequence of the results (a), (b), 

and (c) is that, if there is an W for which 1p(w; 7'0) < 0, 
then there is certainly an w' > W for which 
1p(w'; TO) > 0; i.e., if 1p(w; TO) becomes negative for 
some value of w, then there is a value w' greater than 
W for which it becomes positive again. In other words, 
there can be no value Wo for which 1p(w; TO) < 0 for 
all W > wo. 

5. EQUIVALENCE OF THE ZERO PROBLEM 
TO A STABILITY PROBLEM IN MECHANICS 

In the system of Eqs. (4.1) let us make the sub­
stitutions 

W = t, 
1p(w; TO) = X(t), 

g(w) = F(t). 

Then the system becomes 

X"(t) - 2{3X'(t) + (cx2 + (32)X(t) = F(t), 

X(O) = X/CO) = 0, 

X(eo) = X/(eo) = O. 

Now if we rewrite (5.2a) in the form 

(5.1) 

(5.2a) 

(5.2b) 

(5.2c) 

X"(t) = F(t) + 2fJX'(t) - (cx2 + (32)X(t), (5.3) 

we see that this is the equation of motion of a particle 
with unit mass upon which the following forces are 
acting: 

(a) The force F(t) = get), which is nonnegative for 
all values of t ~ 0; 

(b) A force +2{3X'(t) proportional to the velocity 
of the particle, not opposing the motion but in the 
same direction to it (consequently, not a friction 
force of the medium surrounding the particle); 

(c) A force -(ex2 + (32)X(t) proportional to its 
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displacement, i.e., an elastic force, with elastic 
constant ex2 + f32, which tends to move the particle 
towards the origin. 

The forces F(t) and +2f3X'(t) have the tendency to 
move the particle to infinity while the force 
-(ex2 + f32)X(t) has the tendency to bring the particle 
back to the origin. 

The particle starts at t = 0 from the origin with 
zero velocity. The requirement is that it returns to the 
origin with zero velocity at t = 00. This cannot be 
done with an arbitrary set of the parameters (2f3, 
ex2 + f32) or (ex, f3) once the force F(t) is given. As a 
matter off act there may be no values (ex, f3) for which 
X( (0) = X'( (0) = O. In this case the particle will 
oscillate around the origin with increasing amplitude, 
i.e. its position is unstable. 

Let us define as stable a solution of the system of 
Eqs. (5.2a), (5.2b) which satisfies also Eq. (5.2c). In 
this case the particle returns back to the origin with 
zero velocity at t = 00, i.e., it does not oscillate 
indefinitely in time with a finite amplitude. In this 
case the particle will eventually return to the origin­
its position is a stable one at t = 00. This situation 
arises when the parameters (ex, f3) are properly 
chosen; whether this is in fact possible depends on the 
time-dependent force F(t). It is obvious then that our 
problem as to the existence and location of zeros of 
the correlation function in the lower half and on the 
real axis of the complex T plane is equivalent to the 
stability problem in mechanics, which we just dis­
cussed. 

6. EXAMPLES 

Example 1 

As an illustration of the equivalence of statements 
(i) and (iii), we first give an example which can be 
solved explicitly. Consider the case when the power 
spectrum is given by the expression 

g(w) =! 21-'4 [(),2 + 41-'2)W3 
_ 121-'w2 + 6w]e-I'''', 

6), + 1-'2 
(6.1) 

where), > 0, I-' > 0; if g(w) is to be nonnegative, we 
must also assume that ),2 2 21-'2. 

Evaluating the integral (1.1), we find that 

yeT) = - 1-'4 1 4 (T - ), +" il-')(T + ), + il-'). 
),2 + 1-'2 (p, + iT) 

(6.2) 

We see then that the correlation function vanishes for 
TO = A. - il-' and -T: = -A. - il-" 

Next let us solve the differential Eq. (2.4a) subject 

to conditions (2.4b). We set TO = ex - if3 (ex > 0, 
f3 2 0), where ex, f3 are unknown quantities that may 
be determined by using condition (2.4c). We obtain 
the solution 

(6.4c) 

),2 + 41-'2 
E = ex2 + (f3 + 1-')2 (f3 + 1-') - 21-" 

(6.4e) 

If the function ",,(w; TO) and its derivative are to tend 
to zero as w --+- oo[condition (2.4c)], we must have 

A = B = 0, (6.5) 
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(6.6) 

(6.7) 

To solve Eqs. (6.6) and (6.7) for IX and fJ, we note that 
the expression 4a,2(fJ + ft)B - (a,2 - (fJ + ft)2)A must 
identically vanish. Hence 

41X2(fJ + ft)(fJ - ft) - (a,2 - (fJ + ft)'1) 

X [(fJ - ft)2 + A,ll - a,2] = 0, (6.8) 
or 

a,' + [4(fJ2 - ft2) - (fJ + ft)2 - (fJ - ftY!' - A,2]a,2 

+ (fJ + ft)2[(fJ - ft)2 + A,2] = O. (6.9) 

Now Eq. (6.7) is equivalent to the equation 

(fJ + 3ft)a,4 + {2ft2(fJ + ft)3 - (A,2 + 4ft2) 

X (fJ + ft) - 2(A,2 + 4ft2)}1X2 + (fJ + ft)2 

X [(fJ - ft)«{3 + ft)2 - 4ft2) + {3 + 3ft] = O. 
(6.10) 

If we multiply Eq. (6.9) by ({3 + 3ft) and subtract 
it from Eq. (6.10), we obtain the equation 

(fJ - ft)[{4ft(fJ + ft) + 4ft2 + A,2}a,2 + ({3 + ft)2 

x {4ft((3 + ft) - 4ft2 - A,2}] = O. (6.11) 

This equation shows that either 

or 
fJ=ft (6.12) 

«,'l' = -({3 + ft)2 4ft({3 + ft) - 4ft2 - A,ll. (6.13) 
4ft(fJ + ft) + 4ft2 + A, 2 

First let us consider the case {3 = ft. Then from 
Eq. (6.7) we obtain either 

a,=A, 
or 

IX = 2ft. 

(6.14) 

(6.15) 

Now for the pair of values a, = A" {3 = ft we obtain, 
from Eq. (6.6), A = 0, while for the pair of values 
IX = 2ft, {3 = ft we obtain [again from Eq. (6.6)J 
A = _A,ll + 4ft2, and this quantity is zero only if 
A = 2ft, in which case the pair a, = 2ft, fJ = ft 
becomes a, = A, {3 = ft. Then, if both Eqs. (6.6) and 
(6.7) are to be satisfied, we must have a, = A" {3 = ft. 

Next let us consider the case when a, is given by 

Eq. (6.13). Substituting for a,2 from Eq. (6.13) into 
Eq. (6.7), we obtain B = fJ + 3ft = 0; this condition 
can never be satisfied since fJ ~ 0, ft > O. We see 
then that if both Eqs. (6.6), (6.7) are to be satisfied, 
Eq. (6.11) must also be satisfied. But if {3 ;06 ft, {3 ~ 0, 
ft> O,andEq. (6.11)issatisfied,thenEq. (6.7) cannot 
be satisfied. We have then the final result that the 
only pair of values a" {3 which satisfies both Eqs. (6.6), 
(6.7) is a, = A" (3 = ft, so that TO = A - ift. For this 
pair of values we obtain the following eigensolution 
of tp(w; TO): 

tp(w; TO = A - ift) =! 2 ft' 2o}e-I'w. (6.16) 
6A. +ft 

The ahove example illustrates that the statement 
(iii), which is equivalent to the statement (i), does not 
seem to help appreciably in the determination of the 
zeros of the correlation function, but it does make it 
easy to determine spectra g(w), which are such that 
the corresponding correlation function yeT) has zeros 
at prescribed points TO' 

Example 2 

Next, we give an example of a quasi-monochro­
matic spectral density for which the corresponding 
correlation function has no zeros anywhere in the 
complex T plane. Such an example is furnished by the 
spectral density 

g(w) = (qP+l/p !) w'l'e-flW
, (6.17) 

where p ~ 0, q > 0, and p» 1. The corresponding 
correlation function is readily found to be 

yeT) = q1't-l/(q + iT)1>+l. (6.18) 

We see that yeT) does not vanish for any complex 
value of T. 

Next we show that the spectral density g(w), given 
by Eq. (6.17), is quasi-monochromatic if p » 1. We 
define 

Aw = [w2 - w2]t, (6.19) 

where the average, denoted by a bar, is defined by 

_ loof(w)g(w) dw 

few) = . (6.20) 
l'" g(w) dw 

The spectral density will be said to be quasi-mono­
chromatic if AW/w « 1. 

For the spectral density g(w) given by Eq. (6.17), 
we have 

w2 = (q)-2(p + 1)(p + 2), (6.21) 

W = (q)-l(p + 1), (6.22) 
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so that, according to Eq. (6.19), 

Aw = (q)-I(p + 1)1. 

We see that the ratio 

Awlw = I/(p + 1)1 

is much less than unity if p » 1. 

Example 3 

(6.23) 

(6.24) 

Now using some results derived in the previous 
example, we determine a spectral density g(w) with 
its corresponding correlation function having a 
single pair of zeros in the complex T plane. For this 
purpose let us define the function 

. 1 ql>+l. _ .. 
'/I(W· TO = IX - l{J) = - w'Pe q, (6.25) 
T , 1X2 + {J'1. p! 

where p > 1, q > 0, IX > 0, {J ~ o. This function is 
similar to the spectral density given by Eq. (6.17). 
Then, according to Eq. (6.18), 

roo 1 q'P~ 
Jo [-tp(w; To)]e-iTO> dw = - oc2 + {J2 (q + iT)l>+l· 

(6.26) 

The function tp(w; TO) satisfies the conditions (2.4b), 
(2.4c) and 

1 1>+1 
tp'(W; TO) = 2 {J2 ~ (p - qw)w'P-1e-QOJ, (6.27) 

oc + p. 

1 ql>+l 
tp"(w; TO) = 2 + {J'1. -, 

IX p. 
X [(p - l)p - 2pqw + q2w2 ]w'P-2e-qco

• (6.28) 

Substituting for tp(w; TO) and its derivatives in 

Eq. (2.4a), we obtain the following spectral density 
function: 

1 ql>+l 

g(w) = 2 + {J2-, 
IX p. 

X [{oc2 + ({J + q)2}W2 - 2p({J + q)w + (p - l)p] 
X w'P-2e-QOJ. (6.29) 

This spectral density function is nonnegative if 
(p - l)oc2 > ({J + q)2. 

From Eqs. (6.25) and (6.29) we see that in the 
solution of the system (2.4) different spectral densities 
g(w) may lead to the same eigensolution tp(w; TO). In 
this example the different spectral densities g( w) 
correspond to different values of the set oc, {J with 
1X2 + {J2 equal to a given constant, and tp(w; TO) 

depends only on 1X2 + {J2 and not on the particular 
values oc and{J. 

Making use of Eqs. (2.10) and (6.26), we find that 
the corresponding correlation function is 

YeT) = - 1 (T - IX + i{J) 
oc2 + {Ji 

1>+1 

X (T + IX + i{J) q. 1>+1. (6.30) 
(q + IT) 

We see then that yeT) has a single pair of zeros at the 
points TO = IX - i{J and -T! = -oc - i{J, and yeO) = 1, 
so that the integral of the spectral density g(w), given 
by Eq. (6.29), is normalized to unity [in accordance 
to Eq. (1.4)]. 
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This paper rederives the Bogoliubov/Sadovnikov c1assical-equilibrium-correlation Green's function 
hierarchy by using the double-time theory of Rostoker. Thus the traditional variational technique 
is avoided. 

1. INTRODUCTION 

ONE need only refer to Zubarev'sl review paper 
on quantum statistical Green's functions to re­

alize the importance of the concept of these functions 
not only in quantum field theory but also in quantum 
statistical mechanics. 

In classical statistical mechanics Balescu demon­
strated the utility of causal and anticausal Green's 
functions in the initial-value solution of the Liouville 
equation2 and also in the study of transport co­
efficients.2.3 This technique was also used by Severne4 

in a study of systems in uniform external fields. 
The question of extending the quantum statistical 

Green's approach to classical statistics has been raised 
by Bogoliubov and Sadovnikov.5 These authors 
established a hierarchy of classical equilibrium 
Green's functions using a variational technique on the 
single-time distribution functions of the Bogoliubov­
Born-Green-Kirkwood-Yvon hierarchy.6 Recently 
Sadovnikov7 employed this hierarchy in a study of the 
Boltzmann equation. 

In the present paper the causal Green's functions 
are used to relate the double-time system functionS of 
Rostoker6.9 to the well-known single-time system 
function. Reduced double-time distribution functions 
are defined in which no particles are singled out as 
test particles. These reduced functions, which obey 
the BBGKY equations in their later-time variables, 
are directly related to the correlation functions of the 

1 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.: 
Soviet Phys.-Usp. 3, 320 (1960)]. 

2 R. Balescu, Statistical Mechanics of Charged Particles (Inter-
science Publishers, Inc., New York, 1963). 

3 R. BaJescu, Physica 27,693 (1961). 
, G. Severne, Physica 30, 1365 (1964). 
• N. N. Bogoliubov and B. 1. Sadovnikov, Zh. Eksperim. i 

Teor. Fiz. 43, 677 (1962) [English transl.: Soviet Phys.-JETP 16, 
482 (1963)]. 

6 D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory 
(McGraw-Hill Book Company, Inc., New York, 1964). 

7 B. 1. Sadovnikov, Physica 32, 858 (1966). 
8 The term "system function" is used as synonymous with 

N-particle function. 
• N. Rostoker, Nucl. Fusion 1, 101 (1961). 

B-S theory with the result that obtention of the 
Green's hierarchy is straightforward. 

2. THE SYSTEM 

The system considered is conservative, contained 
in a box of volume V, and consists of N identical 
particles interacting via central two-body forces. All 
results are stated in the thermodynamic limit, N --+- 00, 

V--+- 00, for which it is assumed N/V --+- n. Integrations 
extend over the entire phase space of the variables 
concerned, and when performed by parts assume that 
all distribution functions and Green's functions obey 
periodic boundary conditions in positional space and 
homogeneous boundary conditions in momentum 
space such that they approach zero exponentially as 
any momentum variable on which they depend 
approaches infinity. 

3. SYSTEM FUNCTIONS AND THE 
LIOUVILLE EQUATION 

The single-time system distribution function 
D1, (r, t),10 the probability density that, at a particular 
time t, the system's particles occupy the phase points 
r, satisfies the Liouville equation 

where 

and 
2 

HN(r) = ! ~ + ! CfJii' 
l~i~N 2m l~i<i~N 

(3) 

CfJij being the scalar potential between particles i and 

10 The symbol r denotes the entire set of phase points (Xl, Pl' 
X., P., ... , XN, PN) and (xi' Pi) is denoted briefly as Xj • Where 
reference is made to particular points in the system rather than 
particular particles, the symbol RJ == (-t j , Pi) is used. 

1650 
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j. More explicitly the Liouville equation is 

oDI = ~ (OgyH. oD l _ !!i. OD l ), 

at l:Sj:SN OXj OPi maxi 
(4) 

r at time t, a symmetrical function 'Y (rt IX' I') is defined. 

'Y{rt/x't'):= ~ fdr'D2(rttr't')3{XI - XI)' 
lSiSN 

(12) 

No particle is singled out at the earlier time, that is, 
which may be abbreviated by appropriately defining 
a Liouville operator L such that 

This equation may be solved as an initial-value 
problem by defining causal and anticausal Green's 
functions.2 The causal function is defined to be 
the solution of 

'Y(rt/x' I') is the probability density that at I' there is a 
(5) particle at X' and at time t the system occupies the 

point r. Reduced functions are defined as 

N 

(olot + iL)g(rttr't') = IT 3(X, - X;)3(t - I') (6) 
i=1 

= 3(r - r/)3(1 - t'), (6a) 

and to satisfy the causality conditionll 

g(t/t') = 0 for t < t'. (7) 

The unprimed differential operators in (6) only act on 
the unprimed variables of g. 

One then has 

{f.(X1X2 ••• X.tIX't') 

= VB f dXs+1 dX.+2 ... dXN'Y(rt/x't'). (13) 

As an example, the fluctuation of density in phase 
space is given by 

(n(Rt)n(R' t'» 
= f dr dr' D2(rttr't')I:sftN 3{R - X,)3{R' - X~) 

lSnSN 
(14) 

(15) 

The generalized class of dynamical variables defined 
in the Bogoliubov-Sadovnikov theory is 

D1(r, t) =f dr'g(rttr'to) Dlr' ,to)· (8) ARl,R
B 
•••• R.(I) = ~ 3(R1-Xi ) 

lSil<' "<i.SN 

This solution shows g(rt/r'to) as a transition proba­
bility that the system in the state r' at time to moves to 
the state r at a later time t. Thus one must have 

X 3(R2 - Xi.) ... 3(R .. - Xi), 

so that, instead of (15), one may write 

(16) 

(AR(t)AR,{/'» = n{fl(Rt/R't'). 
(9) In general, 

(17) 

One may now define the double-time system 
function of Rostoker's fluctuation theory9 as 

that is to say, D 2(rt/r't') is the probability density 
that the system is at r' at time t ' and at r at a later 
time t. In view of (9) the initial value of D2 is given by 

(11) 

Also since g obeys the Liouville equation in its later­
time variables when t > t', the double-time system 
function also obeys it under this condition. 

4. REDUCED DISTRIBUTION FUNCTIONS 

Instead of following Rostoker and defining a 
reduced system function tp(rt/x~t') such that 
tp(rtIX~t')fV is the probability density that particle 1 
is at X~ at time t ' and the system moves into the state 

11 The notation used here treats primed variables as corresponding 
to earlier times and conforms with that of Balescu (see Ref. 2). 

nB 
(AR R •.. R (t)AR,(t'» = -, {f,(R1R2 '" R,tfR't). 

1 2. s. 

(18) 

In terms of particle probabilities, this is thus the 
probability density that there is a particle at (R', I') 
and an arbitrary set of s particles occupying the phase 
points R1 , R2 , • • • ,R. in a particular array at time t. 
The {f's obey the BBGKY hierarchy equations. 

S. EQUILmRIUM CORRELATION GREEN'S 
FUNCTIONS AND THEIR HIERARCHY 

The classical analogs of the quantum statistical 
double-time retarded and advanced Green's functions 
are, respectively, 12 

Gr(tft') = Je(t - t')([A(t); B(t')]), (19) 

Git/t') = -Je(t' - t)([A(t); B(t')]), (20) 

where Je is the Heaviside function. 

12 From the definition of double-time averages in terms of Dt , 
one can show that these averages may be expressed in terms of 
classical Heisenberg operators Ao(t) = eILtA(O)e-ILt, highlighting 
the analogy with quantum statistics. 
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For brevity, only retarded functions are considered g(rt/r't') is the solution to (6), one may write it as 
here. g(r/r'; t - t'). Hence, according to (10), one may 

In the equilibrium case write 
(30) 

(21) 
and therefore the functional form of the fluctuations 

where 0 = kT and QN is the partition function. Using is 
(21) one can show on integrating by parts that13 

([A(t); B(t')]) = 0-I(B(t')[A(t); H N ]). (22) 

The dynamical quantities are considered to depend 
on time only via the time dependence of phase 
variables, so that they satisfy 

(d/dt)A{r(t)} = [A; HN]' 

Combining (22) and (23) gives 

([A(t); B(t')]) = (l/O)(d/dt)(A(t)B(t'». (24) 
Now 

(Ar(t)Ax,(t'» = '¥(rt/x't') (25) 

so that one may write1
" 

(%t)(Ar(t)Ax,(t'» = [HN ; (Ar(t)Ax,(t'»]. (26) 

Equations (23), (24), and the fact that the system 
is conservative enable one to rewrite (26) as 

(%t)([Ar(t); Ax'(t')]) = [HN; ([Ar(t); Ax'(t')])· 

(27) 

Using (13), (18), (24), and (25), one can show that 

([Ax1xa · .. x,(t); Ax,(t')]) 

= va ~ jdrN -'([A r(t); Ax.(t')]). (28) 
s. 

Therefore multiplication of (27) by V·n'/s! and inte­
gration with respect to X.+l , XO+2 , •.. ,XN yields a 
hierarchy of Green's functions. 

%t ([Ax x ... x (t);Ax,(t')]) 
1 I , 

= [H.(X1X2 ••• X3); ([Axlxs ... x.(t); Ax,(t')])] 

+ (s+ 1) I dXo+1 
1:5':9 

X [({Ji.o+l; ([AX1 ' "X.xHl(t); Ax.(t')])]. (29) 

H, is the Hamiltonian of s interacting particles. 
The hierarchy equation (25) of the B-S paper can 

be shown to be the one-sided Laplace transform of the 
above equation. IS 

Since the system is in equilibrium, Dl does not 
depend explicitly on the time; and noting that 

13 One can show that the double-time averages are expressible in 
terms of dynamical quantities which are solutions of (23). that is. 
A(t) = eiLIA(O). and which therefore are not operators. See J. 
Weinstock. Phys. Rev. 139, 388 (1965). 

I.' Note that a .hierarchy for the correlation functions may be 
WrItten down valId for both the nonequilibrium and equilibrium 
cases. 

16 See Ref. 2. APP. 1. for a concise discussion of such one­
sided Laplace transforms. 

(A(t)B(t'» = ({J(t - t'). (31) 

If one now takes the Fourier transform of (29) 
with respect to T = t - t', one in fact has a one-sided 
Laplace transform since g(t/t') is zero for t < t', 
so that 

= [H.(X1X2 •• ·X.); «AXIXS"'X,; AX'»E] 

+ (s + 1) 1:5~' j dX.+l[({Ji.8+l; «AX1 ... x.x.+1;AX·»E] 

+ ([AXIXS'" x,(t'); Ax ,(t')])/27T, (32) 

where 

«A; B»E == - dTeiET([A(t); B(t')]), 1 fro 
27T 0 

(33) 

and, in deriving (32), it has been assumed that the 
imaginary part of E is positive definite. 

The initial-value term may be expressed in terms of 
the reduced equilibrium single-time distribution 
function P, defined by 

r.(X1X2 ••• X,) = v"f drn-. Df. (34) 

One can show that [the primed time has been removed 
in respect of (30)] 

<[AR R ••• R ; AR,» = ~ I fdX1 dX2 • •• dX, 
1 2 8 s! l:5i:5 • 

• 
X II <5(Ri - X.)[<5(Ri - Xi); <5(R' - X.)]p,. 

i=1 
",i 

Now using 

f
ro 0 0 

dx f(x) -::;- <5(x - x') = - -::;-;j(x), 
-ro ux ux 

one finds that 

(35) 

(36) 

nS 

([AX1Xa '" x.; Ad) = - I [<5(X' - Xi); F~l· (37) 
s! l:5i:5. 

On substitution of (37) in (32), the hierarchy pre­
sented as equation (25) of the paper by Bogoliubov 
and Sadovnikov is recovered. 
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The boundary-value problem for the linearized Boltzmann equation is shown to have a unique solution 
for a bounded domain (two walls separated by an arbitrary distance). The proof applies to a general 
class of models with finite collision frequency and appears to be easily extendible to similar problems in 
two and three dimensions. It differs essentially from previously known proofs because no limitations are 
put on the distance between the walls. 

1. INTRODUCTION 

THE solution of boundary value problems in 
kinetic theory has been treated by many approxi­

mate methods, but until now the question of proving 
the existence of the solution has remained substantially 
untouched-even for linearized flows. In fact, either 
only trivial boundary conditions have been taken into 
account, 1 or the domain has been assumed to be 
sufficiently small (of the order of a mean free path).2.3 

Rigorous existence proofs have only been presented 
for models of the Boltzmann equation, either directly 
by the method of integral iteration' or, indirectly, by 
the method of "elementary solutions." 5 

In the present paper we present a rather simple 
proof of existence and uniqueness for the linearized 
Boltzmann equation with finite collision frequency. 
Therefore, the proof applies to rigid sphere molecules 
as well as molecules interacting with any cutoff 
intermolecular potential. Any linearized molecular 
model, including the recently studied model with 
velocity-dependent collision frequency,6.7 is also 
contained in the class of equations to which the proof 
applies. 

The domain is assumed to be a slab and the bound­
ary conditions have a rather simple but realistic form, 
i.e., the distribution function is given for emerging 

• On leave of absence from Applicazioni e Ricerche Scientifiche, 
Milano and Universita di Milano, Milano (Italy). 

1 H. Grad, in Rarefied Gas Dynamics, J. A. Laurmann, Ed. 
(Academic Press Inc., New York, 1963), Vol. I, p. 26. 

I D. R. Willis, in Rarefied Gas Dynamics, L. Talbot, Ed. (Aca­
demic Press Inc., New York, 1961), p. 423. 

3 H. Grad, "High Frequency Sound According to the Boltz­
mann Equation", Joint AFOSR-NSF Report, AFOSR-66-0l45, 
MF-49 (New York University, 1966)-to appear in the SIAM 
Journal. 

• D. R. Willis, Princeton Univ. Aeronautical Eng. Rept. 440 
(1958). 

6 C. Cercignani, "Elementary Solutions and Boundary Value 
Problems in the Kinetic Theory of Gases"-Brown University 
Report (1965). 

I C. Cercignani, Ann. Phys. (N.Y.) 40, 454 (1966). 
7 C. Cercignani, Ann. Phys. (N.Y.) 40,469 (1966). 

molecules at each wall. The problems which are 
considered are steady in a general sense, i.e., a 
dependence on time through an exponential factor 
est with Re s ~ 0 is allowed. This implies the existence 
and uniqueness of Laplace transformable solutions in 
time-dependent problems, as well as the existence 
and uniqueness of the solution for forced wave 
problems (s = iO)). 

2. BASIC EQUATIONS AND OPERATORS 

Consider a one-dimensional problem between two 
parallel plates for the separated time equation: 

sf + C.,(iJfliJx) = Lf, (2.1) 

where f is the perturbation of a basic Maxwellian /0 . 
We suppose that the emerging distribution f+ = f+ is 
given at x = -td (C., > 0) and f = 1- is given at 
x = td (C., < 0). We restrict to suitable collision 
operators L by requiring that they can be split into 
two parts as follows: 

Lf = Kf - v(c)f, (2.2) 

where v(c) is a multiplication operator and K is such 
that v-iKv-i is a completely continuous operator 
in the Hilbert space Je of square summable functions 
with respect to the weight fo. It is well-known1.8 that 
the rigid spheres interaction and a general intermolec­
ular potential with angular cutoff satisfy the above 
conditions. It is also very likely (and worthwhile to 
be proved rigorously) that more general cutoff 
operators (with radial rather than angular cutoff) 
enjoy the above properties. 

As a consequence of these properties one can show 
(Appendix A) that a real number A exists such that, if 

Hf = Kf + AVf, (2.3) 
then 

o < (f, Hf) ~ (A + 1)(vf,f), (2.4) 

8 L. Finkelstein, Ph.D. thesis, Hebrew University, Jerusalem 
(1962). 
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where round brackets denote, as usual, inner product 
in the Je space. Of course, if A. is a number such that 
(2.3) and (2.4) are satisfied, then any A. > ,10 is also 
such a number. It could also tum out that min A. = 0, 
in which case H can be taken to be equal to K. 

As a consequence of Eqs. (2.2) and (2.3), we have 

Lf = Hf - (A. + 1)vf, (2.5) 

and consequently one can rewrite Eq. (2.1) as an 
"integral" equation: 

The above theorem is an immediate consequence of 
the contraction mapping theorem, the fact that /0 as 
given by Eq. (2.6) belongs to J(" and the following: 

Lemma: The operator UH is a contraction operator 
when acting on functions belonging to J(,. 

To prove this lemma, we first note that for any 
square summable g(x), 

IIUgIL. ~ fl/p(c)] IIgll",. (3.1) 
f=/o + UHf, 

where 

fo = I exp - - + x sgn c'" , [ 
(A.+1}V+S(d )] 

Ic",1 2 

(2.6) This inequality is a matter of a rather elementary 
exercise; details are given in Appendix B. From Eq. 

(2.7) (3.1) it follows that 

U 1 f'" {[(A + 1)11 + s] I I} g = - exp - x - y 
e", -t<lSgncz Ic",1 

x g(y) dy, (2.8) 

/= {
/+' for c'" > 0, 

/_, for c'" < o. 
(2.9) 

For a steady problem we have merely to set s = O. 
In the following it is useful to consider a Hilbert 
space J(, of square summable functions with respect 
to both x and c and with the weight p(c)!(O)(c), where 

p(c) == {(A + 1)2[1I(cW + (7T2/4d2)c!}i. (2.10) 

The norm in such a space is given by 

IIf11i =fld dXfdCP(C)f(O)(C)lf(X, c)1 2
, (2.11) 

-ttl 
and because of the Fubini theorem, 

IIf112 = II IIfile II! = II IIf11", II~· (2.12) 

II!II~ and IIfll: denote the partial norms 

where e is the three-dimensional velocity space. 

3. EXISTENCE AND UNIQUENESS 
IN THE LARGE 

We present here a proof of the following: 

(2.13) 

(2.14) 

rheorem: The integral equation form of the Boltz­
mann equation, Eq. (2.6), has one and only one 
solution f E J(" for any given/ such that II/11~ is finite. 
This solution f can be obtained in principle by a con­
vergent iteration procedure. 

(3.2) 

where II llJe denotes the norm in the more usual 
Hilbert space Je, while 

J== p-iHp-i;g= pi! (3.3) 

But it can be easily proved (Appendix C) that 

IIJgII~ ~ IX IIgll~ = IX IIf11~, (3.4) 
where 

0<1X<1. 
Therefore 

II UHfili ~ IX IllIflle II! = IX "fll~ (0 < IX < 1); 
(3.5) 

i.e., UH is a contraction operator, as was to be shown. 

4. CONCLUDING REMARKS 

A theorem of existence and uniqueness for the 
boundary value problem of a rarefied gas enclosed 
between two parallel plates has been given. With 
respect to the previously known results,2.3 we stress 
the fact that the proof is not for existence in the small 
but in the large; i.e., the separation between the walls 
is arbitrary. 

The proof applies to a large class of collision 
operators, including all the cutoff interactions con­
sidered by Grad3 and the rigid sphere interaction 
considered by Willis.2 It is also very likely, although 
a formal proof has not been presented here, that more 
general cutoff operators (with radial rather than 
angular cutoff) are also included in the same class. 
This circumstance appears to be important since a 
full proof of this statement would give a sound 
mathematical basis to the theory of collision operators 



                                                                                                                                    

BOUNDARY VALUE PROBLEMS IN KINETIC THEORY 1655 

with radial cutoff, i.e., with a much more realistic 
cutoff than the angular one. We notice that the ques­
tion of the kind of cutoff is not merely a matter of 
convenience, but influences essentially predictions of 
(at least in principle) experimentally verifiable results, 
as, e.g., the far-field disturbance produced by an 
oscillating wall. Grads presented results for any 
angular cutoff intermolecular potential, but the 
same potentials with a radial cutoff would yield 
essentially different results. 

The present proof should be easily extended to 
two-dimensional and three-dimensional internal prob­
lems, while for external flows a preliminary study of 
the far field should prove expedient. 

Finally we remark that, although we proved 
convergence of the successive approximations method 
in the J{, space, convergence in more usual norms, 
weighted with v(e)pO), le",1 PO) or simply PO) imme­
diately follows, since these norms are bounded by a 
constant times the norm in J{,. 
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We can assume that e", > 0, since no essential differ­
ences arise. Then we can put 

oc = (A. + l)v(e)/le",l, (B3) 

IIUgH; ~ ~f!ll dxf'" dyf'" dz exp [-oc Ix - yll 
le",1 -!ll -!ll -!L 

X exp [-oc Ix - zlllg(y)llg(2)1 

= (l/1e",1 2)(lgl, A Igl)", , (B4) 

where ( , )'" denotes the inner product which gen­
erates the norm given by Eq. (2.14) and A is an integral 
operator with the kernel 

A(x, y) =i!ll dz exp [-oc(2z - x - y)] 
MC""II) 

= (1/2oc)[e-«llI-zl- e-«CL-II-z)], (B5) 

where M(x, y) = l(x + y + Ix - yl = max (x, y). A 
is compact and self-adjoint. 

APPENDIX A 

Here we want to prove that any collision operator, 
which can be split according to Eq. (2.2) with K such 
that v-!Kv-! is a completely continuous operator in 
.le, can also be split according to Eq. (2.2), where 
A. ~ 0 and H satisfies Eq. (2.4). 

In fact the complete continuity of v-!Kv-! implies 
its boundedness and consequently 

I(f, Kf)1 ~ k(vf,f) (AI) 

for some positive k. Besides it is well-known that 

(f, Lf) ~ 0, 
i.e, 

(f, Kf) ~ (vf,f)· 

(A2) 

(A3) 

Equations (AI) and (A3) imply that a nonnegative 
value of A. exists such that 

-A.(vf,f) < (f, Kf) ~ (vf,f). (A4) 

Hence, if H is defined by (2.3), Eqs. (2.4) and (2.5) 
follow. 

APPENDIX B 

Here we want to prove that 

IIUgll", ~ [l/p(c)] Ilgll"" (Bl) 

where the norms are defined by Eq. (2.14) and p(c) 
by Eq. (2.10). 

We have, since Re s ~ 0: 

(B2) 

Therefore 

IIUgll:~ (l/1e",1 2)1,ulllgll:, (B6) 

where ,u is that eigenvalue of A which is largest in 
absolute value. To find ,u we consider the eigenvalue 
equation 

(B7) 

which, by double differentiation, is seen to be equiva­
lent to 

(d2cp/dx2) + p2cp = 0, (B8) 

cp(ld) = 0, (B9) 

cp(ld) = occp( -ld), (BIO) 
where 

p2 = (1/,u) - oc2
• (Bll) 

The solutions of Eq. (B8) satisfying condition (B9) 
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have the form 

cp = C sin [POd- x)], (BI2) 

where C is an arbitrary constant. In order that Eq. 
(BI0) be also satisfied, we must have 

P cos pd + ex sin pd = 0; (B13) 

i.e., since P ~ 0; 

tan Pd/Pd = -I/exd. (BI4) 

Since exd> 0, it is easily seen (e.g., by sketching a 
graphic representation of tan x and - Kx with 
K > 0) that there are always two real values of P in 
any strip )..K7T < PL < 2(K + I)7T (K = ... , -2, 
-1, 0, 1, 2, ... ), and the nearest to the origin are 
one between -7T and -i7T and another one between 
i7T and 7T. Therefore all the real solutions of Eq. 
(BI4) satisfy 

IPdl > i7T· (BI5) 

Now, it is easy to show that there are no complex 
values for P since Eq. (BI4) cannot have more than 
two complex solutions in any strip of width 27T parallel 
to the imaginary axis of the PL plane. This is proved 
by writing 

-tan-1 (Pd/ocd) = pd (BI6) 

with some fixed determination for tan-1 and applying 
the argument principle. Therefore Eq. (BI5) applies 
to any P and, because of (B11), 

1 1 
IIlI = ex2 + p2 :::;; oc2 + 7T2/(4d2) (BI7) 

Then, thanks to Eq. (B6) and (B3), we can write 

"Ug"!:::;; IC:1 2 ().. + 1)2[V~C)]2 7T2 "gil! 
Ic",1 2 + 4d2 

= [p(~W "gil!, (BI8) 

as was to be proved. 

APPENDIX C 

Here we have to prove that 

IIJ gliJe :::;; oc IlgliJe (0 < ex < 1), (el) 

where J = p-!Hp-!. Since J is a self-adjoint operator 
in Je, its norm is the largest of the absolute values of 
the lower and upper bounds of its spectrum. Since 

(e2) 

if ).. ~ 0, J has both a continuous and a discrete 
spectrum. The continuous spectrum is constituted by 
the values oc taken by )..v(c)/p(c) and therefore 

o :::;; ex :::;; AI().. + 1) < 1; (e3) 

i.e., the continuous spectrum is bounded away from 
1. If we now prove that any ex ~ 1 is not an eigenvalue, 
i.e., we cannot have 

p-!K(p-!cp) + )..[v(c)/p(c)]cp(c) = occp{c), (oc> 1) 

(e4) 
for any cp E Je different from zero, then (el) will be 
proved. Let us take the scalar product in Je of cp times 
both sides ofEq. (C4); we have 

(p-!cp, K(p-icp» + A(v/p)cp, cp) = ex "cpllx' 
(C5) 

Now, because of Eq. (A3), the first term in the left­
hand side is smaller than (vcp/p, cp) and consequently 

().. + 1)«v/p)cp, cp) ~ ex Ilcpllx' (e6) 
i.e., 

IICP"x:::;;)..: 1(; cp, cp) :::;; ().. + 1)(; cp, cp) 

(0 < oc :::;; 1), (C7) 

where ex is positive because of Eq. (2.4) of the main 
text and not smaller than 1 by assumption. But Eq. 
(CI7) cannot be true, even with the equality sign, 
because, apart from a zero measure set, (i + l)v/p < 
1. Therefore, for ex ~ 1, Eq. (C4) does not have any 
solution cp E Je which is different from zero in a set 
of nonzero measure, as was to be proved. 
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A state of an infinite system in classical statistical mechanics is usually described by its correlation 
functions. We discuss here other descriptions in particular: as (1) a state on a B* algebra; (2) a collection 
of density distributions; (3) a field theory; (4) a measure on a "space of configurations of infinitely many 
particles." We consider the relations between these various descriptions and prove, under very general 
conditions, an integral representation of a state as superposition of "extremal invariant states" corre­
sponding to pure thermodynamical phases. 

1. INTRODUCTION 

THE idea of representing states of physical systems 
by states on B* algebras has been present for some 

time.1 Actually the word "state," used to describe a 
normalized positive linear functional on a B* algebra, 
is borrowed from physics. Recently, a number of 
nontrivial results of general nature have been 
obtained2- 7 concerning the use of B* algebras in 
physics. In the present paper we apply some of these 
results to classical statistical mechanics. 

The use of states in statistical mechanics is not new. 
The well-known ensembles of Gibbs correspond to 
states both in classical and quantum statistical 
mechanics. They describe, however, only systems 
with-essentially-a finite number of degrees of 
freedom. If one takes the limit of an infinite system 
(the thermodynamic limit), another description is 
needed, and is given by the correlation functions 
or the reduced density matrices. The correlation 
functions in classical statistical mechanics and the 
reduced density matrices in quantum statistical 
mechanics may be considered as "states" on algebras 
of unbounded operators.8 •9 Dealing with unbounded 
operators is, however, a serious mathematical draw­
back, and we here make use of a B* algebra which 
may be-thought of as generated by bounded functions 
of these unbounded operators. 

1 See (a) I. E. Segal, Mathematical Problems of Relativistic Physics 
(American Mathematical Society, Providence, Rhode Island, 1963), 
and references quoted there; (b) R. Haag and D. Kastler, J. Math. 
Phys. 5, 848 (1964). 

2 S. Doplicher, Commun. Math. Phys. 1, 1 (1965). 
3 D. Ruelle, Commun. Math. Phys. 3, 133 (1966). 
4 S. Doplicher, D. Kastler, and D. Robinson, Commun. Math. 

Phys. 3, 1-(1966). 
& D. Kastler and D. Robinson, Commun. Math. Phys. 3, 151 

(1966). 
• D. Robinson and D. Ruelle, "Extremal Invariant States," 

Ann. Inst. H. Poincare (to be published) 
7 O. Lanford and D. Ruelle, J. Math. Phys., 8, 1460 (1967). 
B D. Ruelle, J. Math. Phys. 6,201 (1965). 
• D. Ruelle, Quantum Statistical Mechanics and Canonical 

Commutation Relations, F. Lurcat, Ed. (Gordon and Breach 
Science Publishers, New York, 1967). 

We proceed by glVlng some motivation for the 
definitions and assumptions which we make below. 

The systems considered in classical statistical 
mechanics are formed by a large number of "particles." 
These particles may be points in RV or on a lattice, 
or points in RV with a velocity vector, or more 
complicated objects like continuous mappings of the 
interval [0, 1] into RV. Furthermore, a system may be 
composed of several species of particles. There is thus 
a naturally defined one-particle space T. In general 
there is also a natural group G acting on T. 
Typically, G might be the Euclidean or the translation 
group in '" dimensions or a lattice group. 

Let Tfl be the symmetrized product of n copies of 
T. The sum i of the Tfl is the space of configurations 
of an arbitrary finite number of particles. If we have 
a locally compact topology on T, we may now define 
states "with an essentially finite number of particles" 
as probability measures on i. It would be natural 
to represent the states of statistical mechanics, which 
have typically an infinite number of particles, by 
probability measures on a new space X of configura­
tions of an infinite number of particles. 

We consider, as states of classical statistical 
mechanics, states which are invariant under the 
action of G and have the property that their restriction 
to a compact region has an essentially finite number 
of particles. These states are exhibited as states on a 
B* algebra Ill, actually an algebra of functions on :f. 
A large part of the paper consists in obtaining 
equivalent characterizations of these states and in 
connecting them with the correlation functions. The 
space X mentioned above appears as a subset of the 
set of pure states on U, and this imbedding yields 
a natural compactification of X. 

2. ASSUMPTIONS 

It is convenient, for reasons of conciseness and 
generality, to axiomate that part of classical statistical 

1657 



                                                                                                                                    

1658 D. RUELLE 

mechanics (CSM) in which we are interested. We 
call CSM theory a triple (T, G, 'T) satisfying the 
following properties: 

(T)' T is a locally compact space called one­
particle space; 

(G) . G is a topological group; 
('T) . 'T is a homomorphism of G into the homeo­

morphisms of T such that the mapping (g, x) - 'TIIX 
of G X Tonto T is continuous. 

A number of the results which we derive do not 
depend upon the existence of a topology on G. Our 
assumptions are, however, not restrictive since, when 
G is given, the discrete topology, the continuity of 
'T:G X T- T, is ensured by the fact that 'Tg: T- T 
is a homeomorphism. For some results we need a 
stronger assumption than (T), namely: 

(T') . T is locally compact with countable basis. 
This means that the topology of T is generated by a 
countable family of open sets, and is equivalent to 
requiring that T is countable at infinity and that its 
compacts are metrizable (see Ref. 10, Secs. 8.3 and 
8.19). Condition (T') is, for instance, satisfied for 
T= RV. 

The above axiomatic setup is, of course, more 
general than required by the applications, but seems 
to contain precisely those assumptions which we 
later need, so that a particularization would lead to 
no simplification of the arguments. 

3. BASIC DEFINITIONS 

In what follows, we make constant use of the topo­
logical sum l: of the powers Tn of T 

(3.1) 

where ro is by definition reduced to a point. It would 
be natural to consider instead of Tn its quotient r 
by permutations and to define 1: = In;;.o Til as 
indicated in the Introduction. It is, however, more 
convenient to work with l:. 

Let J(,(l:) be the space of real continuous functions 
with compact support on l:, i.e., the direct sum of 
the spaces J(,(Tn) of real continuous functions with 
compact support on Tn. Let 11,12 E J\{l:) and 11 = 
(f;),/2 = (j~); we define h * 12 E J(,(l:) by 

n 

(Jl * fJn(x1 , ••• , xn) = I f':,(x1 , ••• , xm) 
m=O 
X f~-m(xm+1' ... ,xn). (3.2) 

With respect to this multiplication J(,(l:) becomes a 

10 N. Bourbaki, Topofogie generale, fascicule de resullats (Her­
mann & Cie, Paris, 1953). 

noncommutative algebra which we call J(,* to avoid 
confusion with the structure of algebra defined on 
J(,(l:) by the usual multiplication of functions. We 
call 1 the identity in J(,* . 

Let IE J(,(Tn), n > 0, and let w be a partition of the 
set {I, 2, ... , n} into r subsets SI == {ill' i12 , ••• }, ••• , 

Sr = {irl' ir2 , ... }. We may suppose that iik < iik' if 
k < k' and iiI < in if j < j'. For all 

y = (Yl'" . ,y,) E T', 

let xf{y) = Yi if i E Sj' We define Iw E J(,(Tr) by 

fW(Yl' ... , Yr) = fw(Y) = J[xf(y), ..• ,x~(y)J. (3.3) 

The sum of the Iw over all partitions of {t, 2, .. " n} 
is an element fl./of J(,*. For JO E J(,(TO), we write 
fl.[D = 10• fl. extends then to a linear mapping of J(,* 
into itself, and one sees readily that this mapping has 
an inverse fl.-I. 

Let eel:) be the algebra of complex continuous 
functions on l: (for the usual multiplication of 
functions), i.e., the product over n ~ 0 of the spaces 
e(Tn) of complex continuous functions on Tn. If 
F = (Fn) E eel:) and g E G, we define 'TIIF E eel:) by 

('TIIF)n(XI"'" Xn) = Fn('Tg_IXl,"', 'T1I_tXn)' (3.4) 

In particular, it is seen that if 11, h E J(,(l:) c e(l:), 
then'Tgfl E J(,(l:), 'T/~fl = fl.'Tgfl' 'Tift */2) = 'Tllfl * 'T1I/2· 

If 1= (tn) E J(,*, we define SI E eel:) by 

(Sf)° = fO, 

(3.5) 
co n n 

= fO + I I·" I f m(x. 1 , ••• 'X'm) (n > 0). 
m=l il=1 i m=1 

One checks readily that S is a homomorphism of J(,* 
into eel:) such that S'TIII = 'TIISj Furthermore, it is 
easily seen that 

(Sfl.-1f)n(x1 , ••• , xn) 
n 

= fO + I !' . f m(x.1, ••• ,xim), (3.6) 
m=l iJ,·· ',Im 

where the summation I' extends over the nt/en - m)! 
sequences (iI' ... , im) of m different integers i, with 
I ~ i ~ n. 

We define m to be the closure, with respect to the 
uniform norm, of the subalgebra of eel:) constituted 
by the elements of the form c/>(S/l' ... , SgQ) for all 
integers q ~ 0,/1' ... ,10 E J(,* and c/> bounded con­
tinuous complex function on .R'1. With respect to 
complex conjugation and the uniform norm, m is 
an Abelian B* algebra with identity 1. We note 
E c m' the set of all states on m. 
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If g E G, Til is an automorphism of m:. If p E.E, we 
define T;P by (T;p)(A) = p(TII_1A) for all A Em:. Let 
to be the subspace of m: generated by the elements of 
the form A - TIIA and 

t~ = {JEm:':AEto~f(A) = o}. (3.7) 

Then, the set of T~-invariant states on m: is E () t~ . 
The sets E and E -+ t~ are both convex and weakly 
compact. 

4. THE SET :F OF STATES 

We concern ourselves in what follows with the set 
:F c: E consisting of those states p on m: which satisfy 
the condition: 

(:F) if 11, ••. 'h E J\,*, then the functional on the 
bounded continuous complex functions on R'l defined 
by 

c/> -+ P(c/>(S/1'" . ,Sh» (4.1) 

is a measure on R'l. 
To understand (3'), we interpret p(c/>(S/1' ... , Sh» 

as an expectation value of the function c/>(Sh, ... , Sh) 
on X. If we restrict c/> to tend to zero at infinity, the 
positive linear functional c/> -+ p{c/>(S/lo ... , Sh» de­
fines a positive measure on R'l which represents the 
probability distribution of finite values of S/1' ... , 
Sh' Condition (3') means that this distribution has 
total mass 1, in other words, that the functions 
S/1' ... , Sh take the value 00 with probability O. 

As an example, take q = 1, I~ = 0, If = 0 for 
n > 1 and 11 ~ 0 not vanishing identically. Since 
11 has compact support and 

" (Sf1)"(X1, ... , x,,) = ~f~(Xi)' (4.2) 
i=l 

it is seen that, for (:F) to hold, it is necessary (in fact it 
is also sufficient) that the probability of finding 
simultaneously an infinite number of particles on a 
compact subset of T vanishes. 

We now express condition (3') in a manner better 
suited to later purposes (see Proposition 4.3.2 below). 
Let 0 ~ h E J\,*. We denote by m:(hl the sub-B* 
algebra of m: generated by the elements of the form 
c/>(Sh, S/1' ... ,Sh) where supp 11, ... , supp hare 
contained in {X E X:h(X) > O}. We denote by J(h) 

the closed ideal of m:(hl generated by those elements 
for which c/> tends to zero at infinity. 

_ Proposition 4.1: If supp h is metrizable, then J(hl is 
separable. 

If c/> tends to zero at infinity, we may approximate 
c/>(Sh, S/1' ... , Sh) by q,(Sh, S/1' ... ,Sh), where q, 
belongs to a countable family of functions with 
compact support on R'l+1. The space {f E J\,* : supp I c: 

supp h} is separable (see Ref. 10, Sec. 13.27). and 
therefore, given E > 0, one may find 11' ... 'h E J\,* 
such that 111 - 111 < Eh, ••• , Ih - hi < Eh, where 
11' ... 'h belong to a countable family of elements 
of J\,* with support, in (X-E X:h(X) > 0). Since q, 
has compact support, one may approximate q,(Sh, 
S/1' ... , Sh) by q,(Sh, S11' ... , S/a). 

Proposition 4.2: Let pEE; then p E 3' if and only if, 
for all h, the restriction of p to J(hl has norm 1. 

If p E :F, then, according to the comment following 
the statement of condition (:F), the restriction of p to 
J (hi has norm 1. 

Conversely let the restriction of pEE to J(h) have 
norm 1. Given E > 0, there exists then c/>(Sh, S/~, ... , 
SI;,) E J(hl such that c/> has compact support, 0 ~ 
c/> ~ 1 and p(cp(Sh, S/~,' . " SI;,» > 1 - E. One may 
then choose c/>'(Sh) E J(hl such that c/> has compact 
support, 0 ~ c/> ~ 1 and p(c/>'(Sh» > 1 - E. Given 

11, ... 'h E J\,*, let hE J\,* be such that h ~ 0 and 
suppl1' . ", SUPPh c: (X E X:h(X) > 0). One may 
choose c/>"(S/l"", Sh) such that c/>" has compact 
support, 0 ~ c/>" ~ 1 and c/>'(Sh)c/>"(S/l"", Sh) = 
cP'(Sh); we have then 

p(c/>"(S/l,'" ,Sh» ~ p(c/>'(Sh)c/>"(S/l," " Sh» 

= p(c/>'(Sh» ~ 1 - E. (4.3) 

Proposition 4.3: Let (h.),eI be a family such that 
(i) for each tE/:O ~ h, E J\,*; 

(li) for each compact K c: X, there exists tEl 
such that K c: {X E J:h(X) > O}. We then write 
m:, = m:(hd' J, = J(h,I' We have: 

(1) the union U,m:, is dense in m:; 
(2) let pEE, then p E:F if and only if, for all 

tEl, the restriction of p to J, has norm 1; 
(3) if T is countable at infinity, then one can 

choose for (h,) a countable family. (1) follows from the 
fact that, by (ii), every c/>(S/l"", Sh) belongs to 
some m:,. 

The proof of (2) is identical to that of Proposition 
4.2, except that everywhere one has to take h in the 
family (h,). 

In (3) one can even choose for (m:.) an increasing 
sequence (see Ref. 10, Sec. 8.19). 

Corollary 4.4: If T has a countable basis, one can 
choose for (h.) a countable family and the J, are 
separable. 

This follows from Proposition 4.1 and Proposition 
4.3.3. 
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5. G SYSTEMS OF DENSITY DISTRIBUTIONS 

The discussion of (.'1) in Sec. 4 suggests to describe 
a state p E:F by giving for each relatively compact 
open set AcT and each integer n the probability of 
finding n particles in A and the probability distri­
bution of their positions. 

For every relatively compact open set AcT, and 
integer n ~ 0, let fl"J... ~ 0 be a measure on An C Tn. 
We assume that fl"J... is invariant under permutation of 
the n factors of Tn. We say that the fl"J... form a G 
system of density distributions if they satisfy the 
following conditions: 

(Dl) 
(5.1) 

(D2) Let A c A' and XA'-A be the characteristic 
function of A' - A. 

If r E 3\,<!n2:o An) C 3\,*, then 

fl'J..(r) = i (n + m)! fl~tm(r @ X~'~A)' (5.2) 
m=O n! m! 

(D3) If r E 3\,(A n) and g E G, then 

fl'J..(r) = fl~A(Tgr). 
Notice that from (D1) and (D2) we obtain 

Zfl'J..(An) = 1. 
n 

(5.3) 

(5.4) 

Theorem 5.1: Given p E:F n La, there exists a 
unique G-system ((l"J...) of density distributions such 
that if /1'''' ,fq E 3\,(Zn~oA n) C 3\,* and c/> is a 
bounded continuous complex function on R'l, then 

p( c/>(Sfl' ... , Sfg» = Z fdfl'J..(Xl'···' Xn) 
n2:0 

X c/>(Sfl(X1 , ••• , Xn), ... , Sfg{Xl, ... ,Xn». (5.5) 

The mapping p --+ ((l"J...) is one-to-one from :F n La 
onto the G systems of density distributions. 

We prove here only that (5.5) determines a unique 
mapping of the G systems of density distributions into 
:F n La. 

Given a G system of density distributions, (5.5) 
defines a linear functional fi on expressions of the 
form c/>(S/I' •.. , Sfq) [because of (D2) the definition 
does not depend on A). It follows from (5.4) that 
fi is continuous with respect to the uniform norm of 
functions on X, and thus extends uniquely to a 
continuous linear functional p on 2l. Clearly p is 
positive and, by (D1), normalized, hence pEE. By 
(D3), p E La. On the other hand, one checks easily 
from (5.4) and (5.5) that (.'1) is satisfied. The other 
half of the theorem is proved in Sec. 7. 

6. G-FIELD THEORIES 

By definition we call G-field theory a quadruple 
(~, Q, U, 0) satisfying the following conditions. 

(~) ~ is a complex Hilbert space. 
(Q) Q is a mapping of 3\,* to self-adjoint operators 

in ~ such that: 
(Ql) For all/1 ,f2 E 3\,*, the spectral projections 

of Q(h), Q(/2) commute; 
(Q2) Q is a homomorphism in the sense that, 

for all /1' /2 E 3\,* and A E R, we have 

Q(l) = 1, 

Q(A/1) :::> 'AQ(fl)' 

Q(fl + /2) :::> Q(fl) + Q(f2) , 

Q(fl * /2) :::> Q(/J' Q(f2)' 

(Q3) If 0 ~ / E 3\,*, then Q(I1-Y) ~ o. 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(U) U is a unitary representation of G in ~ such 
that, for all g E G, / E 3\,* 

U(g)Q(f)U(g-I) = Q(TIlf). (6.5) 

(0) 0 is an element of ~ such that 11011 = 1 and 
(01) for all g E G, U(g)O = O. 
(02) 0 is cyclic with respect to Q in the sense 

that if if is the C* algebra generated by the bounded 

continuous complex functions of the Q(f), then mO 
is dense in ~. 

Theorem 6.1: Given p E:F n La. there exists a 
G-field theory (~, Q, U, 0) unique up to unitary 
equivalence, such that if /1' ... ,h E 3\,* and if c/> is 
a bounded continuous complex function on Rq, then 

(0, c/>(Q(fl),' .. , Q(h»O) = P(c/>(S/I • .. " S/u». 

(6.6) 

The mapping p --+ (~, Q, U,O) is one-to-one from 
:F n La onto the G-field theories defined up to unitary 
equivalence. 

We prove here only that (6.6) determines a unique 
mapping from:F n La to G-field theories defined up 
to unitary equivalence. 

Let p E:F n La. The Gel'fand-Segal construction 
yields a complex Hilbert space ~, a .If< homomorphism 
7r p of 2l into the bounded operators on ~, a unitary 
representation U of G in ~, and a vector 0 E ~ such 
that 11011 = 1 and the following conditions are 
satisfied for all A E 2l, g E G: 

(U') 

(01) 

(0'2) 

(0, 7rp(A)O) = p(A); (6.7) 

U(g)7rp(A)U(g-I) = 7rp(TgA); 

U(g)O = 0; 

7r p(2l)O is dense in ~. 

(6.8) 

(6.9) 

(6.10) 



                                                                                                                                    

STATES OF CLASSICAL STATISTICAL MECHANICS 1661 

Furthermore, the Gel'fand-Segal construction is 
unique within unitary equivalence. 

Given j E .3\,* , there exists, according to (:F) and the 
Appendix of Ref. 3, a self-adjoint operator Q(j) such 
that 

cfo(Q(j» = 7Tp (cfo(Sj» (6.11) 

for all continuous complex functions cfo tending to zero 
at infinity on R. It is obvious that (Ql) is satisfied. 

Let jl' ... ,fa E .3\,*. Using the simultaneous spec­
tral decomposition of Q(jl), ... , Q(fa), and (6.11), we 
see that 

tp(Q(jl), ... , Q(fa» = 7Tp (tp(Sjl' ... ,Sfa» (6.12) 

if tp is a complex continuous function tending to zero 
at infinity of Rq. The properties (Q2) are seen to hold 
on vectors of the form 

tp(Q(jl), ... , Q(fa»'Y, (6.13) 

where 'Y E i> and tp has compact support. This 
actually proves (Q2) because the operators involved 
are the closure of their restriction to such vectors. 

Let P be a complex polynomial on Rq; then 

P(Q(jl)' ... , Q(fa»tp(Q(jl), ... , Q(fa»'Y 

= 7Tp(P(Sjl"", Sfa)tp(Sjl,"', Sfa»'Y. (6.14) 

If cfo is a bounded continuous complex function on 
Rq, it can be approximated uniformly on compacts by 
polynomials so that P may be replaced by cfo in the 
above equation, yielding 

cfo(Q(jl)"", Q(fa» = 7Tp(Q(Sjl"", Sfa»· (6.15) 

Using (6.15), (6.8), and (6.10), one checks readily (U) 
and (02). Property (Q3) follows from the fact that, 
if j ~ 0, then SIJ.-lj ~ 0 by (3.6). This concludes the 
verification of the conditions defining a G-field theory. 

Finally, (6.6) follows from (6.7) and (6.15). Given 
p E1', we have thus proved that there exists a G-field 
theory satisfying (6.6). This theory is unique within 
unitary equivalence because of the uniqueness of the 
Gel'fand-Segal construction and of the uniqueness 
of the construction of Q(j) when the q;(Q(j» are 
given. The other half of the theorem is proved in 
Sec. 7. 

7. PROOF OF THEOREMS 5.1 AND 6.1 

To conclude the proof of Theorems 5.1 and 6.1, we 
have to show that, given a G-field theory (i>, Q, U,O), 
there is a unique G-system of density distributions 
(,u~n such that if jl' ... ,fa E .3\,(2n~oA n) and cfo is a 
bounded continuous complex function on Rq, then 

~ f d,u').(Xl' ... , xn) 

X cfo(Sfl(X1 , ••• , xn), ... , Sfixl, ... , xn» 

= (0, cfo(Q(fl)' ... ,Q(fq»O). (7.1) 

Let (i>, Q, U,O) be a G-field theory and A be an 
open relatively compact subset of T. Let h E .3\,(Tl) C 

.3\,* be such that h ~ 0 and hex) = 1 if x E A. If 
r E .3\,(A n), the reader will check that 

!J.[(IJ.-ljn) * h] = jn * h + njn. (7.2) 

We assume thatjn ~ 0; then 

IJ.[(IJ.-ljn) * h] - nr = r * h ~ O. (7.3) 

Hence, by (Q2), (Q3), 

Q(IJ.-ljn)[Q(h) - n] ~ O. (7.4) 

For every integer p > 0, let OCl' ~ 0 be a continuous 
real function with support in the closed interval 
[-1, p + 1] C R and such that ocl'(t) = 1 if 0:::;; 
t :::;; p. We assume also that OCl' :::;; OCl'+1' From (Q1), 
(Q3) and (7.4) we obtain 

Q(IJ.-ljn)ocl'(Q(h» = 0, if n > p. (7.5) 

Furthermore, for all n, Q(IJ.-lj)ocl'(Q(h» is bounded 
becausejn is bounded by a multiple Ch*n ofh*n, and 
therefore 

o :::;; Q(IJ.-ljn) :::;; CQ(IJ.-1h*n) :::;; CQ(h*n) = CQ(h)n. 

(7.6) 

This shows that [0, Q(IJ.-lj)ocl' (Q(h»O] is a positive 
linear functional of (j0,p, ... ,f1'). Thus there exist 
bounded measures vn ~ 0 on An for n = 0, 1, ... ,p 
such that 

l' 

(0, Q(IJ.-1j)oc1'(Q(h»0) = 2 vn(r), (7.7) 
n=O 

and (Q1) implies that vn is symmetric in its n arguments 
If jn is assumed to be symmetric in its n arguments 

for n = 0, 1, ... ,p (j0,j!, ... ,j1') is uniquely deter­
mined by the restrictions of SIJ.-ljto AO, AI, ... ,A1' 
of SIJ.-lj; and the correspondence is such that there 
exist bounded measures ,u(1') on An for n = 0, 1, ... , 
p, symmetric in their arguments and for which 

l' . 

(0, Q(IJ.-Y)oc1'(Q(h»O) = 2,u(1')«S.:r1ft). (7.8) 
n=O 

We define further ,u(1') = 0 for n ~ p. We then have, 
writingjinstead of IJ.-Y, 

(0, Q(f)oci/(Q(h»O) 

= Jo f d,u(1')(Xl' ... , xn)Sf(Xl' ... , xn) 

= ,u(i/)(Sj). (7.9) 

This formula is valid for all j E .3\,(2n~o An). Now let 
jl' ... ,fa E .3\,(2n~o An) and let P be a complex 
polynomial on Rq, we have 

(0, P(Q(jl)' ... , Q(fa»oci/(Q(h»O) 

= ,u(i/)(P(Sjl, ... ,Sfa». (7.10) 
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If P tends uniformly on the compacts to a bounded 
continuous complex function cp on R'l, this gives 

(n, 4><Q(fl), ... , Q(h»oc2>(Q(h»n) 

= fl(2))(cp(Sll,' .. ,SIa». (7.11) 

We take 1m E J(,(Am) symmetric in its arguments, 
k E J(,(A). We assume that k has values in [0, 1] and 
that k(x) = 1 if XE K, where K is a compact such that 
supplm c Km c Am. We have 

(n, Q(~-lfm)ocm(Q(k»oc2>(Q(h»n) 
2> 

= ~ fl(2))((s~-lfmtocm(Skt)' (7.12) 
n=O 

Clearly (S~-1fm)nocm(Sk)n is zero if n < m by (3.6), is 
m! 1m if n = m, and vanishes on Kn if n > m. By taking 
K adequately large, the terms with n > m are made 
arbitrarily small and we obtain 

fm ~ 0 => fl(;,)(fm) ~ 0, (7.13) 

fm ~ 0 => fl(;,+1)(fm) - fl(;,)(fm) ~ O. (7.14) 

Equations (7.13) and (7.14) show that fl(2)) ~ 0, 
#(-p+1l ~ fl(2)) , and therefore 

lim Ilflh>') - fl(2)) II = lim Ifll;\) - fll!ll = O. (7.15) 
'P.1J'----.oo 'P,V'---'>C() 

Let 

(7.1) then follows from (7.11), (Dl) follows from (6.1), 
(n), and (D3) follows from (U), (nl). Let N ~ A 
and hex) = I if x EN. We define fl(2))' like fl(2)) except 
for the replacement of A by N; then, if I E J(,(~n~oA n), 
we have 

n' 'I 
= "" "" n . n' ,( ®(n'-m)(sr)n'-m @ &;m) 

£. £. ( I )" fl(2)) XA ') XA -A 
n' m=O n - m . m. 

_ ~ ~ (n + m)! fl(n+m)(x®n(Sft @ X®m ) (7.16) 
-. n m n! m! (2))' A A'-A' 

Taking successively I = ~-1fn with r E J(,(A n) and 
n = p, ... , 1,0 yields 

n (fn) "" (n + m)! n+m(fn ®m) (717) fl(2)) = £. fl(2»' @ XA'-A , • 
m n!m! 

hence (D2) when p ~ 00. 

Finally we show that the system (fl~) is uniquely 
determined by (D, Q, U, n). Let indeed rand k be 
as above (7.12); then 

(n, Q(~-lfm)ocm(Q(k)n) - m! fl'R(fm» 

= ~ fl'R«S~-lfmtocm(Skt) (7.18) 
n>m 

and the absolute value of the right hand side can be 
made arbitrarily small by taking K adequately large 
so that, ifr ~ 0, 

fl'R(fm) = (m !r1 sup (n, Q(~-lfm)ocm(Q(k»n) 
k 

(7.19) 
8. CORRELATION FUNCTIONS 

Let (D, Q, U, n) be a G-field theory. If n is con­
tained in the intersection of the domains of all the 
Q(f), IE J(,*, there exist positive measures pn on 
Tn, n ~ 0, such that 

(n, Q(~-lf)n) 
<:1J 

= ~pn(r) 
n=O 

pn is invariant under permutations of its arguments 
and is called the n-body correlation lunctionll of the 
G-field theory. 

The correlation functions, when they exist, mayor 
may not determine the G-field theory (up to unitary 
equivalence). It is of interest to know when they do 
because the information about a CSM system is 
usually given in terms of its correlation functions. 
The following criterion may be useful for this purpose. 

Proposition 8.1: Suppose that for every p E J(,(T), 
P ~ 0, there exists C > 0 such that 

f dpn(Xl' ... , xn)P(x1) ••• P(xn) ::::;; en. (8.2) 

Then, the G-field theory is determined up to unitary 
equivalence by (pn). 

We have assumed that 

[n, Q(~-l(p)*n)n] ::::;; cn. (8.3) 

Since the number of partitions of {I, ... ,n} is ::::;;n! 
(use the cycle representation of permutations), there 
exists C' > 0 such that 

(n, Q(p)nn) ::::;; n! C'n. (8.4) 

If IE J(,* , we thus have, for some C" > 0, 

(ljn!) II Q(p)nQ(f)n II = (ljn!)(Q(fl)2nn, Q(f)2n)! 

::::;; (Ijn!)(n, Q(prnn IIQ(f)2nll! 
::::;; (ljn !)[(4n) !UC'n IIQ(f)2nll! < c"n, (8.5) 

11 This terminology originates from the situation where T = R, 
and pn is absolutely continuous with respect to the Lebesgue 
measure on Tn, in this case pn is identified to a locally integrable 
function. If this function is bounded by a constant en, where e is 
independent of n, then Proposition 8.1 applies. 
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which shows that Q(f)O is an analytic vector for 
Q(jI) (see Ref. 12), hence that Q(jI) is essentially 
self-adjoint on the complex Hilbert space generated 
by Q(J(,*)O (see Ref. 12, Lemma 5.1., and for a similar 
application see Ref. 13). 

For arbitrary IE J(,* one may find p E J(,(T), 
P ~ 0, such that Isll is bounded by a polynomial in 
Sp. In this case, the vectors oc(Q(jI)Q(Sj)O, where 
/ E J(,* and oc is complex continuous with compact 
support, are analytic for Q(SI), and Q(SI) is thus 
essentially self-adjoint on these vectors. 

Therefore, if the pn are known, the Q(j) are known 
as self-adjoint operators on the complex Hilbert space 
generated by Q(J(,*)O, and it follows from the cyclicity 
(02) of 0 that this Hilbert space coincides with ~, 
which concludes the proof. 

9. PROPERTIES OF G-FIELD THEORIES 

Proposition 9.1: In a G-field theory, the representa­
tion U of G is strongly continuous. 

Let/!, ... ,fa E J(,* and cp be a bounded continuous 
complex function on Rq; we write 

"Pg = hCP*(S/l' ... , Sfa)]CP(S/l' ... , Sfa) 

- ICP(S/l' ... ,Sfa)12 (9.1) 

for g E G. We have to prove that, if p E:F, then 

lim p( "Pg) = 0, (9.2) 

where e is the identity of G. 
We choose A open relatively compact in T such that 

/1' ... ,fa E J(,(!n:<:o An), then, given € > 0, there 
exists p such that 

! 11,u~11 < (3 Ilcp(Sjl"", Sjq)11 2
)-1€. (9.3) 

n>p 

Because of the continuity of (g, x) ----' TgX, there exists 
a neighborhood X of e in G, such that if g E X then 
TaJl' ... ,TaJa E J(,(!n:<:oAn) and 

max max 1"P~(Xl"", xn)1 < t€. (9.4) 
n:S;p Xl,'" ,xnEA 

If g EX, (9.3) and (9.4) give I p("Pg) I < €, which proves 
(9.2) and the proposition. 

Proposition 9.2: If the condition (T') is satisfied 
(the topology of T has a countable basis), then the 
Hilbert space ~ of a G-field theory is separable. 

Let p be the state on m: corresponding to the G-field 

12 E. Nelson, Ann. Math. 70, 572 (1959). 
13 H. J. Borchers and W. Zimmermann, Nuovo Cimento31, 1047 

(1964). 

theory. Let (J.), (J.) be as in Proposition 4.3. Accord­
ing to Corollary 4.4, we may choose these families 
countable and the J, are separable. Let now ~, be the 
closed subspace of ~ spanned by 1T p(m:.)O. By the 
uniqueness of the Gel'fand-Segal construction, the rep­
resentation of m:, in ~, is unitarily equivalent to the 
representation 1T p, constructed from the restriction 
p, of p to m:,. Since the restriction of p, to X, has 
norm 1 by 4.3.2, 1Tp(X.)O is dense in ~, [see Ref. 14, 
Sec. 2.11.7], hence ~, is separable. Since the ~, form 
a countable family and span ~ by 4.3.1, ~ is separable. 

10. INTEGRAL REPRESENTATIONS ON 
:;- () c~ 

In this section we apply to the states in :F n I:b 
some recent general results3-5.7 which are summarized 
in the Appendix for the convenience of the reader. If 
A Em:, we denote by A the function p ----' A(p) = peA) 
on E. If K is a convex set in a topological vector 
space, [;(K) denotes the set of its extremal points. 

Theorem 10.1: Let (T') hold. Given p E:F n I:b, 
there exists a unique measure ,up on E n I:b con­
centrated on [;(E n I:B) such that, for all A Em:, 

(10.1) 

The mapping p ----',up is one-to-one from :F n I:b 
onto the positive measures of norm 1 on En I:B 
which are concentrated on :F n [; (E n I:B)' 

This follows from Proposition A3.1 and Theorem 
A3.2 of the Appendix, using the fact (Theorem A2.3) 
that, since m: is Abelian, it is G-Abelian. 

Proposition 10.2: Let p E:F n I:B, 'U, be the unitary 
representation of G in the Hilbert space ~ of the 
corresponding G-field theory. If Pp is the projection 
on the subspace of ~ formed by the vectors invariant 
under U(G), then: 

(i) the measure ,up introduced in Theorem 10.1 is 
determined by 

Jlp(Al ,· • " AI) 

= (0, 1Tp(Al)Pp1Tp(A2)Pp .•••• Pp1TJAI)O); (10.2) 

(ii) p E [; (E n I: B) ~ P p is one-dimensional. 

(i) and (ii) follow, respectively, from Theorem A2.2 
and Proposition A2.4 of the Appendix. 

Let G now be a locally compact group. A directed 

14 J. Dixmier, Les C*-algebres et leurs representations (Gauthier­
Villars, Paris, 1964). 
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set (XIZ) of functions on G is called an .A{,-directed 
set5 if 

(i) XIZ ~ 0, (10.3) 

(ii) f dgXig) = 1, (10.4) 

(iii) ~~ f dg IXiggl) - xig) I = 0, (10.5) 

where the integrations are with respect to the right 
Haar measure. The existence of .A{,-directed sets is 
insured if G has an invariant mean [see (A4), Ap­
pendix]. This is true in general for the groups of 
interest in classical statistical mechanics (the Abelian 
groups, the Euclidean group, etc.) and the .A{,­
directed sets may be taken to be sequences. 

Proposition 10.33.0: With the notations of (10.2), we 
have 

(i) I'lAl ... A/) 

= lim fdgl .. ·fdg/XIZ1(gl) ... XIZ/(gl) 
aI, •• • ,11,--"'00 

X p(TU1Al' .. Tu,A/); (10.6) 

(ii) p E & (E ("'\ t~) <=>!~f dgXig)p(Al . TgA2) 

= p(AI )p(A2), 

for all AI' A2 Em 
The representation U of G is strongly continuous 

by Proposition 9.1; therefore, Theorem A4.1 of the 
Appendix yields 

!~~ f dgX(g)U(g) = Pp (10.7) 

strongly. In view of Proposition 10.2 (i), we prove (i) 
by showing that 

1Zl>' ~~,~OO II f dgtXIZ1(gJ1Tp(TulAI) .. J dgIXIZ,(g/) 

x 1Tp(Tu,A/)il - Pp1Tp(Al)PP ... Pp1Tp(A/)il II = O. 

(10.8) 
The norm to be evaluated is majorized by a sum of I 
terms of the form 

II f dglXIZ1(gJ1Tp(TulAI) .. J dgm- l 

x XIZ",_l(gm-l)1Tp(Tu"._lAm-I) 

x [f dgmXIZ".(gm) 1Ti Tu",Am) - Pp1Tp(Am)] 

X Pp1Tp(Am+1) ... pp1Ti A/)il II 

~ (tY"A;") II [f dgmXIZ".(gm)U(gm) - pp] 

x 1Tp(Am)Pp1Tp(Am+1)' .. Pp1Tp(A/)il II, (10.9) 

which tend to zero in view of (10.7) when otl' ••• , 

ot/----" 00. 

(ii) results from (10.7) and Proposition 10.2 (ii). 

Remark: The interpretation of the integral repre­
sentation in Theorem 10.1 as a decomposition of a 
state into phases has been discussed in Ref. 8. 

11. PURE STATES 

Let X be a function from T to the integers ~O such 
that, for every compact K c T, X restricted to T 
vanishes except at a finite number of points. We call 
:r: the set of all such X. Given A, relatively compact 
open set in T, and X E:r:, there exist n ~ 0 and 
(Xl' ... , Xn) cAn such that, for all X E A, X(x) is 
the number of elements of (Xl' ••. ,Xn) which are 
equal to x. Iff E J(,a:n~o An), we define 

00 n n 

Sf(X) = fO +! ! ... ! fm(x i1 , ••• ,Xi".). (11.1) 
m=l il=l i".=l 

Proposition 11.1: If (] E 3' ("'\ &(E), there exists a 
unique Xu E:r: such that if fl' ... ,fa E J(,* and ~ is a 
bounded continuous complex function on R'l, then 

(J(~(Sfl' ... , Sfa» = ~(Sfl(Xu) . ... , Sfa(Xu»· 

(11.2) 

The mapping (J --" Xu is one-to-one from 3' ("'\ &(E) 
onto :r:. 

Notice that &(E) is the set of extremal, i.e., pure 
states on the Abelian B* algebra m, and is thus also 
the set of homomorphisms of m onto the complex 
field. On the other hand, we may write 3' = 3' ("'\ t~o' 
where Go is reduced' to the identity. 

Let Ao be a relatively compact open subset of T 
and m(A)o be the sub - B* algebra of m generated by 
the bounded continuous complex functions of the Sf 
for f E J(,(!n~o An). If (J E 3' ("'\ &(E), then the restric­
tion of (J to m(Ao) is a homomorphism onto the 
complex field. Therefore, if (1'1> is the Go system of 
density distributions associated to (J, there exists no 
such that I'M = 0 for n ~ no and I'~: is obtained by 
symmetrizing the measure <5"" @ • • • @ <5"'''0 on A~o 
for some Xl, ... , Xno EA. Let X(Aol be the function 
on Ao defined by 

no 
X(Aol(X) = !!t(x), (11.3) 

i=l 

where f;(Xi) = 1 and J;(x) = 0 if X ~ Xi' We define 
Xu to be such that its restriction to each A is X A' 

It is then easily checked that (11.2) is satisfied; further­
more it is clear that (11.2) determines Xu uniquely. 
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Let now X E X, the state (Ix on m: defined by 

(lX(cP(Sfl' ... , Sh) = cP(Sfl(X)' ... , Sf"q(x) 
(11.4) 

is in :t and is a homomorphism onto the complex 
numbers; hence (Ix E:t n &(E) which shows that 
(I ~ Xa is one-to-one onto, concluding the proof. 

Since &(E) is identical to the spectrum of m:, the 
Gel'fand isomorphism associates to any pEE a 
measure'll p ~ 0 on &(E). This measure is actually the 
unique measure on&(E) with resultant p. If (T') holds16 

and if p E:t, 'lip is thus identical to the measure f-tp 

of Theorem 10.1 for the case G = Go; in particular, 
'lip is concentrated on :t n &(E). The set X, identified 
to :t n &(E), is the "space of configurations of an 
infinite number of particles" promised in the intro­
duction, this interpretation being justified by Prop­
osition 11.1. 

Proposition 11.2: Let (T') hold16 and p E:t n C~. 
(i) The mappings (1-'" T;(I define homeomor­

phisms of X which leave the measure'll p invariant. 
(ii) If A E m:, let A be the function on s' defined 

by A(Xa) = (I(A); then V('IIp) is identified to the 
Hilbert space i> by A ~ 7T p(A)O. 

(iii) The group G acts ergodically on (X, 'lip) if and 
only if p E &(E nCb). 

(i) is obvious; the identification (ii) goes via 
the Gel'fand isomorphism; and p E &(E nCb) is 
equivalent to the fact that 'lip has no nontrivial de­
composition into two invariant measures ~O, proving 
(iii). 

12. AVERAGES OVER TRANSLATIONS 

In this section we consider the case where G = RV 
is the group of translations in 'II dimensions. This 
allows us to use a pointwise ergodic theorem. 

Theorem 12.1: Let (T') hold, G = RY, and let Xa be 
the characteristic function of the cube 

A« = {g:O :::;; gi < (X for i = 1, ... , 'II} (12.1) 

divided by (xv. If p E &(E nCb) n:t, then 'lip is 
concentrated on those X E X such that, for all A E m:, 

!~ f dgXigpI/A(X) = peA). (12.2) 

If a system (pt!) of correlation functions is associated 
with p, 'lip is concentrated on those X E X such that, 
for all f E J\,* , 

;~~ f dgXig)SLl-1Tllf(X) = ~ pn(r)· (12.3) 

16 It is in fact sufficient to assume that T is countable at infinity. 

(i) Using the identifications made in Sec. 11 (in 
particular, Proposition 11.2), one sees that the func­
tions X ~ l(X) (with A Em:) and (if the pn exist) also 
X ~ Sf(X) (withfE .3\,*) are in V('IIp). The continuity 
and ergodicity of the representation U of G in V('IIp) 
(see Proposition 9.1 and Proposition 11.2) and a 
pointwise ergodic theorem (see Ref. 16, VIII. 7.17) 
imply then that 'lip is concentrated on those X such 
that (12.2) [or (12.3) if the p" are defined] holds for a 
given A Em: (or f E .3\,*). 

(ii) Let (J,), (J,) be countable families as in 
Proposition 4.3. We let (A,A) be a countable dense set 
in J, and (U,A) be a countable increasing approximate 
identity in J, [see Ref. 14, Sec. 1.7]. Let 'U, be the 
set of those X E X such that (12.2) holds for A = A,A 
and A = U,A; then 'lip is concentrated on 'U,. Since 
(A,A) is dense in J" (12.2) holds for X E 'U, and all 
A E J,. We have lim p(l - U,A) = 0, and every 

A~ao 

A Em: may be written as AU,A + A(1 - U,A), where 
AU.A c JA and lAO - 0,).)1 :::;; IIAII 0 - 0.).) so 
that (12.2) holds for X E U and all A Em:,. Finally, 
since V ,Ill , is dense in Ill, 'lip is concentrated on those 
X E X such that (12.2) holds for all A E Ill. 

(iii) Let (f).) be a countable family of elements of 
.3\,* such that any f E.3\,* may be approximated 
uniformly on some compact by elements of (fA) (such 
a family exists because T is countable at infinity and 
its compacts are metrizable). Let (h.) be a countable 
family as in Proposition 4.3. If 'U, is the set of those 
X E X such that (12.3) holds for f = f). and f = h" 
then 'II p is concentrated on '\1. Given f E J\,* and 
E > 0, there exist A, t such that If - f).1 < Eh,. 
Therefore 

I! pn(r - f) I < E! p~(h,) 
.. n 

may be chosen arbitrarily small and (12.3) holds for 
all X E '\1, f E .3\,* , concluding the proof. 

Remark: Theorem 12.1 shows, in particular, that if 
(T') holds and p E &(E nCb) n:t, there exists 
X E X such that, for all fl, ... ,f"q E.3\,* and cP a 
bounded continuous complex function on Rq, 

p( cP(Sfl' ... , Sfq» 

= !i~ f dgxig) cP'STI/ft(X) , ..• ,STllfaCX ». (11.4) 

This is precisely the statement made in Ref. 17 except 
for the replacement of the condition p E:t nCb by 

16 N. Dunford and J. Schwartz, Linear Operators (lnterscience 
Publishers, Inc., New York, 1958), Part I. 

17 D. Ruelle, "A Field Theory Like Axiom System," in Endicott 
House Conference (1965), R. Goodman and I. Segal, Eds. (M.I.T. 
Press, Cambridge, Mass., 1966). 
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the more stringent condition p E e(E n I:b) n :T. 
The proof alluded to in Ref. 17 is rather different 
from that given here. 

13. REMARKS AND QUESTIONS 

(i) Hardcores. Let T = R'; one often imposes the 
condition that, for some a > 0, the Euclidean distance 
between two particles be always ~a. One easily sees 
that to impose such a condition on a state p on rx is 
equivalent to requiring that p vanishes on a family 
of positive elements of m. If E n 'U' is the set of 
states satisfying this condition, then E n 'U' c :T and 
E n I:b n 'U' is a simplex (see part A5 of the Appen­
dix). If pEE n 'U', the correlation functions of 'U' 
are defined and describe p completely. 

Similar remarks hold for the case where T is a 
lattice and two particles are forbidden to occupy the 
same lattice point. 

(ii) Example: state of a language. A language with N 
symbols may be idealized as a state of classical statis­
tical mechanics with G = Z (the additive group of 
integers) and T:N copies of Z. A "hard-core" type 
condition must be introduced to avoid the occupation 
of a site by more than one symbol. The symbols may 
be letters, the corresponding correlation functions are 
well known in cryptography, or they may be words. 

(iii) Entropy per unit volume. Let T = R' and 
G = R"; then an entropy per unit volume s(p) can be 
defined for p E:T n I:b along the lines indicated in 
Ref. 8. It has been proved by the author (unpublished) 
that s is an affine upper semicontinuous function on 
:T n I:b . It would be interesting to have a simple and 
more general proof of this fact, and to prove the 
equivalence of various definitions of the entropy 
per unit volume (for another definition see Ref. 9). 
One should be able to prove that the equilibrium 
state of statistical mechanics is the solution of a 
variational problem (involving s) under more general 
conditions than those given in Ref. 8. One should be 
able to prove the Gibbs phase rule [for almost every 
interaction, temperature, chemical potential, the 
equilibrium state is in e(E n I:b)]. 

(iv) The problems of evolution. We may describe the 
positions and momenta of point particles by taking 
T = R' x (R')', where (R')' is the one-point com­
pactification of R·. The first factor is the one-particle 
position space, the second factor the one-particle 
momentum space [the use of (R')' corresponds to the 
fact that we want to restrict the number of particles to 
be finite on compacts of position space]. 

No nontrivial existence theorem seems to be known 
for the evolution of a realistic system of infinitely many 
particles. Probably the evolution of states can be 

discussed for suitable interactions18 (cf. the stability 
conditions in Ref. 18 and references quoted there) and 
suitable states (states having finite energy per unit 
volume with respect to the interaction). In particular, 
an equilibrium state would be a fixed point for the 
evolution of states. 

It is unclear to the author whether the evolution of 
an infinite system should increase its entropy per unit 
volume. Another possibility is that, when the time 
tends to + 00, a state has a limit with strictly larger 
entropy. 

(v) The situation described in Sees. 11 and 12: A 
group G acting on a space X with an invariant measure 
'Vp ' is the natural set up for ergodic theory; we have 
used only the mean and pointwise ergodic theorems, 
but much more could probably be done. 

In quantum statistical mechanics, problems similar 
to those considered in this paper arise. For instance, a 
decomposition theorem analogous to Theorem 10.1 
can be proved (see part A6 of the Appendix). 

APPENDIX 

(1) Integral representations on convex compact 
sets.19--21 LetKbe a convex compact set in a locally con­
vex topological vector space. We denote by C(K) the 
space of complex continuous functions on K and by 
e(K) the set of extremal points of K. 

An order ~ is defined on the set.,1(,+ of positive 
measures on K by f-ll ~ f-lz <=> f-ll(e/» ~ f-lz(e/» for all 
convex e/> E C(K). If f-ll ~ f-la, then f-ll and f-la have the 
same norm and (if this norm is 1) the same resultant. 
If ~p is the unit mass at p E K, ~p ~ f-l means that p 
is the resultant of f-l. 

A measure f-l E .,1(,+ is called maximal if it is maximal 
for the order ~. For every f-l E.,1(,+ there exists a 
maximal f-l' such that f-l ~ f-l'. 

If f-l E.,1(,+ is concentrated on e(K), then f-l is 
maximal. Conversely, if K is metrizable and f-l is 
maximal, then f-l is concentrated on e(K). 

The set K is called a simplex if for every p E K there 
is a unique maximal measure f-lp &- ~p. 

In particular, if K is metrizable and a simplex, there 
is a unique mapping p ---->. f-lp of K to the probability 
measures concentrated on e(K) such that ~p ~ f-lp' 
This mapping is one-to-one onto, and f-lp may be 
considered as an integral representation of p on e(K). 

(2) G-Abelian B* algebras. Let m be a B* algebra 
with identity, aut (m) the group of its * automorphisms, 

18 M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966). 
19 N. Bourbaki, Integration (Hermann & Cie, Paris, 1965), 2nd 

ed., Chaps. 1--4, epecially Chap. 4, Sec. 7. 
20 G. Choquet and P. A. Meyer, Ann. Inst. Fourier 13,139 (1963). 
21 R. Phelps, Lectures on Choquet's Theorem (D. Van Nostrand 

Company, Princeton, New Jersey, 1966). 
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G a group, and T a (group)homomorphism G--'" aut 
(m). Ifg E G, we denote by TII:A----" TIIA the correspond­
ing automorphism. Let to be the subspace of ~ 
generated by the elements of the form A - TIIA with 
g E G, A E ~ and let 

t~ = {J E ~/:A E to =? f(A) = o}. 

t~ is thus the space of continuous linear forms on 
~ which are invariant under the action of G. If E is 
the set of states on ~, E (\ tb is the set of G-invariant 
states on ~. 

For pEE, the Gel'fand-Segal construction yields 
a complex Hilbert space i>p, a representation 7T p 
of ~ in i>p, and a normalized vector Op E i>p, cyclic 
with respect to 7T /m) and such that for all A E ~ 

peA) = (Op , 7T p(A)Op). 

If pEE (\ t~, there is a unique unitary representation 
Up of G in i>p such that for all g E G, A E ~ 

Up(g)Op = 0P' Up(g)7Tp(A)Up(g-I) = 7Tp(TIIA). 

Let Pp be the projection on the subspace of i>p 
formed by the vectors invariant under Up(G). 

Definition A2.1: ~ is said to be G-Abelian if, for all 
pEE (\ t~, the von Neumann algebra generated by 
Pp7Tp(IJI)Pp is Abelian (in other words, if AI' A2 E~, 
then [Pp7T/A1)Pp, Pp7Tp(A2)Pp1 = 0). 

Theorem A2.2: If~ has an identity andis G-Abelian, 
then E (\ I:~ is a simplex and the unique maximal 
measure f.Lp with resultant pEE (\ t~ is determined 
by 

f.L/AI··· AI) 

= (Op, 7Tp(AI)PP 7Tp(A2)Pp ' .. Pp 7T/A)Op). 

Theorem A2.322: If, for each pEE (\t~, there 
exists a filter :Y on G such that for all AI' A2 E ~ 

lim P([Al' TgA2D = 0, 
:F 

then ~ is G-Abelian, This is true: 
(i) if E (\ I:~ is empty; 
(ii) if ~ is Abelian; 
(iii) if ~ is asymptotically Abelian,23 i.e., G is 

locally compact noncompact and for all AI' A2 E ~ 

lim II [AI' TgA2111 = o. 
g~ct:J 

22 A good characterization of G-Abelian algebras is given in 
Ref. 7. 

23 This terminology was introduced by Doplicher, Kastler, and 
Robinson (see Ref. 4). 

Proposition A2.4: Let ~ be G-Abelian and pEE (\ 
t~, then p E &(E (\ I:~) ~Pp is one-dimensional. 

(3) Integral representations of G-invariant states. 

Proposition A3.1: Let ~ be a B* algebra with identity 
and ($ .. ) a countable family of self-adjoint sub­
algebras of~; define 

:Y = {C1 E E: the restriction of C1 to 

$(% has norm 1 for all at}. 

If f.L is a positive measure of norm 1 with resultant p 
on~, then 

p E:Y ~ f.L is concentrated on :Y. 

The proof is essentially that of Part 4 of the theorem 
in Ref. 3. 

Theorem A3.2: Let ~ be a B* algebra and (~ .. ) a 
countable family of sub-B* algebras of ~ such that 
Ucz~ .. is dense in ~. Let J .. be a separable closed two­
sided ideal for each at and define 

:Y = {C1 E E: the restriction of C1 to 

J .. has norm 1 for all at}. 

(i) If p E:Y, the Hilbert space i>p of the Gel'fand­
Segal construction is separable. 

(ii) If E (\ I:~ is a simplex (in particular, if ~ has 
an identity and is G-Abelian) and if the positive 
measure f.L of norm 1 on E (\ I:~ has resultant p E:Y, 
then 

f.L maximal on E (\ I:~ 

<=> f.L concentrated on B(E (\ I:~). 

The proof of (i) is essentially that of our Proposition 
9.2 and the proof of (ii) is essentially that of Part 5 
of the theorem in Ref. 3. 

(4) Groups with an invariant mean.24 Let G be a 
locally compact group and eB ( G) be the Abelian B* 
algebra of bounded continuous complex functions 
on G. Iff E eB(G), we denote by fg the right translate of 
f by g E G. A state .At, on eB(G) is called a right­
invariant mean if, for all g E G, f E eB( G), 

.At,(fg) = .At,(f). 

If there exists a right-invariant mean on G, there also 
exists a left-invariant mean and a two-sided invariant 
mean, one says then that G is a group with an in­
variant mean. 

24 Information about groups with an invariant mean is conve­
niently collected in J.-P. Pier, "Sur une classe de groupes Iocalement 
compacts remarquables du point de vue de l'analyse harmonique," 
thesis, Nancy (1965) (unpublished) which we have used as a source 
for the indications given here. 
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G is a group with an invariant mean if it is Abelian, 
or compact, or admits a composition series consisting 
of such groups. 

One can prove that G has an invariant mean if and 
only if for every e > 0 and compact KeG there 
exists a function X on G such that 

(i) X ~ 0, 

(ii) f dgX(g) = 1, 

(iii) f dg IX(ggl) - x(g) I < e, if gl E K, 

where the integrations are with respect to the right 
Haar measure. In that case let X(K .• ) be such a 
function, the family (X(K .• » is a .A(,-directed set (see 
Sec. 10) for the order. 

(K, e) :::;; (K', e') <=> K c K', e ~ e' 

of the indices. If the topology of G has a countable 
basis, there is a subsequence of (X(K .• » which is a 
.A(,-directed set. 

Theorem A4.1,' Let (X«) be a .A(,-directed set on G, 
U a strongly continuous unitary representation of G 
in a complex Hilbert space ,f), and P the projection on 
the subspace of ,f) formed by the vectors invariant 
under U; then 

!~ f dgXig)U(g) = P, strongly. 

This is a mean ergodic theorem (see Ref. 5 for a 
proof in the case G = RV). 

(5) States vanishing on positive elements. Let m be 
a B* algebra with an identity, ml a sub-B* algebra of 
m. A state p on m vanishes on ml , if and only if it 
vanishes on the positive elements of ml' Let (A;) be a 
family of positive elements in m and let 

'\J = {fE m' :f(A,) = 0 for all A}. 

If pEE and # is a positive measure on E such that 
# &- ~P' then 

P E '\J <=> supp # c '\J. 

In particular, if m is G-Abelian, E r. I:.b r. '\J is a 
simplex. 

(6) States of Quantum Statistical Mechani<;s. For 
each Lebesgue-measurable set A c RV, let Je(A) be the 
Fock space of the canonical commutation relations 
constructed with the real square integrable function.s 
on A as test functions. If Al r. A2 = ~, one may, in a 
natural manner, identify Je(A) to Je(Al) Q9 Je(A2)' It 
is natural9•25 to identify the states occurring in 
quantum statistical mechanics to collections (p(A» 
where peA) is a density matrix on Je(A) , and if 
Al r. A2 =~, 

peAl) = TrJe(A
2
)p(A l u A2). 

We furthermore require the invariance of Je(A) under 
the group G of translations (or the Euclidean group) 
of RV. 

Let now An be the sphere of radius n around the 
origin, mn the algebra of all bounded operators on 
Je(An) identified to a subalgebra of Je(RV) , I n the 
ideal of mn consisting of the compact operators. Let 
m be the C* algebra on Je(Rv) generated by the mn. 
There is a one-to-one correspondence between 
families (p(A» and the set :t of states on ~ with 
restrictions of norm I to each I n • By Theorem A2.3 
(iii), m is G-Abelian and therefore by Theorem A3.2 
the states in :t r. I:.b have a unique integral repre­
sentation on E(E r. I:.b) r. :t. Furthermore the Hilbert 
space oftheir Gel'fand-Segal construction is separable 
and one can see that the corresponding unitary 
representation of G is strongly continuous. 

25 G. F. Dell'Antonio, S. Doplicher, and D. Ruelle, Commun. 
Math. Phys. 2, 223 (1966). 
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Application of the Theory of Pade Approximants to the 
Solution of the N/ D Equations * 
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Appro~imate method.s for the solution of the N/ D equations are discussed. Two methods in particular 
are cO~ldered, one bemg the repla~ment of the unphys.ical singularities of the scattering amplitude 
by a series of poles and the other bemg a pole approximation to the spectral integral of the kinematical 
factor over the physi~l region. ~t is sho~n that Pade approximants may be used to define a sequence 
of the above approximate solutIOns, which converges to the exact solution of the N/D equations in 
those cases when the Fredholm method also gives a solution. 

1. INTRODUCTION 

PARTIAL wave dispersion relations play an impor­
tant part in the study of the strong interactions of 

elementary particles. The usual problem is to solve 
these relations for the partial wave-scattering ampli­
tude, given the unphysical singularities and inelastici­
ties. The simplest way of doing this is to use the N/D 
method, l since the scattering amplitude will then 
satisfy automatically the unitary condition for physical 
energies. The dispersion relation is then equivalent to 
a pair of coupled integral equations in the functions 
Nand D, from which either Nor D can be eliminated 
to give a simple integral equation in the other function. 
It is in general not possible to solve this integral 
equation exactly and so approximate methods have 
to be used. 

If the integral equation is not singular, then the 
methods of Fredholm2 can be used. However, as 
discussed by Hamilton,3 in many physically interesting 
problems the equation is singular and then, although 
the Fredholm method may still give a solution, other 
methods are often tried. The method usually followed, 
is to approximate the kernel of the integral equation 
by a degenerate kernel either by assuming that the 
unphysical singularities are poles4 or by making a pole 
approximation to the spectral integral of the kine­
matical factor over the physical region.5 

It is the purpose of this paper to show how, using 
the theory of Pade approximants,6 a sequence of such 

• Part of this work was done while the author was at Trinity 
College, Dublin, Ireland. 

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
'See, for example, R. Courant and D. Hilbert, Methods of 

Mathematical Physics (Interscience Publishers, Inc., New York, 
1953), Vol. 1. 

'-1. Hamilton, Strong Interactions and High-Energy PhysiCS, 
R. G. Moorhouse, Ed. (Oliver and Boyd, London, 1964), p. 344. 

, A. W. Martin, Phys. Rev. 135, B967 (1964). 
5 H. Pagels, Phys. Rev. 140, B1599 (1965). 

degenerate kernels may be defined which converge 
uniformly to the given nondegenerate kernel, and 
then to investigate the convergence of the corre­
sponding approximate solutions of the N/ D equa­
tions to the exact solution. In fact, it is proved that the 
approximate solutions of the integral equation con­
veIge to the exact solution in those cases where the 
Fredholm method also gives a solution. 

In Sec. 2 the N/D equations are introduced and 
the reduction to a single integral equation is given. 
The necessary and sufficient conditions for this 
equation to be nonsingular are discussed. The approxi­
mation of the kernel by degenerate kernels is described 
in Sec. 3 and the corresponding approximate solutions 
of the N/ D equations are given. In Sec. 4, sequences 
of kernels which tend uniformly to the exact kernel of 
the integral equation in the two cases are obtained. 

In Sec. 5 it is proved that the corresponding approxi­
mate solutions of the integral equation tends uniformly 
to the exact solution when the usual Fredholm 
method also gives'a solution. This occurs when the 
Fredholm denominator is different from zero. Finally, 
in Sec. 6, the results of this paper are discussed. 

2. THE INTEGRAL EQUATIONS FOR N AND D 

Consider the partial wave amplitude Jz(s) for the 
scattering of two equal scalar particles of mass ft, 
where s is the total centre of mass energy squared. 
If it is assumed that the scattering amplitude has no 
eDD poles, then it may be decomposed as follows, 

(2.1) 

where Nb) has the unphysical cut, - 00 < s ~ SI 

and DI(s) has only the physical cut, 4ft2 ~ s < 00 of 
lieS). The unitarity condition on the right-hand cut 
gives 

(2.2) 
• A review of the properties of Pade approximants and a list of 

references is given by G. A. Baker, J. Advan. Theoret. Phys. 1, 1 
(1965). where RI(s) is the inelasticity parameter and PI(S) is a 
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kinematical factor depending on the normalization 
of the scattering amplitude. In the following work it 
is assumed that the scattering is completely elastic, and 
then R,{s) = 1. However, the results are unchanged 
if R1{s) is allowed to take on different values so long 
as it remains finite. The normalization of the scattering 
amplitude is chosen so that 

pM) = [(s - 4,u2)/S]( (2.3) 

The functions Nz{s) and DI(s) then satisfy the follow­
ing equations: 

Dls) = 1 _ (s - so) r p,{x)Nz{x) dx , (2.4) 
71' JR(X - so){x - s) 

NI(s) =.! r Imfz(x)Db) dx, (2.5) 
71' JL (x - s) 

where s = So is an arbitrary subtraction point and 
D(s) is normalized to unity at this point. The exact 
solution of (2.4) and (2.5) for the scattering amplitude 
is independent of the value of so, 4 and so for con­
venience it is put equal to zero. It is now required 
to solve (2.4) and (2.5), given the function Imfz(s) 
for s on the left-hand cut. Eliminating either NI(s) 
or DI(s), the following integral equations are 
obtained4•5 : 

D(s) = ! +.! r x[F(x) - F(s)] 1m/ex) [D(X)J dx, 
s s 71' JL (x - s) x 

(2.6) 

N(s) = B(s) +.! r p(x)N(x) [xB(x) - sB(s)] dx, 
71'JRX(X - s) 

(2.7) 
where 

F(s) =!.. r p(x) dx (2.8) 
71' JR x 2(x - s) 

B(s) = ~ r 1m/ex) dx (2.9) 
71' JL x - S 

and the suffix I has dropped from the quantities in 
the above equations, as it is now to be understood that 
a particular value of the angular momentum is being 
considered. 

Consider first of all the integral equation (2.6). 
The kernel of this equation is 

K(s, x) = [x/71'(x - s)][F(x) - F(s)] 1m/ex) (2.10) 

and it is well behaved at x = s as long as dF(x)/dx 
exists. The full Fredholm theory may be applied to 
(2.6) only if 

LL ds dx IK(s, x)12< 00, (2.11) 

and this condition necessitates that 

fLllmf(x)12 dx < 00. (2.12) 

If Im/(x)=O(x~) as x--oo, then, for (2.12) 
to be true, 15 < -i when -i ~ 15 < 0; the dispersion 
relations exist but (2.11) is not satisfied. The condition 
15 < - i is both necessary and sufficient for (2.11) to 
be true. 

With the same asymptotic behavior of 1m/ex), it 
may be proved that the symmetric form of (2.7) is 
Fredholm for all 15 < 0. 7 This equation may thus 
be solved using Fredholm's methods for all cases 
considered here. However, it may be more convenient 
in a particular situation to use an approximate degen­
erate kernel by replacing the unphysical singularities 
by poles. For completeness the behavior of the 
corresponding approximate solutions are also con­
sidered in this paper. 

3. APPROXIMATE SOLUTIONS USING 
DEGENERATE KERNELS 

To reduce the kernel of (2.6) to degenerate form, 
Pagels6 approximated the function F(s) for values of 
s on the left-hand cut by the expression 

(3.1) 

where Cr , ar are constants and the poles of the 
approximate form lie on the right-hand cut. The 
kernel (2.10) is then given approximately by 

K(s, x) ~ x I cr[_I- - _1_J 1m/ex) 
71'(x - s) r=l X - ar s - ar 

-x N C 
= - ! r 1m/ex) (3.2) 

71' r=l (x - ar)(s - ar) 

and so is degenerate. If des) is the corresponding 
approximate solution for D(s), then, from (2.6) for s 
on the left-hand cut, 

des) = 1 - S I [ C
r ]n(ar), (3.3) 

r=l (s - ar) 

where n(s) is the corresponding approximate solution 
for N(s). Then substituting in (2.5), 

n(s) = B(s) - I [sB(s) - arB(ar)]crn(ar) , (3.4) 
r=l (s - ar) 

which is true for all s. Finally, from (2.6), for s on the 
right-hand cut, 

des) = 1 + s I crn(ar) + S[F(S) - I Cr ], 
r=l (s - ar) r=l (s - ar) 

(3.5) 

7 D. Atkinson, J. Math. Phys. 7, 1607 (1966). 
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where F(s) is the exact function as given by (2.8). The 
values of n(s) when s = ar , occurring in the above 
equations, are obtained by setting s = ai' s = a2, ... , 
s = aN in turn, in (3.4), and then solving the resulting 
N linear equations. 

The approximate solution of the Nf D equations by 
replacing the unphysical singularities by a series of 
poles is now considered. The kernel of (2.7) is made 
degenerate by the approximation of B(s) for s on the 
right-hand cut by4 

N C 
B(s) ~ I r (3.6) 

r=l(S - ar) 

Then substituting in Eq. (2.7), 

n(s) = ! cr dear) (3.7) 
r=l(S - ar) 

for s on the right-hand cut, where once again n(s) and 
des) are the approximations to N(s) and D(s). Then 
for all s, 

des) = 1 + s 1 Cr dear) [F(a r} - F(s)]. (3.8) 
r=l(S - ar) 

Finally, for s on the left-hand cut, 

N C 
n(s) = R(s) des) - I r [des) - dear)]' (3.9) 

r=l (s - ar ) 

The constants dear) can be obtained as previously 
from (3.8). 

4. UNlFORML Y CONVERGENT APPROXI­
MATIONS TO THE KERNELS 

Consider the kernel of (2.6): 

K(s, x) = x [F(x) - F(s)] Imf(x}. (2.10) 
1T(X - s) 

It has been shown in (3.2) that this kernel becomes 
degenerate if the approximation 

N C 
F(s) ~ I r 

r=l(S - ar) 
(3.1) 

is made. In the following, it is shown that a sequence 
of approximations of the form (3.1) may be defined 
which tend uniformly to F(s) for s on the left-hand 
cut. Now 

F(s) = ~ f p(x) dx 
1T R x 2(x - s) 

= -1 (p(x) dx +.! ( p(x) dx. (2.8) 
1T JR x2 1T JR (x - s)x 

Make the substitutions 

s = 4,u2w/(1 + w), x = 4,u2/(1 - y) (4.1) 

in the integral on the right-hand side of (2.8). Then 

F(s) = (1 + w) (1 p[4,u2/(1 - Y)] dy 
4p21T Jo 1 + wy 

_ 1. r p(x) dx. (4.2) 
1T JR x2 

Now the function 

G(w) = _1_ (1 p[4p2f{l - y)] dy, (4.3) 
4p21T Jo 1 + wy 

when expanded as a power series in w, is a series of 
Stieltjes,8 since the numerator of the integrand in (4.3) 
is nonnegative. This power series expansion is 

00 

(J(w) = I (-wYgi> 
i=O 

where gi = -2- P -p- yi dy, (4.4) 1 il [ 4 2 ] 

4P1T 0 1 - Y 

and it converges for Iwl < 1. 
The Pade approximant to this series is now defined. 

The [N, M] Pade approximant is of the form of one 
polynomial pew) of degree M divided by another 
polynomial Q(w) of degree N. The coefficients of the 
two polynomials are determined uniquely by equating 
like powers of w in the following equation: 

G(w)Q(w) - pew) = AWM+N+l + RWM+N+2 + ... , 
(4.5) 

where 
Q(O) = 1.0. 

Baker has written a review article6 on the properties 
of these approximants. The following theorems in 
that article are used here. 

Theorem 1: Iff(w) is a series of Stieltjes with radius 
of convergence R, then the corresponding sequence of 
[N, N + j] Pade approximates converge to few) as 
N - 00, with constant j 2 -1 in the cut plane 
( - 00 < w ~ - R). The convergence is uniform in 
any closed region of this cut plane. 

Theorem 2: The poles of the [N, N + j] Pade 
approximant to f( w) lie on the cut ( - 00 < w :5; - R) 
and all the corresponding residues are positive. 

In the case considered here R = 1, and so the 
[N, N + j] Pade approximants converge to G(w) in 
the cut plane and, in particular, for -1 < w ~ 0, which 
corresponds to s real and negative. The best approxi­
mant [N, M] to G(w) for a given odd value of M + N 

8 T. J. Stieltjes, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 
8,9, 1 (1894). 
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for these values of w is of the form9 [N, N - 1] and 
this one is used to obtain an approximate form for 
F(s) on the left-hand cut in the s plane. Then 

N <5 
G(w)!::: [N, N - 1] = ! r , (4.6) 

r=1(CXr + w) 

where, from the second theorem quoted above, <5r > 0, 
CXr > 1. Substituting for w in terms of s, the corre­
sponding approximate form for F(s) is 

N <5 N C 
F(s) ~ (1 + w)! r = 2 r ,(4.7) 

r=1(CXr + w) r=1(S - ar) 

where 

Cr = 4l<5r/(l - cxr ) < 0 
and ar = 4f.t2cxrl(cxr - 1) > O. (4.8) 

In (4.7) the constant term 

.! I p(x) dx 
7T x2 

has been omitted, but the kernel of (2.6) is unaltered 
by this as is obvious from (2.10). 

From Theorems I and 2 the approximate form (4.7) 
converges uniformly to F(s) as N -- 00 for values of s 
on the left-hand cut in the s plane, and all its poles 
lie on the right-hand cut. It should be noted that <5r 

and CXr in (4.6) depend on N, and so all the poles and 
residues of the approximate form (4.7) to F(s) change 
as the number of poles is changed, and this applies 
also to the kernel (2.10). 

The approximate for B(s), 

N C 
B(s) ~! r, 

r=1(S - ar) 

is obtained in almost the same way. Now 

(3.10) 

B(s) = .! (-81 
Imf(x) dx. (2.9) 

7T J-oo (x - s) 

Make the substitutions 

S = -S1W/(l + w), x = -s1/(1 - y). (4.9) 

Then (2.9) becomes 

B(s) = _ (1 + w) (1 Imf[ -S1/(1 - y)] dy. (4.10) 
7T Jo (1 - y)(1 + wy) 

The integral on the right-hand side is not a series of 
Stieltjes since 1m/ex) may take both positive and 
negative values on the left-hand cut in the s plane. 

8 This result follows in a simple way from Eqs. (2.20), (2.21), and 
(2.37) of Ref. 6. The discussion ofthepropertiesofPadeapproximants 
for this part of the w-plane is anticipated in a following paper. 

However, writing (4.10) in the form 

B(s) = (1 + w) (1 {llmfl - Imf} dy 
27T Jo (1 - y)(1 + wy) 

_ (1 + w) (1 {llmfl + 1m!} dy, (4.11) 
27T Jo (1 - y)(l + wy) 

each of the integrals is the sum of a series of Stieltjes, 
and so they may be approximated as previously. The 
approximant converges uniformly for all values of 
s in any closed interval on the right-hand cut in the 
s plane, and the poles of the approximants lie on the 
left-hand cut. 

5. CONVERGENCE OF APPROXIMATE 
SOLUTIONS OF THE NI D EQUATIONS TO 

THE EXACT SOLUTION 

It follows from the last section that the approximate 
kernels of the integral equations (2.6), (2.7) tend 
uniformly to the exact kernels over finite ranges of 
the relevant variables. It is proved in this section that 
the corresponding, approximate solutions of (2.6), 
(2.7) converge to the exact solution. It is first of all 
shown that the approximate solutions tend to a 
limit, and then it is a simple matter to prove that this 
is the exact solution of the corresponding integral 
equation. 

Now, as stated previously, the constants Cr and ar 
appearing in the approximate solutions (3.3)-(3.5) 
and (3.7)-(3.9) depend on the order of the approxi­
mation. Therefore it would be difficult to prove the 
convergence of the approximate solutions directly. 
Instead the standard methods of Fredholm10 are used 
to do this, it only being necessary to check that at 
each step the integrals occurring converge. As a 
preliminary, the approximate solutions are rederived 
using the standard procedures for solving an integral 
equation with degenerate kernel. Consider Eq. (2.6) 
and let 

rpNCs) = des) ; 
s 

g(s) = !, cxr(s) = C
r 

S (s - ar) 

f3r(x) = -x Imf(x) . 
7T(X - ar) 

(5.1) 

The approximate form for the kernel is then 

N 

kN(S' x) = ! cxrCs)f3rCx), (5.2) 
r=1 

and the approximate form for (2.6) is 

g(s) = rpN(S) - AIL kN(S' X)rpN(X) dx, (5.3) 

10 See Ref. 2, pp. 142-145 for a presentation of these methods. 
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where;" = 1.0. Try to find a solution of (5.3) of the 
form 

N 
rpN(S) = g(s) + ,Loc,.(s)A,., (5.4) 

r=l 

where the A, are constants. Then this is a solution if 
and only if 

,~ ocis>[ A, - Ag, - ;., i~ AiBr.i] = 0, (5.5) 

where 

g,. = t g(x)f3,(x) dx, B".i = fliX)OClX) dx. (5.6) 

Now (5.5) is true for all s on the left-hand cut if and 
only if 

N 

Ar - Ag,. - A I AiB,.; = 0 (r = 1, 2, ... , N). 
r=l 

(5.7) 

Let ~N(A) be the determinant of the N linear equations 
(5.7) in the unknowns Ai and let ~i.r be the comple­
ment of the element of the rth row and ith column. 
Then it follows that, if ~N(A) ¥= 0, the solution of 
(5.7) is unique: 

integral equation (5.3) is 

where 

rpNCs) = g(s) + A'~~~A) [il~i.rg,}lS) 
= g(s) + A [ ~N(S, x; A) g(x) dx, 

JL ~N(A) 

N N 

~NCs, x; A) = ,L ,L ~i.rocb)f3,(x). 
i=l r=l 

(5.9) 

(5.10) 

It is an easy matter to prove that the above solution 
for rpN(S) = d(s)/s is exactly the same as that given by 
Eq. (3.3). The integrals occurring in Eqs. (5.3)­
(5.10) exist when 1m/ex) = O(XS) as x -+ - 00 with 
<5 < 0 as was assumed earlier. 

The resolvent of Eq. (5.3) may then be written as 
the ratio of two polynomials in A as follows: 

rN(s, x; A) = ~N(S, x; A)/~N(;") (5.11) 
with 

A A2 (-l)NAN~N 
~N(A) = 1 - - ~ + - ~ -'" + ~~~ 

11 1 2! 2 N! 
(5.12) 

and 

N ~ g 
Ai = AI~, 

r=I~N(A) 

it 
(5.8) ~N(S, x; A) = ~o(s, x) - 1! ~l(S, x) + ... 

and the corresponding form for the solution of the 

( _l)(N-l) A (N-l) 
+ (N _ 1)! ~(N-l)(S, X), (5.13) 

where 

kN(Xl , Xl) kN(Xl, x~ ... kN(Xl , Xh) 

kN(X2, Xl) 

~h=fL1···t dXl dX2 ••• dxh, (5.14) 

kN(Xh, Xl) kN(Xh, Xh) 

kN(S, X) kNCs, Xl) ... kNCs, xh) 

kN(Xl , X) 

~,,(s, X) = fL 1···1 dXl dX2 ... dxh· (5.15) 

kNCxh' x) 

a, > 0, 
These relations can be proved using Fredholm's 
methods for the case when the range of integrations 
is finite. l1 It has only to be checked that the integrals 
in (5.14) and (5.15) exist. 

Now it may be shown that, when -1 < W ~ 0, the 
[N, N - 1] Pade approximant to G(w) is of smaller 
magnitude than G(w) itself.9 Since from (4.8) Cr < 0, 

IkNCs, x)1 = I x Imf(x)l c,. I 
,.=1 (X - a,)(s - a,) 

11 See, for example, W. Lovitt, Linear Integral Equations (McGraw­
Hill Book Company, Inc., New York, 1924), pp. 34-42. 

< 1~lmf(x)l ~ I 
s '=1 X - a, 

< I ~ Imf(x)F(x) I (5.16) 
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for x and s on the left-hand cut. Therefore, for all x 
and s on the left-hand cut, it follows from the 
asymptotic behavior of Im/(x) and F(x) that 

Ik~s, x)1 < M/lx'sl, (5~17) 

where M and E are constants independent of N 
and -6> E> O. 

Using (5.17) and Hadamard's inequality for deter­
minants,12 it is a simple matter to prove that all the 
integrals in (5.14) and (5.15) exist and that the series 

_1_ i I(h + 1)(h+lllt M(h+ll(sl'Et;'''lh! 
Isx'i "_0 

and 

1 + i [h,,]t(sl'E)";'''lh!, 
"=0 

which are convergent for all ;" are majorants of the 
series (5.12) and (5.13), respectively. The latter series 
therefore also converge for all values of ;, and the 
convergence is uniform for all values of N. Now as N 
tends to infinity each term of these two series tends 
respectively to the corresponding terms of the 
Fredholm series, 

00 

~(;') = 1 + !( -lt~,,;'''lh!, (5.18) 
11=1 

00 

~(s, x; ;,) = ! (-I)"~,,(s, x);'/llh!, (5.19) 
11=0 

where ~" and ~,,(s, x) are defined by (5.14) and 
(5.15) but with kN (s, x) replaced by K(s, x). Since 
(5.17) is also satisfied when kN(s, x) is replaced by 
K(s, x), it follows as above that (5.18) and (5.19) are 
both convergent series. It follows immediately that 

Lt ~~;') = ~(;') and Lt ~N(S, x; ;,) = ~(s, x; ;1.), 
N-+oo N-+oo (5.20) 

where the limit is approached uniformly for all sand 
x on the left-hand cut in the latter case. 

Therefore, if ~(;') ¢ 0, 

L r ( . 1) _ ~(s, x;;') 
t N S, x, II. - , 

N-+oo ~(A) 
(5.21) 

where ~(s, x;;') and ~(;') are given by (5.18) and 
(5.19), respectively, and the convergence is uniform 
for all s, x in any finite interval on the left-hand cut. 

Therefore, from (5.9) and (5.11), 

_ Lt cp~s) = g(s) + ;, r [~(S, x; A)]g(X) dx, (5.22) 
N-+oo JL ~(x) 

and the limit is approached uniformly for all values of 
s in a finite range on the left-hand cut. Now the right­
hand side of (5.22) is just the form of Fredholm's 

11 See Ref. 2. p. 36. 

solution to the exact integral equation which it 
satisfies if ~(;') ¢ O. This is true even when the integral 
equation is singular, so long as the terms ~" and 
~II(S, x) in the definitions (5.18) and (5.19) of ~(;') 
and ~(s, x; A) are finite, which is the case here. 

Therefore, if ~(l) ¢ 0, CPN(S) , the solution of the 
approximate form of (2.6) tends uniformly to a 
limiting function cp(s) as N ---->- 00 for all values of s in 
a finite range on the left-hand cut, and this function 
cp(s) is a solution of the exact integral equation, i.e., 
des), as given by (3.3), converges uniformly to D(s) the 
solution of (2.6) for all values of s in a finite range on 
the left-hand cut. From (2.5) it follows that n(s) given 
by (3.4) converges uniformly to N(s) for s in any 
finite region of the s plane. Finally, for s in any finite 
closed region not containing the left-hand cut, des) 
as given by (3.5) converges uniformly to D(s). 

Exactly the same procedure may be followed to 
prove that the approximate solutions of (2.7) converge 
to the exact solution. In this case 

K(s, x) = p(x) [XB(X) - SB(S)] 
7TX x - S 

= p(x) [XB1(X) - SB1(S)] 
7TX x - S 

_ p(x) [XB2(X) - SB2(S)], (5.23) 
7TX x - s 

where Bl(X) and B2(x) are the two functions on the 
right-hand side of (4.13), and so 

B(x) = Bl(X) - B2(X). 

The kernel (5.23) is now approximated by kN(S, x), 
which is obtained by taking the [N, N - 1] Pade 
approximants to the integrals occurring in B1(x) and 
B2(X). Therefore it is of the form 

kN(S, x) = p(x) {f crar 

7TX r=1 (s - ar)(x - ar) 

N c'a' } ! r r 
-r=l (S - a;)(x - a;) , 

(5.24) 

where ar , a;, Cr ' C; are negative constants. The 
approximate integral equation (2.7) may then be 
written in the standard form (5.3), where kN(s, x) is 
given above and 

CPN(S) = n(s), g(s) = B(s), and A. = I. 

The whole procedure from (5.3) to (5.22) may be 
carried through exactly as previously. There is one 
small difference since in this case13 

IkN(S, x)1 < M'/ls"xl (5.25) 

13 The relation between the asymptotic behavior of B(s) and 
Imf(s) has been discussed by L. Lanz and G. M. Prosperi, Nuovo 
Cimento 33, 201 (1964). 
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instead of (5.17), where -15 > e' > 0 and e' = 1 if 
-I > 15 and where M' is a constant independent of N. 
But this does not alter the final results, which may be 
stated as follows. 

If ~(I) ~ 0, then n(s), as defined by (3.7), tends 
uniformly to N(s), the solution of (2.7), for all s in 
any finite region on the right-hand cut. Then des), as 
defined by (3.8), tends uniformly to D(s), the solution 
of (2.4), for all s in a finite region of the s plane. 

Finally, n(s), as defined by (3.9), tends uniformly to 
N(s) for all s in any finite closed region not containing 
the right-hand cut. 

6. CONCLUSIONS 

Approximate methods for solving the N/ D equa­
tions have been discussed. These methods have to be 
used since in general the equivalent integral equations 
for N or D cannot be solved exactly. Although the 
integral equation for N is nonsingular7 for the 
asymptotic behavior of the scattering amplitude con­
sidered here, it is often solved by taking an approxi­
mate degenerate4 kernel instead of using the standard 
Fredholm's method for solution. The corresponding 
solutions were given in Sec. 3. In many physically 
interesting cases the integral equation for D is singular. 
The full Fredholm theory then will not apply to this 
equation although it may be possible to use Fredholm's 
methods to obtain a solution. However, approximate 
solutions may again be obtained by choosing an 
approximate degenerate kernel, and they have also 
been described in Sec. 3. 

It has been the purpose of this paper to show that 
one can define sequences of the above approximate 
solutions which converge uniformly to the exact 
solution of the N/ D equations. The first step was to 
obtain a sequence of degenerate kernels which con­
verges to the exact kernel of the relevant integral 
equation. This was done in Sec. 4 using the method 
of Pade approximants.14 Now for the partial wave 
dispersion relations to exist, it is sufficient that 
1m f(s) -+ 0 as s -+ - 00. The simple asymptotic 
behavior Imf(s) = O(x~) with 15 < 0 has been con­
sidered here. In Sec. 5, it was proved that, with this 
asymptotic behavior, the approximant solutions of 
the N/ D equations converge uniformly to the exact 
solution when the above convergent sequences of 
kernels is used, so long as ~(l) ~ o. [~(;.) is the 
denominator of the Fredholm solution of the relevant 
integral equation and is defined in (5.18).] 

14 Pade approximants have also been applied to the theory of the 
solution of the N/D equations by A. P. Balachandran, Ann. Phys. 
(N.Y.) 30, 476 (1964) and by D. Masson, J. Math, Phys. 8, 512 
(1967). 

Now the full Fredholm theory may be applied to 
the integral equations (2.6) and (2.7) for D and N, 
respectively, so long as they are nonsingular. As 
stated previously, the integral equation for N is non­
singular. The integral equation for D is nonsingular 
if and only if 15 < -to However, for -t:::;; 15 < 0, 
the Fredholm series still converges, as was seen in 
Sec. 5. In both cases the Fredholm method gives a 
solution of the relevant integral equation and corre­
sponding solutions of the N/ D equations, as long as 
~(l) ~ o. Comparing with the previous paragraph, 
one sees that the approximate solutions of the N/ D 
equations considered here converge to the exact 
solution when the Fredholm method also gives a 
solution. 

When the integral equations are nonsingular, the 
zeros of ~(;.) are denumerably infinite (or finite if 
the kernel is degenerate) and in any finite region of the 
;. plane there are only a finite number of them. One 
would then expect ~(1) = 0 for only certain special 
cases of the input function. However, the integral 
equation for D is singular for t :::;; 15 < 0, and these 
properties of ~(;.) are in general no longer true. In 
fact, singular integral equations can be found in 
which the zeros of ~(;.) fill the real axis completely.15 
In the case considered here, it can be seen from (5.18) 
that ~(;.) ~ 0 for at least some small region about 
;. = O. Whether this region includes the point ;. = 1 
or not depends on the value of M in (5.17), which in 
turn will depend on the form for Imf(s) on the 
left-hand cut. 

In writing down Eqs. (2.4) and (2.5) for Nand D 
it was assumed that no CDD poles were present. 
However, it is a simple matter to show that the intro­
duction of such poles does not affect the convergence 
of the corresponding approximate solutions of the 
N/D equations. Finally, as mentioned in Sec. 4, the 
poles and residues ofthe approximate kernel k(N+l)(S, x) 
are all different from those of kN(S, x). Therefore an 
iteration procedure such as that derived by Bander16 

cannot be used here to obtain the approximate solu­
tion corresponding to k(N+l)(S, x) in terms of the 
approximate solution corresponding to kN(S, x). 
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Plane wa~es of small amplitud~ f: in a cold pl.asma which pr~pagate into an equilibrium state and the 
head of which approaches steadiness are studied on the baSIS of a one-fluid model with transverse 
magnetic field .. Their asymptotic behavior is shown to depend on whether the limits are taken in the 
order f: -+ .0, t -+ 00 or t -:- 00,. € -+ 0. !he latter, nonc1assi~llir:tit is the physically relevant one, and an 
approach IS ~eveloped which Yields un.lqueness results for It. It IS shown that the wave must ultimately 
become nonlinear ~ and a stea?y solutIOn can be approached only in a conditional sense. If the wave 
lowers t~e magnetic l'ressure, It mus~ do so monotone~y. If not, then it must begin with a near-periodic 
wave tram approaching steady solutions locally, but different ones in different places. 

I. INTRODUCTION 

"SHOCK" waves in a collisionless plasma which lead 
from one equilibrium state to another and settle 

down to a permanent form have attracted considerable 
interest over the last decade1- 11 in connection with 
plasma heating and the solar wind, and on account of 
their intrinsic physical interest. The model envisaged 
in most cases is that of a charge-neutral, zero-tem­
perature plasma of singly-charged particles describ­
able by a one-fluid theory.1.4-S It may not be realistic 
enough,IO but a number of investigations1.5.8011 have 
shown that more elaborate models including tem­
perature effects lead to quite similar results. This is 
due largely to the unimportance of collisions at 
sufficiently low density, which gives to any model the 
character of a process governed by conservation 
equations without dissipation. It is of interest, then, 
to understand the properties of the simple model 
clearly, especially since it has some subtle features with 
strong effect on what is observable. To reduce the 
complexity further, only a transverse magnetic field is 
considered. 

The first question is whether there can be waves 
which are steady,4.508.9 and thus readily observable, 

• This work was supported by the National Science Foundation 
under Grant GP-6143. 

1 C. S. Gardner, H. Goertzel, H. Grad, C. S. Morawetz, M. H. 
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in the frame of some observer traveling with fixed 
velocity. The second question is whether these are 
actually approached asymptotically in time, and 
Morton's computations8.9 confirm this, on the assump­
tion that the plasma is governed by a Korteweg­
de Vries equation-but only provided the ampli­
tude is not too small. There is, in fact, a curious para­
dox: steady solutions leading from one equilibrium 
to a different one exist only for amplitudes above a 
critical value; for smaller amplitudes, the only steady 
solutions are either strictly periodic waves or solitary 
waves leading back to the initial state.8 The following 
therefore concentrates on the case of arbitrarily small 
amplitude E. 

This introduces the double limit t -+- 00 and 
€ -+- O. The classical procedure of mathematical 
physics is to let E -+- 0, thereby linearizing the problem, 
and then to evaluate the solution asymptotically in 
t. 609 But that is nonphysical since observation always 
concerns a wave of given amplitude, studied over a 
sufficiently long time. Classically, one hopes that the 
limits commute, but this is disproved for the problem 
at hand. A direct attack on the correct double limit 
appears difficult, and the following indirect approach 
is used. The two double limits stand at the ends of a 
spectrum of single Kaplun Iimits12 such that the real 
time is t* = tfT(E) and E-+-O with t fixed and with 
T(E) -+- 0 with E. More precisely, T is of class 

0= {a(E) E C(O, 1) I a > 0 and O'-+-O as E-+-O}. 

Now for any ft E 0, 

LJI. = {a E 0 I (O'fft) -+- 0 as E -+- O} 

may be called the "left set of ft," and it has been 

12 S. Kaplun and P. A. Lagerstrom, J. Math. Mech. 6, 585 (1957). 
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shown18 that asymptotic approximation under 

lim (lim) 
£-0 t*-C(l 

is equivalent to asymptotic approximation under 
a Kaplun limit, if the latter approximation is 
uniform13 in a left set. The present investigation there­
fore starts by considering all l' E n for the plasma wave 
and proceeds to show that only a few approxima­
tions result and, finally, that only two among these can 
be uniform in any left set. The asymptotic solutions 
discovered before are not among these two and are 
therefore only "asymptotic transients" (Sec. V). 
The steady small-amplitude wave4•5•8 is approached 
only in a conditional way, indicating a possible resolu­
tion of the paradox just mentioned. 

Since collisionless plasma is dispersive, with 
highest phase velocity for the longest waves, the head 
of a wave propagating into an equilibrium state must 
be anticipated to have a large length scale L. But the 
particular relation L = O( c 1) postulated by the 
earlier authors3- 6•9.11 turns out not to be the only 
relevant one, and it is desirable to assume only 
L-l = !5(~-) E n and to let the governing equations 
determine !5(€). Dispersion, moreover, tends to sort 
out the different wavelengths as time increases, and 
the time asymptotics of a dispersive process must 
therefore be anticipated to be thoroughly nonuniform 
in space. The present study is concerned only with the 
"head" of the wave, that is, with the wave front and 
as much of the wave behind the front as may be 
describable asymptotically in terms of a single length 
scale !5-1• The analysis soon shows (Sec. III) that larger 
length scales may also be involved, but they are not 
considered here. It follows that the analysis cannot 
generally impose any "tail" boundary condition 
specifying the new equilibrium state to which the wave 
leads! Fortunately, the resulting indeterminacy turns 
out not to preclude uniqueness results. 

It may be useful to look at the same difficulty also 
from another angle indicating that it need not depend 
on dispersion. The wave is governed by conservation 
equations formally expressible as 

aN/at + aM/ax = O. 

Steady solutions are obtained from M = const. More 
generally, M is formally given by 

M = 100 

eo~) dx, 

if M - 0 as x - + 00, because the wave travels in the 

13 R. E. Meyer, J. Inst. Math. AppJ. (to be published). 

direction of x increasing into an equilibrium state. 
Approach to steadiness means ION/otl- 0, which is 
seen to imply, not directly steadiness, but rather that 
any appreciable effects of unsteadiness are postponed 
to large distances from the wave front. There is then 
no a priori assurance that the new equilibrium state 
will be approached by the wave's near-steady part 
for which ION/otl- OimpliesM - O. For a sufficiently 
long transition, moreover, collisions, even if rare, 
might have a decisive influence on the tail of the wave. 
It appears all the more desirable to concentrate first 
on a clarification of the possible asymptotic forms of 
the head. In some instances (Secs. IV, V), specification 
of a steady tail boundary condition will turn out to be 
consistent with the asymptotic equations governing 
the head. But, generally, the only assumption is the 
implicit one that the tail boundary condition depends 
on time to a sufficiently small degree to permit an 
approach to steadiness at the head of the wave. 

A further remark is necessary with regard to the 
meaning of time asymptotics. If a steady phenomenon 
is readily observed, it is implausible that the steady 
state could depend sensitively on the initial conditions 
from which it developed. This suggests either the use 
of a canonical (rather than strictly experimental) 
initial condition,6.8.9 or, still more simply, a direct 
investigation of solutions that could emerge after a 
long time, without consideration of initial conditions. 
The latter approach is chosen here, and since time then 
enters into the problem only through the differential 
operator of the conservation equations, the only 
meaning assignable to the large time scale 1'-1 of 
the Kaplun limit will be that 1'( €) characterizes the 
smallness of the time derivatives at the head of the 
wave. Accordingly, the analysis is concerned with time 
asymptotics in the sense of asymptotics for a close 
approach to steadiness. The earlier remarks on the 
double limit t* - 00, € - 0 are equally relevant to the 
limit %t* - 0, € - O. The results obtained, more­
over, encourage us to think of a progressively closer 
approach to steadiness as corresponding to progres­
sively later stages in the development of the wave. 
But this interpretation is not implicit in the assump­
tions of the analysis. 

A final difficulty arises from the fact (proved in 
Sec. VI) that a certain class of asymptotic solutions 
must indeed be governed by the Korteweg-de Vries 
equation.14 It has the property that some of the steady 
solutions form a singular subset of the solution set in 
the sense that "neighboring" solutions differ radically 
from those steady ones, at least qualitatively. To 

It D. J. Korteweg and O. de Vries, Phil. Mag. (5) 39,422 (1895). 
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x 
FIG. 1. Sketch of the head of the near-periodic wave train; the 

magnetic field perturbation is shown vs. distance at fixed time. 

clarify the way in which steadiness can be approached 
therefore requires an unconventionally cautious 
analysis. 

Conclusions. The main results may be summarized 
as follows. The asymptotic solutions discovered 
earlier6•9 are only asymptotic transients (Sec. V) which 
can neither approach steadiness arbitrarily closely, nor 
continue indefinitely to approximate a solution. True 
asymptotics in either sense imply necessarily that the 
small nonlinear effects accumulate, and this leads to a 
sharp distinction between waves which lower the 
magnetic pressure and waves which raise it. 

If the magnetic pressure ever falls below the initial 
equilibrium value within the head of a truly asymptotic 
wave form, then it must decrease monotonely at any 
fixed position as the head passes, and the head must 
spread linearly with time (Sec. IV), The only other 
possible wave approaching permanent shape (Sec. 
VI) must begin with a near-periodic train of almost 
cnoidal waves (Eq. 48), in which the magnetic pressure 
fluctuates, but always exceeds its initial value (Fig. I). 
The details of the wave train depend on a parameter 
varying slowly in time and space, and the first crest of 
the train approaches the steady solitary-wave solu­
tion.3- 6 

ll. FORMULATION 

Consider plane waves of a charge-neutral plasma 
of singly ionized particles at zero temperature, with­
out collisions,I-3 and let n* and u* denote respectively 
the number density and velocity component of the 
ions (or electrons) in the direction of propagation 
(x* increasing). Assume the magnetic field B* to be 
purely transverse, take its initial direction to define 
that of z* increasing, and let E* and v* denote, re­
spectively, the y components of the electric field and of 
the difference between the ion and electron velocities. 
The only other nonzero field component is the charge­
separation field (m+ - m_)v*B*/(m++ m_), where m+ 
and m_ are the ion and electron masses, respectively. 
If the ion charge is e, the conservation of numbers 
and momentum is expressed by 1-3 

on*Jot* + o(n*u*)/ox* = 0, (1) 

ou*/ot* + u*ou*/ox* = ev*B*/(m+ + m_), (2) 

ov*/ot* + u*ov*/ox* 

= e(m+ + m_)(E* - u* B*)/(m+m_), (3) 

and Maxwell's equations give 

oB*/ot* + oE*/ox* = 0, 

oB*/ox* + flen*v* = 0, 

where fl denotes the magnetic permeability. 

(4) 

(5) 

Assume v* to be twice differentiable; then by (3) 
and (4), ov*/ox* + e(m+ + m_)B*/(m+m_) satisfies 
the same conservation law as n *. Since the wave is 
assumed to travel into plasma at rest and uniform 
number density no and magnetic field Do , it follows6 

that 

ov*/ox* = e(m+ + m_)(Bon*/no - B*)/(m+m_), (6) 

and (1), (2), (5), (6) are the governing equations. 
They are Galilean invariant, and we choose the 

frame of reference of an observer traveling in the 
direction of propagation with constant velocity 

U = BoLuno(m+ + m_)(1 - t1.)]-! 

with respect to the plasma at rest. The boundary 
conditions ahead of the wave are then 

u* - - U, v* - 0, n* -~ no , B* - Bo 

as x* - + 00, all t*. (7) 

The constant A. determining U is to be chosen so that 
the wave can approach steadiness for our observer, 
and the physically natural interpretation of this 
notion is that the time scale is large compared with 
L/ U, where L is the length scale. The most general 
stretching transformation reflecting this and the 
notion of small amplitude is 

x = bx*e[,unoCm+ + m_)]!(m+m_)-!, 

t= byUt*e[,uno(m+ + nL)]!(m+m_)-!, 

u*(x*, t*) = - U + EUU(X, t; E), 

v*(x*, t*) = OUv(x, t; E), 

n*(x*, t*) = no(l + vn(x, t; E», 
B*(x*, t*) = Bo(1 + (3b(x, t; E», 

(8) 

where the Greek letters denote small parameters and, 
since Kaplun limits are to be studied, (3, y, b, 0, vall 
E Q. The propagation constant A. may also depend 
on E, and it is assumed that A(E) E C(O, 1). 

To find necessary conditions for solutions approach­
ing steadiness at the head of the wave, it is now 
assumed that (1) to (7) possess solutions for which 
u, v, n, and bare E C2 and tend, as E - 0, to functions 
of class C2. More precisely it is assumed that 
{u, v, n, b} E r 2 defined by 

rn = {/(X, t; E) I !~fE cn(E)} , 
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where E is the set of all (x, t) and the limit is under­
stood in the pointwise norm including the derivatives 
of order ~n. Moreover, the solutions are assumed 
nontrivial in the sense that u, v, n, b, and 

(lou/otl + I ov/ot I + lon/otl + lob/otl) 
all belong to the class N of functions not possessing 
upper and lower bounds tending to zero with E on 
every open, bounded x, t set. 

All this expresses the physical assumption that 
E, (), 'P, and {J do represent the proper amplitude scales 
and 7'-1 = (y<5)-l and <5-1, the smallest relevant time 
and length scales, respectively, at the head of the 
wave. The need to distinguish bounded sets from others 
in which lxl or It I do not remain bounded as E ~ 0 
arises from the suspicion that scales larger than <5-1 and 
7'-1 may also be relevant to the wave. If the tail 
boundary condition can be consistently applied on the 
scale <5-1 , it is taken to be 

b(x, t; 0) ~ bl = const as x ~ - 00, all t. (9) 

If not, there remains a possibility of mistaking the 
outer skirt of a wave, near its very front, for a sub­
stantial part of the wave. The definition of amplitude 
and length scales is then completed by the assumption 
that Ibl remains bounded as x ~ - 00. (It emerges 
that choosing lui or Inl here, in the place of Ibl, would 
not change the results.) To simplify the language by 
giving adequate meaning to "boundedness" of It I in 
the absence of initial conditions, we add the con­
vention that t = 0 represents a time at which the 
degree of unsteadiness at bounded Ixl is already so 
small that (y<5)-l is the locally relevant time scale. 

III. ANALYSIS 

The transformation (8) brings (1) into the form 

y'P an + oq = 0, q = u _ ~ n + 'Pnu. (10) 
E at ax E 

Equations (1) and (2) may be combined into a 
momentum conservation law, but it is more con­
venient to work with the energy conservation law 
obtained directly from (2), by the help of (5) and (6), 
and which (8) transforms into 

y au + oh = 0, 
ot ox 

{J (11) 
h = -u + - (1 - )')b + ~ (u 2 + CX2

V
2
), 

E 2 
where ECX = ()(m+m_)l(m+ + m_)-l. In addition, (8) 
transforms (5), (6), and (7), respectively, into 

<5{Job/ox + Ecxv(l + 'Pn)(1 - ).)-1 = 0, (12) 

ECX<50V/ox = ('Pn - {Jb)(l - ).)1, (13) 

lui + Ivl + Inl + Ibl~O as x~+oo forall I,E. 

(14) 

For fixed E > 0, Eqs. (10)-(14) are equivalent to the 
exact equations governing the plasma model. 

To begin the study of the limit E ~ 0 defined in 
Sec. II, note that, if pee) and O'(E) are any two­
parameter functions defined by the stretching (8), 
and if it be shown that p/O' tends to a nonzero limit, 
then no generality is lost in taking lim p/O' = 1, 
because (10) to (14) are homogeneous. Moreover, 
there is then no need to distinguish p from 0' because 
information is sought only on the limit of solutions of 
Eqs. (10)-(14). 

Next, note that 

{u, v, n, b} E r~ 

= {IE r2If(x, t; 0) ~ 0 as x ~ 00, all t}. 

For if, e.g.,. b(x, t; 0) -t-+ 0 as x ~ 00 for fixed t, then, 
given any X > 0, we could find Xl > X such that 
Ib(xl , t; 0)1 > 2c > 0, and since bE r 2 , also EO> 0 
such that Ib(xl' t; E)I > c for 0 < E < 2Eo, which 
which would contradict (14). It follows that 

o{u, v, n, b}/ox E N. 

Indeed, consider, e.g., b on an arbitrary open­
bounded set SeE. For every El > 0, another such 
set R can be found such that S c R and that (x, t) E S 
implies (X, t) E R for X sufficiently large to ensure 
Ib(X, t; E)I < El for 0 < E < EO, because b E r~. If 
ob/ox ¢ N, then EO could be chosen small enough to 
make l.u.b. Ibl < 2El' for 0 < E < EO, contrary to the 

R 
hypothesis bEN. 

Now consider (10); it shows 'P/E-t-+ 0, for otherwise 
au/ax ¢ N. It may also be written 

on/ax - (Ej'P)OU/OX = yon/ot + Eo(nu)/ox 

for every E > 0, and since nand u E r l , the right-hand 
side ~ 0 with E on all bounded sets. But ou/ox E N 
implies the existence of a point (x, t) at which 
ou/ox ~ a ;06 0 as E ~ 0, and if E/'P did not tend to a 
limit, then an/ax could not do so either at (x, t), 
contrary to the hypothesis n E rl. Moreover, E/'P-t-+ 0, 
for otherwise on/ox ¢ N. Without loss of generality, 
therefore, 'P(E) = E. 

From (12), similarly, ECX = <5{J(1 - ).)1 and 
ob/ox E r~, and then from (13), {J(E) = 'P(E) and 
<520v/ox E r~, and thus CX(E) En. Moreover, (10) 
and (11) yield 

ob a 
). - = y - (n + u) 

ax ot 

E a 2 2 202V 
+ - - (u + cx2v + 2nu) - <5 -, (15) 

2 ox ox2 
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so that 
CXO(E) == max (E, 152 , IAI) E Q. 

It is useful to establish that lim OV/OX -+ 0 as 
0-+0 

x -+ 00 for any fixed t. Given 'YJ > 0, (14) implies the 
existence of X.,(E) such that E > 0 and x> X (E) 
together imply In - bl < 'YJ. Let ov/ox = f(x; E); then 
(13) has been reduced to n - b =!52J. Suppose 
I(x; 0) ++ 0 as x -+ 00, then, given any X, we could 
find Xl> X such that If(x1; 0)1 = 2c for some c > o. 
Since fE r 1 by hypothesis, there must then be an 
EO> 0 such that If(xl; E)I > c for 0 < E < 2Eo, and 
if !5( EO) = 150 , also an Xl > X.,( EO) such that 

c < If(xI; Eo)1 < 'YJ/!5L 
which is not possible for every 'YJ > O. Hence 

ovlox En. (16) 

Since q + h = (E/2)(u2 + CX2V2 + 2nu) - Ab - !520v/ox, 
it follows that 

Q+H==otQl(q+h)Er~. (17) 

On the other hand, 

h - q = 2(b - u) - )'b + 152 OV 
OX 

+ ~ (u 2 + CX2
V

2 
- 2nu) E r~, (18) 

2 
whence, by (10), (11), 

(!:.~ - .!)(h - q) 
20t ox 

= - - - (u + CX v - 2nu) - )'b - 15 -y a [E 2 2 2 2 av] 
20t 2 ox 

= ycxOgl, gl E rg, (19) 
and 

h - q lCX> y -- = gl{~' T(~); E) d~, T(~) = t - 2- (~ - x), 
ycxo ;t 

(20) 
for every E > 0, by (14) and (18). For fixed x, t, then, 
'YJ > ° implies the existence of X.,(E) such that 

If:gl(~' T(;); E) d;1 < 'YJ 

whenever both Z> Y> X.,(E) and E> 0. An 
argument similar to that used to prove (16) now shows 
that the integral in (20) converges also for E = 0, and 
it then depends continuously on X and t, by (19). 
Thus 

Since !520v/ox E r 2 , moreover, (19) may be differ­
entiated for E ~ 0, and the same argument then shows 
y-1o(h - q)lot and y-1o(h - q)/ox Erg, whence, by 
(18), 

cxl10(b - u)/ot Erg, cx11o(b - u)/ox Erg, (23) 

CXiE) = max (cxo, y). 

To sum up, it has been established that the pertur­
bations of number density, magnetic field, and X 

velocity all have the same amplitude parameter E. 
More remarkably, the corresponding mass-flow 
perturbation 

q = (n*u* + noU)/(EnoU), 

energy perturbation 

h =- + + - + 0 0 
1 [U*2 - u2 m m v* 2 B (B* - B ) ] 

EU 2 2 2(m+ + m_)2 #(m+ + m_)no ' 

and momentum perturbation 

_1_ [), - 3 n V2 + n*u*2 + B*2 ] 
EnOV2 2 0 2#(m+ + m_) 

are all much smaller, when E is sufficiently small, than 
the perturbations of number density, magnetic field, 
and X velocity. There is, moreover, a significant 
difference between q + hand q - h. The result 
q + h = O{max (152 , E, lAD) is largely independent of 
the condition that the wave travels into equilibrium 
plasma; it reflects mainly the local amplitude, length, 
and time scales. The smallness of q - h, by contrast, 
is due to its very small rate of growth with distance 
from the wave front, and this makes Iq - hi even 
smaller than Iq + hi at the head of the wave. 

The amplitude scale of the transverse velocity 
difference v* has been shown to be 

(J = E!5(m+ + m_)(l - A)i(m+m_)-i, 

with), E Q also, and the governing equations (10)­
(13) have been reduced to 

y ob + oq' = 0, q' = u _ b + Eub + 152m 
ot ox 

= q + y!520v/ot = CXoQ', (24) 

OU oh 
y-+-=O, ot ox h = (1 - A.)b - u + Er = rxoH, 

v = -(1 + en)-lob/ox, 

n = b + !520v/ox, 

(25) 
(26) 

(27) 

y-l(H - Q) == (YCXo)-l(h - q) E rg, 

and, from (16)-(18), 

(21) where Hand Q' Erg, rxO(E) = max (E, 152 , IA.I), and 
abbreviations 

Q = otQlq Erg, H = otQlh Erg, otQl(U - b) Erg. 
(22) 

m = yovlot - (1 - EU)OV/ox, 

r = i{u2 + (1 - )')!52V2) 
(28) 
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are used for correction terms. To conclude this would be linear in x, contrary to the hypothesis 
section, it is now shown that the head of the wave v E f~ n N. It has also been shown that oc E nand u 
must be governed by limiting equations resulting from and ou/ox EN, and since n - b, o(n - b)ox, b - u, 
(24)-(27) as € _ 0 with either Ursell number15 and o(b - u)/ox ¢ N, by (27), (22), and (23), the 
€/(j2 _ 0 or (j2/€ _ 0 or (j2 = €. confirmation is complete. We recall that the four 

To this end, note first that ou/ot, ob/ot and on/ot derivatives in (31) are also E f O, by hypothesis 
are each E N. For if one were not, the other two would (Sec. II). 
also be ¢ N, by (23) and (27). But by hypothesis Now suppose that neither (j2/€ nor €/(j2 tends to a 
(Sec. II), there would then be a bounded open set S limit. Then (31) implies either 

with lub lovlotl+-+ 0 as € - 0, and since v and n E fl, (.) o( 2 + 2 2 + 2 )10 (211 )objo d:- N s 1 U oc v nu x - II € X 'F 

there would be a point (x, t) with neighborhood on or 
which glb lim 102bjoxotl > 0, by (26), which con-

(ii) '-0 
tradicts the supposition oblot ¢ N. 

Next, 

(2.£. - ~ ~)b 
ot yox 

= ~(b - u) _l~ (€(r + ub) + (j2CO), 
ot yox 

(29) 

obtained from (24) and (25) for € > 0, is used to show 
that 

€/y _ 0 and {j2/Y _ 0 as € - 0 (30) 

is incompatible with our hypotheses. Suppose it was 
compatible; then, from (15), 

(A/y)ob/ox - o(n + u)/ot ¢ N, 

and since ob/ox EN and o(n + u)/ot E fl, A/y must 
tend to a limit. But A/y -H 0, for otherwise (30), (29), 
and (23) would imply ob/ot ¢ N. Thus (30) would 
imply a nonzero limit for A/y and (29) would be an 
equation for b analogous to Eq. (19) for h - q and 
would imply, similarly, that b ¢ N, contrary to 
hypothesis. 

The possibility that both €/A - 0 and (j2/A -+ 0 as 
€ - 0 may now also be ruled out because (15) would 
then imply oblox - (yIA)o(n + u)lot ¢ N, and since 
both oblox and o(n + u)lot E fO n N [because 
o(n - u)lot ¢ N by (27), (23)], YIA would have to 
tend to a nonzero limit and (30) would follow. 

For € > 0, (15) may be written 

a2v y a(n + u) 
-=-
ox2 (32 ot 

€ 0 A ob + __ (u 2 + ocV + 2nu) - --, (31) 
2(32 AX (32 ox 

and to complete the argument requires confirmation 
that the four derivatives in (31) are each EN. This 
has already been shown for obi ox and o(n + u)lot, 
and if it were not true of 02vloX2, then vex, t; 0) 

16 F. Ursell, Proc. Cambridge Phil. Soc. 49, 685 (1953). 

In case (i), again since both the derivatives E fO n N, 
it would follow that A/€ tends to a nonzero limit, and 
then, without loss of generality, IA/€I- 1, and (27), 
(22), (23) would imply 0(3u2 =t= 2u)/ox ¢ N, contrary 
to the hypothesis u E f~ n N. In case (ii), similarly, 
1A/(321-+ 1, and by (26), 02vloX2 =t= v ¢ N. Since 
v E f~ n N, it would follow that v - ce-X ¢ N with 
constant c 'F: 0, and (26) would imply b - ce-X ¢ N, 
contrary to the hypothesis that b remains bounded as 
x -+ - 00 (Sec. II). 

IV. VERY LONG WAVES 

Waves for which 

(32/€ _ 0 as € -+ 0 (32) 

are now studied, and we begin by showing that then 
A/€ tends to a limit and y = €. From (24) and (25), 

!.£.(b + u) = ~ob _ ~(r + ub + (32 co) 
€ ot € ox ox € 

for € > O. Suppose now that AI€ does not tend to a 
limit; then, since r + ub E fl and obi ax E fO n N, it 
would follow that ob/ox - (yIA)O(b + u)/ot ¢ Nand, 
since b + u E fl, A/y must tend to a limit, so that 
a(b + u)lot - (A/y)oblox E fl. But €/y - 0 would 
imply (30), by (32); and since u, oulox E N, we have 
o(ru + b)lox E N, by (28), (22), and (23), and it 
would follow that y/€ must also tend to a limit. Thus 
lim (A/€) does exist, and no generality is lost in taking 
OCo = €, and from (24), (25), and (28), 

H + Q' = Ju2 
- ~ U + (j2 (co + !. (1 - A)VS

) 

€ € 2 

+ (u - ~)(b - u), 
o(H + Q')/ox = -(y{€)o(b + u){ot. (33) 

Since o(b + u){ot E N, by (23), it now follows from 
(17) that lim (y/€) exists, and since (32), (22) and 
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U EN imply H + Q' EN, (17) rules out (r/E) -+ 0, 
and no generality is lost in taking I' = E and otl ::; e. 

By (23), (33) therefore implies 

2ou/ot + (3u - A/e)ou/ox ¢ N 

and, in the limit, 

du/dt = 0 when dx/dt = l(3u - k), (34) 

where k = lim A/e. By (32), moreover, this result is 
valid for T = r!5 in the left set of et and, hence,l3 for 
the desired double limit (Sec. I). Now 3u - k increases 
with u and thus, if at some t the longitudinal velocity 
u (or n or b) fails to be a monotone, nondecreasing 
function of x, then it will fail to be E r 2 , and indeed 
even E r o, after a finite interval of t. A necessary 
condition for (32) to be asymptotically consistent 
with the governing equations is, therefore, that u, b 
and n are monotone, nondecreasing functions of x 
at any fixed t-for an observer who sees the plasma 
initially at rest, the wave must lower the longitudinal 
velocity, the magnetic pressure, and the number 
density, as it passes. 

The conclusions arrived at are sufficiently explicit 
to permit remarks also on the real time asymptotics 
ofthis wave type, provided that either the tail boundary 
condition (9) applies with bi < 0 [so that (34) 
describes the whole wave] or the tail does not overtake 
the head. In that case, if the necessary monotoneity 
condition is satisfied at some t, (34) shows it to 
remain satisfied over any bounded time interval and 
indeed over any time interval !l.t such that p( e)/l.t -+ 0 
as e -+ 0 for every pEn. Moreover, (34) shows the 
wave to spread by and by and thus to develop in a sense 
strengthening (32), so that real time asymptotics are 
equivalent to asymptotics for approach to steadiness. 
As far as the present analysis can carry, it therefore 
reveals no inconsistency in the existence hypotheses 
of Sec. II. The reader will have noticed the similarity 
between these waves and the simple waves of gas 
dynamics,Is but there does not appear to be an exact 
solution of Eqs. (1)-(7) of such type. 

V. LINEAR WAVES 

Assume next that 

(35) 

then an argument analogous to that opening the 
preceding section shows that A/!52 must tend to a limit, 

16 R. Courant and K. O. Friedrichs, Supersonic Flow and Shock 
Waves (Interscience Publishers, Inc., New York, 1945). 

FIG. 2. Graph of (3S) for 
c > 0; it represents the 
(transient) asymptotic form 
of the magnetic field per­
turbation vs. distance at 
fixed time for all trans­
mission waves; scaling 
according to (35). 

b 

and oto = !52• From Eqs. (24}-(28), therefore, 

H + Q' = 1 - eu o2b _ .! b + ov 
1 + en ox2 !52 I' at 

+ ~(r + ub) _ e(1 - eu)obon 
!52 (1 + en)2 ox ax' 

(j 

o(H + Q')/OX = -(r/!5~o(b + u)/ot, (36) 

and since (23) implies o(b + u)/ol EN, (17) shows 
lim (r/!52) to exist. If y/!52 -+ 0, (17) and (35) imply 
o2b/ox2 - (A/!52)b ¢ N, so that b must be either 
trivial or unbounded, contrary to hypothesis (Sec. II). 
Thus y = !52 , and by (23), (36) implies 2ob/ol + 
o3b/ox3 - (A/!52)ob/ox ¢ N; and the last term in this 
expression may be absorbed into the time derivative 
by a transformation to the frame of an observer 
traveling with speed corresponding to A/!52 = 0, to 
obtain the limiting equation 

2ob/ot + o3b/ox3 = o. (37) 

It is readily verified to have a solutions.I7 

b(x, t) = c LXlAi(,u) d,u, (J = (~)* x, 
(38) 

Ai(,u) =; f"cos (,uw + ~) dw 

representing a wave of transition (Fig. 2) from the 
magnetic field Bo to the magnetic field Bo(l + ec). 
Thus (38) satisfies (9), if c = bl . Conversely, (37), 
(9), and (14) are invariant under the transformation 
x = ax', t = aSt', b(x, I) = b'(x', t') for arbitrary 
constant a =/= 0, and the solution b(x, t) for the initial 
condition b(x, 0) = bo(x) may thus be obtained from 
the solution b'(x', I') for the initial condition 

b' (x', 0) = bo(ax'). 

For any monotone bo(x) satisfying (9) and (14), 
b'(x', 0) -+ bIH(-x') as a-I -+ 0 (where H denotes 
the unit step function), and that is the initial 
condition satisfied by (38) if c = bl . Any transition 
wave governed by (37) and monotone in x at some t 

17 H. ,Jeffreys ~nd ~. Jeffreys, Methods of Mathematical Physics 
(CambrIdge Umverslty Press, Cambridge England 1946) pp 
508-SIS. " ,. 
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therefore approximates (38) asymptotically as t -- 00. 
This holds, moreover, also for any such wave 
differing from a monotone one at some t by an 
integrable function [use the linearity of (37), a slightly 
different transformation, and the x derivative of 
(38)]. 

Gardner and Morikawa6 conjectured that (38) is 
not truly asymptotic for Eqs. (1)-(7) because (37) does 
not admit the steady solitary-wave solution2-5 of Eqs. 
(1)-(7). This is unconvincing, since Sec. IV indicates 
the existence of solutions approaching steadiness arbi­
trarily closely, but governed by a limiting equation 
that also fails to admit steady solutions. Rather than 
discredit the conjecture, however, the present result 
supplies proof that (37) can describe only a transient 
asymptotic stage in the approach to steadiness. This 
follows from (35), which has been seen to imply 
y = l52 , so that 'T = l53 ; if the approximation be 
uniform for 'T in the left set of some O'(€) E ceO, 1), 
i.e., valid for every 'T such that 'T/O' -- 0 with €, then 
it must therefore be valid for l53 = 'T = € min (€, 0'), 
which implies (32), not (35). For the head of a wave 
characterized by (35), moreover, an increase of the 
time scale (yl5)-l = l5-3 relative to the amplitude 
scale € must weaken (35) so that ultimately pl52/€ -- 0 
for every pEa-indicating that closer approach to 
steadiness requires boundedness of l52/€. 

The conclusions are again sufficiently explicit to 
permit relating near-steadiness to real time asymptotics 
and proving that (37) can represent no more than a 
transient also in the latter sense. Indeed, (38) shows 
b, u, and n to depend asymptotically (as t -- 00) only 
on t-ix, and the development of the wave therefore 
preserves the relation y = l52 , while the rates of change 
of b, u, n with x and t-to which the definitions of l5 
and yl5 relate directly-decrease in magnitude as t 
increases.15 Since the amplitude €bl is independent 
of time, (35) must weaken with time and must be 
anticipated to give way eventually to y = l52 = €. It 
should be stressed that (37) results6 from the classical 
procedure of letting the amplitude tend to zero before 
letting the time tend to infinity, and our result there­
fore shows the order of these limit processes to be 
definitely noncommutative for the physical problem 
at hand. 

VI. KORTEWEG-DE VRIES WAVES 

Assume finally that 

152 = €. (39) 

Then an argument similar to that opening Sec. IV 
shows that Af€ tends to a limit, and Oto = €. From Eqs. 

(24)-(28), therefore, 

H + Q' = fb 2 _ ~ b + 1 - €U a
2
b + 3b + u (u _ b) 

€ 1 + €n ax2 2 

+ y av + €[1 - A. v2 _ 1 - €U ab an], (40) 
at 2 (1 + €n)2 ax ax 

a(H + Q')/ax = -(y/t:)a(b + u)/at, 

and by (23) and (17), lim (y/€) exists. This leaves two 
possible cases. 

(i) If y = €, (23) implies 

2 ab + ~ [a
2

b + J-b2 - 3 b] ¢ N, (41) 
at ax ax2 

€ 

so that the limiting equation is that of Korteweg and 
de Vries.14 However, y = 152 = € implies 'T = €!, 
which does not represent a left set, and (41) can 
therefore relate only to a transient asymptotic 
approximation. Conversely, the numerical work of 
Morton9 and Peregrine18 indicates that (41) can 
describe the development of a transition wave, both 
from a shape with rather short length scale and also 
from one with very large length scale, to one of the 
last type remaining to be discussed. 

(ii) If y/€ -- 0 as € -- 0, so that the time scale is 
large compared even with €-!, (40) and (17) imply 

a2b/ax2 + fb 2 
- kb ¢ N, k = lim Af€, (42) 

and since b E r~, 

b,...., k sech2 (tk1x), (43) 

a solitary wave of amplitude parameter k. Since this 
result has been deduced for 'T in the left set of €!, it 
applies to the desired double limit (Sec. I). This wave 
type and the one discussed in Sec. IV are therefore 
the only possible, fully asymptotic waves consistent 
with Eqs. (1)-(7). Observe that (43) implies k > 0, if 
bEN, so that the wave front must raise the magnetic 
pressure; conversely, it is the only fully asymptotic 
type of wave that can start with a rise in magnetic 
pressure, since the very long waves have been shown 
(Sec. IV) to require a monotone fall in magnetic 
pressure. 

The result (43), however, has been deduced only 
for the head of the wave, and it may mislead, because 
(43) is an exceptional solution of (42). Under such 
circumstances, an asymptotic statement like (42) may 
not be precise enough, and we therefore return to (40). 
Assuming y/€ bounded, it gives, by (22) and (23), 

a2b/ax2 + (3j2)b2 
- kb - ej= H + Q', j€q, (44) 

a(H + Q')jax = -(y/€)a(b + u)/at, (45) 

18 D. H. Peregrine, J. Fluid Mech. 25, 321 (1966). 
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and if 'Y/~ - 0, this pair is a near-steady form of an 
equation close to that of Korteweg and de Vries. 
Since the solution must approach (43) for bounded x, 
it follows that k > 0, and since ob/ox E q (Sec. III), 
integration of (44) gives 

(ob'/ox') = b'l - b'3 + 2Fb' - 2G == C(b'; x', t; e), 

(46) 
where b' = b/k, x' = klx and 

kIF = H + Q' + ej, G = - t\, of dx. (47) 
J"" aX 

Observe that C(b'; x', t; e) is a near-cubic in b' with 
coefficients 2F, 2G which, by (17) and (45), are small 
and slowly varying with x. The criterion for real 
solutions, bounded for bounded x, of (46) with 
constant F and G isI4 

A = (1 + 9F - 27G)2 - (1 + 6F)3 ~ 0, 

and the curve A = 0 in the F, G plane is thus a 
critical curve for (46). By (17), (44), and (47), F - 0 
and G - 0 (and thus also A - 0) as x - + 00 for 
any fixed t; and F = G = 0 corresponds to the 
solitary-wave solution (43) of (46). As x decreases, the 
representative point (F, G) must be anticipated to 
shift slightly from the origin of the F, G plane and, 
however little it shifts, the solution of (46) may then 
assume a quite different character.19 

11 T. B. Benjamin and M. J. LighthiIl, Proc. Roy. Soc. (London) 
A224,448 (1954). 

If the representative point shifts into the region 
A > 0, the solution of (46) satisfying (14) fails to be 
bounded even for bounded x, contrary to hypothesis. 
It cannot shift along the critical curve, as x decreases 
for fixed t, because A = 0 implies 3 dG/dF = 1 -
(1 + 6F)1 if: N, while (47) implies (oG/ox)/(oF/ox) = 
b' EN. For an arbitrarily close approach to steadiness 
at the head of the wave, with <51 = e, it is therefore 
necessary that the representative point shift into the 
region A < 0, and (46) is then the equation of a 
cnoidal waveI4 

b' = p + (1 + 'I' - p)cn2 [lx' (1 + 'I' - a)l] (48) 

of modulus (1 + 'I' - p)I(1 + 'I' - a)-I, where 1 + '1', 

p and a are the roots of the cubic C(b'; x', t; e) in 
decreasing order. The wavelength is 

A = 4(1 + 'I' - a)-IK([(1 + 11 - p)/(1 + 'I' - a)]I), 

where K denotes the complete elliptic integral of the 
first kind and, since 1'1'1 + Ipi + lal- 0 as e - 0 for 
bounded x', t, A '" - 2 log (p - a). The wavelength 
is therefore logarithmically large compared with the 
scale that defines the head of the wave. For bounded 
x, (48) approaches (43) as e - 0; but as x - - 00, 

the real asymptotic approximation is a near-periodic 
wave train (Fig. 1) dependent on the slowly varying 
parameter F. 
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It is remarke~ that no complete proof .exists in the literature that the asymptotic states of quantum 
field theory are mdependent of the spacehke surfaces chosen to define them. In this paper we present a 
proof which !s valid for any plane surface; this follows the Haag-Ruelle method, supplemented by 
lemmas showmg that the usual bounds on truncated Wightman functions and smooth solutions of the 
Klein-Gordo~ equation are uniform in c:ertain spacelike regions. The same lemmas immediately show 
that asymptotic states may be defined usmg any spacelike surface possessing a normal which lies inside 
~ closed tirneli~e con~ at all points. The proof of the convergence of these states has hitherto been 
mcomplete. It IS then IIDportant to show that these states are independent of the surface' we sketch a 
~~~~ , 

INTRODUCTION 

THE fundamental work of Haagl and Ruelle2 on the 
asymptotic condition in axiomatic quantum field 

theory turns on two lemmas. The first concerns the 
asymptotic properties of the truncated Wightman 
functions in spacelike directions, and the second, the 
behavior of the smooth solutions of the Klein-Gordon 
equation, and its space integral, for large times. The 
first lemma had received some attention from previous 
authors3 but the first proof of a theorem adequate for 
the problem was provided by Ruelle.2 For the second 
lemma, Haag gave a rough argument in his original 
paper, which was made more mathematical by Ruelle. 
However, neither Ruelle's proof, nor the expositions of 
it,' go into complete details, and this must be con­
sidered unsatisfactory in view of the importance of the 
subject. As remarked by Segal,5 it is not easy to 
supply all the details if one follows Ruelle's method. 

Following a suggestion of Jost, Brodsky has given 
a complete proof of the required lemmas on the 
Klein-Gordon equation using operator methods,5 

and Jost himself has presented a straightforward 
proof.6 These results, together with Ruelle's lemma 
on the truncated Wightman functions, enable one to 
follow the usual line of argument.1.2·' This demon­
strates the convergence for large times of a sequence 

• The research reported in this document has been sponsored in 
part by the Air Force Office of Scientific Research OAR through 
the European Office Aerospace Research, U.S. Air Force. 

I R. Haag, Phys. Rev. 112,669 (1958). 
2 D. Ruelle, Helv. Phys. Acta 35, 147 (1962). 
a H. Araki, Ann. Phys. (N.Y.) 11, 260 (1960); K. Hepp, R. Jost, 

D. Ruelle, and O. Steinman, Helv. Phys. Acta 34, 542 (1961). 
C A. Wightman, in Theoretical Physics, A. Salam, Ed. (Inter­

national Atomic Energy Agency, Vienna, 1963); R. Jost, General 
Theory of Quantized Fields (American Mathematical Society, 
Providence, Rhode Island, 1965). 

'I. E. Segal, in Mathematical Theory of Particles and Fields, 
(M.I.T. Press, Cambridge, Mass., 1966) A. R. Brodsky, Ph.D. 
thesis, Massachusetts Institute of Technology (1964). The details of 
Ruelle's proof have been given by H. Araki, Lectures at ETH, 
ZUrich (Unpublished) 1962. 

• R. Jost, Helv. Phys. Acta. 39, 21 (1966). 

of time-dependent states 'Y(t) formed from products 
of creation operators Bf%(t). These are obtained from 
the field by integrating over a plane spacelike surface 
labeled by a parameter t. The limit states 'Y± obtained 
as ± t ~ 00 are called asymptotic states of the theory. 
However, to show that the limit states are independent 
of the spacelike surface chosen requires a little more 
work. The published discussion on this pointU 

ignores the problem of showing that the bounds are 
uniform in the parameters defining the normal to the 
surface. We fill this small gap in this paper, at the same 
time generalizing the existence proof to certain curved 
surfaces. The properties of the truncated Wightman 
functions beyond those given in Ref. 2 are easily 
obtained, using the method of Ruelle; the extension 
of the results of Jost and Ruelle is also quite 
elementary. This is virtually all that is needed to 
prove the uniqueness of the states obtained using 
curved surfaces. 

1. PROOF OF CONVERGENCE 

Let us recall the lemmas in more detail. Suppose 
c/>(x) is a Wightman field with representation U(a, A) 
of the Poincare group. Suppose U(a, 1) = eiP,.a,., and 
the spectrum of P" exhibit the simple features of an 
ideal model, that is, a nondegenerate point vacuum 
'Yo and a one-particle state 'Y p of mass m > 0 sepa­
rated from other states by a mass gap (see Figs. 1-3 
in Ref. 7). Since polynomials in the smeared fields 
form a dense set when applied to 'Yo, there exist 
operators (finite sum) 

Bi = t f gii(Xl, ••• , XJ)c/>(Xl) .•• c/>(x i ) dXl ••• dXJ' 

(1.1) 

such that BWo is not orthogonal to 'Y p' Here we may 

7 R. F. Streater and A. S. Wightman, peT, Spin and Statistics, 
and All That (W. A. Benjamin, Inc., New York, 1964). 
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take gij E S(R4i). The creation operator Bi can be 
made into a field by translations 

(1.2) 

where U(x) = U(x, I). Ruelle has proved that the 
truncated Wightman functions W T formed from the 
fields Bi satisfy the following inequalities. Define 

Wj,(al , ... , an) 

= I ('Yo, Bl(Xl + al) ... Bn(xn + an)'Yo)T 

<P(Xl' ... , xn) dXl ... dxn , (1.3) 

where aj = (a~, a;). Then there exists a number A 
such that 

I W~(al' ... , an)1 < AI(l + J.y, (1.4) 
where 

A = max lat - a;1 
i,} 

and all the a1 are equal. 
The arguments of Jost6 or Ruelle lead to the 

following bounds for any smooth solution of the 
Klein-Gordon equation: Givenf(x, t), there exists a 
number A (depending of course on f) such that 

If(x, t)1 < At-f , (1.5) 

flf(X, t)1 d3x < A(1 + It!)f. (1.6) 

Suppose B, acting on the vacuum, creates a state whose 
one-particle component has wavefunction h(P), that is, 

('Yp, B'Yo) = h(p); (1.7) 

then the time-dependent creation operator 
..... 

Btit) = LO=tBiX, xo) a~of"{X, xo) d
3
x, (1.8) 

.... 
where aab = aab - (aa)b, creates a state with wave-
function oc(p)h(p), if the solution J". of the Klein­
Gordon equation has the form 

faCx) = f eiV"'O(po)t5(p2 - m2}x(p) d4p. (1.9) 

The method of Haagl now shows that the limit states 

lim Bt/t) ... Bt/t)'Yo (LlO) 
t~±oo 

exist in norm. 
Instead of using the creation operators (1.8), we 

could define other time-dependent operators 

B:(t) = It5(n . x - t)B(x, XO) a n,J"{x) d4x, (1.11) 
aXil 

where n" is a timelike vector. We are thus integrating 

over a spacelike plane with normal given by the vector 
nil' A simple argument shows that, acting on the 
vacuum, B;(t) creates the same one-particle state as 
BaCt), which happens to be independent of time. What 
can we then say about the convergence of the states 

(1.12) 

as t ~ ± oo? We can immediately assert the con­
vergence of these states using the explicit Lorentz 
covariance of the theory. For there exists at least one 
Lorentz transformation A such that An = (1,0, 0, 0), 
a purely timelike vector. Then we may write 

B:(t) = r d 3xB,.{Ax)· if f(Ax). 1,,,o=t axo 
(1.13) 

To put this in the form used above, we first note that 
fA(X) = f(Ax) defines a new solution of the Klein­
Gordon equation, which is therefore bounded by 
At-i if t = XO (A depending on J.). Secondly, in the 
proof of convergence, we need consider only the 
expectation values of B7(t)inthevacuum state, and this 
involves a study of 

(Bl(Axl) ... BlAxk»if = (V(A)-lBlAxl)V(A) 

x V-\A)B2(Ax2)' .. Bk(Axk)V(A»r, (1.14) 

where U(a, A) = U(a) V(A) , say. Now we may rewrite 
this as 

(Bl(Axl) ... Bk(Axk»r = (BNxl) ... B~(Xk»if, (1.15) 

where 

(1.16) 
and 

(1.17) 

So far the argument does not use the form (1.1) for 
the operators B, and could apply also the algebraic 
formulation of Haag and Araki.s On using (1.1), we 
see that 

BA = t f gilA-I(Xl , •.. ,x;) 

x cp(xl)· .. cp(x;) dXl ... dx;, (1.18) 

which is again of the same form. Hence, the inequalities 
(1.4), (1.5), and (1.6) are sufficient to show the 
convergence of the states (1.12) to limit states 'Y±(n), 
which have as much right as 'Y± to be regarded as the 
asymptotic states of the theory, containing k particles 
with wavefunctions specified by the one-particle 
states produced by the creation operators. The 
argument given here is not sufficient to prove the 
convergence of similar products of creation operators 

• See H. Araki, Local Quantum Theory (W. A. Benjamin, Inc., 
New York, to be published). 
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obtained from an arbitrary surface G, which is not 
flat. Even more important, we do not know that 
'Y±(n) is independent of n. As a vector it might not be 
even differentiable in the parameters defining n. The 
usual argument2.4 considers (d'Y/dn)(n, t), showing 
that for t ->- ± co this state converges to zero in norm. 
This would in fact be sufficient if the limit is uniform 
in the parameters 'Y} of n, that is, if for any E, there 
exists a to such that 

1\ (d'Yjdt)(n, t)11 < E 

for all t > to and all n in some set. For then 

II'Y('Y}, t) - 'Y(O, t)11 = II f do/~~, t) d'Y} 1/ 

~ f II do/d~' t) II dt 

~ E'Y} if t> to, 
showing that 

'Y('Y}, t) ->- 'Y± = lim 'Y(O, t). 
t-+±oo 

Here 'Y} is a parameter of the normal: n = (cosh 'Y}, 
sinh 'Y}, 0, 0), say. In the next section we show how this 
uniform convergence follows from the corresponding 
uniform bounds similar to (1.4), (1.5), and (1.6); these 
bounds are derived in Sec. 3. 

2. THE UNIFORM CONVERGENCE LEMMA 

In order to prove that do/('Y}, t)jd'Y} converges 
uniformly as t ->- ± 00, we use the following strength­
ened forms of (1.14), (1.15), and (1.16). 

Theorem 1: Let B j , j = 1,2, "', n be "local" 
quantities, that is, operators such that Bj(x) = 
U(x)BjU(-x) commutes with Bk(y) if (x - y)2 < -k~k 
[we use the timelike metric x2 = (XO)2 - X2]. Then 
define, for p E S(R4n), 

W~(al"'" an) = f <P(Xl,"', xn) 

X WT(Xl + al , ... ,Xn + an) dXl ... dxn, (2.1) 

where 

W(Xl' ... ,xn) = ('Yo, Bl(Xl)B2(X2)' .. Bn(xn)'Yo} 
(2.2) 

and W T is the usual truncated function defined in 
terms of W. Then for any oc > 1 and any N, there 
exists a number CCoc) such that 

where 

A = max lal - akl, 
l.k 

and the aI, . . . , an are only restricted by 

lai - a,I2 
;;;:: oc2 la~ - a~12. 

(2.3) 

(2.4) 

Remark: The "local" operators could come from 
a Haag fields just as well as being polynomials in a 
Wightman field. 

Theorem 2: Let! be a smooth solution of the 
Klein-Gordon equation, and Wa compact neighbor­
hood of the identity in the Poincare group. Then there 
exists a number A such that 

I!A(X, t)1 = 1!(Ax) I ~ A(1 + ItD-i, (2.5) 

Ixll!A(x, t)1 ~ A(1 + ItD-i, (2.6) 

for all x and t, and all A E W. 

Theorem 3: Given! and W as above, there exists a 
number A such that 

flf(AX)1 d3x < A(l + ItDi (2.7) 

for all A E Wand all x = (x, t). 

In discussing now the uniform convergence of 
d'Y('Y}, t)/d'Y}, we first remark that o/('Y}, t) is a differ­
entiable vector in 'Y}. This comes about because the 
creation operators in the form (1.13) involve the 
parameter A only in the test function, which is a 
smooth function. The differential coefficient is then 
given by the usual rules for the product: 

d'Y('Y}, t) = IB;l(t) ... dB7it) ... B;k(t)'Y
O

' (2.8) 
d'Y} ;=1 dt 

As remarked, B;P)'Y 0 is a one-particle state, inde­
pendent of both nand t; it follows that 

(2.9) 

Haag's method is to expand the norm of d'Y('Y}, t)/d'Yj, 
which is a 2k-point Wightman function, in terms of 
truncated functions. It is clear that in any nonzero 
contribution, dB7j(t)/dt cannot be next to the vacuum, 
and so must occur in at least three- or four-point 
function. The same goes for the conjugate dB7;(t)*jd'Yj 
which occurs in the scalar product 

1\ d'Y/d'Yj 1\ 2 = (d'Y/d'Yj, d'Y/d'Y}). (2.10) 

In discussing the transformation A such that 
An = (1,0,0,0), we may assume, without loss in 
generality, that 

(Ax)O = XO cosh 'Yj + Xl sinh 'Yj, 

(AX)l = XO sinh 'Yj + Xl cosh 'Yj, 

(Ax)2 = X2, 

(AX)3 = x3, 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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where 1171 ~ 170 determines the compact neighborhood 
W of the origin of the Poincare group. Using the form 
(1.13) for B:(t), it is clear that dB:/d17(t) is a sum of 
operators of the form 

B(')(Ax)xie±"j(')(Ax), (2.15) 

where i = 0, 1 and the symbol (.) means possible 
differentiation with respect to Xo or Xl' The differ­
entiated functions satisfy the same properties of 
Theorems I, 2, and 3 needed for the proof. We can 
show that the n point product of such objects can be 
uniformly bounded as follows. Only two of the terms 
in the product will involve dB/d17, which brings down 
the extra power of Ixi or t. Then a typical truncated 
function is 

f (0/0 , Bi')(Ax)* ... B~(Ax)%hfi\AxI)' .. xd~')(Axi) 

X e±"fk'\Axk) dXI ... dxk • k;;:: 3, (2.16) 

involving one dB/d'Yj. or 

f (0/0 , B~')(Ax)* ... B~(Ax)%hf~~\AxI) ... Xi 

(.) (')A (')A 
Xfi-(Axi)' "x;!, ( Xi)" 'fk ( Xk ), 

k ;;:: 4, (2.17) 

involving both dB/d17 and dB*/d'Yj. These may be 
bounded uniformly in 'yj, by using the theorems. Thus 

1(0/0' BI(Axl )* ... Bk(Axk»I < [AI(1 + J. )N], (2.18) 
~ 

A~ = max IAxi - AXil ;;:: max IXi - Xii 
~, ~, 

since all the points Xl, ... , x k have the same time 
component. Putting 

A = max IXi - xA, (2.19) 
i.1 

we can uniformly bound (2.18) by AI(1 + J.)N, whose 
integral over R3(k-1l converges to a constant, say C. 
Thus (2.16) and (2.17) are bounded by 

flfi')(Axl)1 daXlf WT(A(xl - x2),A(X2 - x a),··-) 

x (1 + t)-i(k-l)(l + Iti)cosh 170 d(Xl - x 2) ... , 

k = 3, (2.20) 
and 

flfi')(AXl)1 daXlf WT(A(xl - x2),A(X2 - x a)···) 

X (1 + Iri(k-l)(l + Itl?cosh 170 d(Xl - x2) ••• , 

k ;;:: 4, (2.21) 

giving the usual bounds, uniformly in A; that is, the 
functions with one dBld17 are bounded by 

A(t + ItD-i (k-1l+!, 

and those with both dB/d'YJ and dB*/d17 by 

A(1 + ItI)-i(k-l)+2. 

Both of these tend to zero as t -- 00. 

3. PROOF OF THEOREMS 

We are going to consider solutions of the form 

f(x) = f ()(pO)b(p2 - m2)lo(p)e'~Z d4p, (3.1) 

where 10 E S. It is clear that I(x) may be written as a 
convolution with the singular Green's function 

Go(x, t) = f ()(po)e i (wt-D,x)b(p2 - m2) d4p, (3.2) 

namely 

f(x, t) = f Go(x - ;, l)fO<;) da~. (3.3) 

In order to be able to bound integrals of this type, 
Jost's idea was to avoid the singular Green's function, 
replacing it by the continuous function G(x) whose 
Fourier transform is 

(J(p) = (1 + Po)-S()(Po)b(P2 - m2). (3.4) 

Naturally Io(~) in (3.3) becomes replaced by g(~), 
where g(p) = (1 + por%(p). Because 10 E S, we have 
gES. 

Instead of (1 + Po)-S, any other smooth decreasing 
function of p would do; Jost's choice is convenient 
because of the identity 

(3.5) 

which means that 

G(x, t) = C La) oc2e-rzF(oc, x, t) doc, (3.6) 

where 

F(oc, x, t) = f e-rz1JOei(wt-D,x)()(po)b(p2 - m2) dp4. (3.7) 

Using the method and some results of [6], we first 
put uniform bounds on G. We put r = Ixl. 

Lemma 1: For any a > t and N > 0 there exists a 
number A such that 

IG(x, 1)1 < A(a, N)/(l + r)N (3.8) 

for all x with r > at. 

Proof In the course of Ref. 6 it is shown that there 
is a constant B such that 

F(oc, x, I) < B 1 +i oc
i 

"I-ie-Re" (3.9) 
oc 
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where 
~ = (rll - t2 + fJ.1 - 2ifJ.t)!. (3.10) 

Putting u = r2 - t2 + a.2, v = -2fJ.t, one obtains 
for r2 ~ a2t2 

(3.11) 
and 

Thus we get the lower bound for 1;1: 
Xl _ 2x • ; + ;2 ::;; a'2tl, 

giving 

Thus 

_;2 + 2x.; ~ r2 - a'2tl ~ r2(1 - (1'2/a2) ~ O. 

Re' = Ku + (u2 + Vi)!) ~ u ~ (1 - 1/(2)r2• (3.12) Therefore 

Therefore, from (3.9), 

IF(fJ., x, t)1 < B[(l + fJ.1)jfJ.!](1 - l/(2)-1,-1 
X e-(l-l/a'llr. (3.13) 

Thus we obtain 

e-U-a-S)lrl"" 1 + fJ.! 
lG(x, t)l::;; e 1 -!-fJ.2e-l1.d(t., 

r 0 fJ. 
(3.14) 

from which the result follows, since G is a bounded 
function at r = 0 and the integral in (3.14) converges. 
We have in fact shown rather more than stated in the 
lemma since exponential decrease is faster than "rapid 
decrease" in general. But we lose this information 
in the next lemma. 

Lemma 2: Let f(x, t) be a solution of the Klein­
Gordon equation of the form (3.1). Then, for any 
a> 1 and any N, there exists a number A(a, N) such 
that 

If(x, t)1 < A(a, N)/(l + r)N (3.15) 

for all x such that r ~ at. 

Proof. We have 

f(x) = f g(;)G(x - ;. t) d3~ (3.16) 

with g E 8. The integral can be split into two parts 11 
and 12 ; in the first, ; is such that (1 < a' < a) 

giving 
\;\ ~ 1r[(a2 - a'I)/a2] = yr, 

say, by using 

But we know g E 8, so that for N given, there exists a 
C such that 

Hence 

IIzl = Sag(~G(X - ;, t) d3~ 

S r eM d3~ 
JI~I~yr (1 + IwN

+3 ' 

where M bounds G(x, t). The last integral is obviously 
bounded by an expression of the form C/(1 + r )N. 
This proves Lemma 2. 

Proof of Theorem 2. By rotation invariance of the 
inequalities, it is sufficient to prove the theorem for Ax 
given by (2.11)--(2.14), with 1,,1 ~ 110' We prove it 
for " > 0 and t > O. The other cases are proved 
similarly. 

The inequality (1.5), proved in Ref. 6, shows that 
there exists a constant e such that 

1!(Ax)l < e . (3.19) 
1 + It cosh 11 + Xl sinh 111i 

(I) Ix - ;1 ~ a't, (3.17) Divide space into two regions; in the first 

and in the second 

(II) 

Thus 

1111 = ig(~G(X -;, t) d3~ 
r A(a', N + 3) JRE 

::;; JR' Ig(;)1 (1 + Ix _ ;I)N+3 (3.18) 

by (3.8). The integral in (3.18) as a function of x is 
bounded by an expression of the form A(l + r)-N. 
In the second term of the integral, 12 , we have the 
condition 

Ix - ;1 ::;; a't and Ixl ~ at. 

t cosh '1/ + Xl sinh 11 > Pot, 0 < Po < I, (3.20) 

where Po, independent of x, t, and 11, is chosen later. 
Equation (3.20) with (3.19) gives 

If(Ax) I < Cf[l + (Pot)!] 

in the first region, which can clearly be put in the 
required form. In the second region 

It cosh 11 + Xl sinh 111 < Pot, (3.21) 

giving, certainly, 

t cosh" + Xl sinh fJ < Pot, 
so that 

o < t(cosh fJ - Po) < _Xl sinh '1], 
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showing Xl < 0 as rJ > 0, and 

_Xl> t[(cosh rJ - po)/sinh rJ]. 
Hence 

- Xl cosh rJ - t sinh 1J 

> (t(coshrJ - Po)cosh1J - tsinh2 rJ)(sinh1J)-1 

= t(1 - Po cosh 1J) > 1 - Po cosh 1Jo t, 
sinh 1J sinh 1Jo 

> 0, (3.22) 

provided we choose Po < l/cosh 1Jo. But, by (3.21), 

t> It cosh 1J + Xl sinh 1J1/ Po, 

and therefore, from (3.22), 

x~ + x: + IXI cosh 1J + t sinh rJI2 
.. 2 (1 - Po cosh 1JO)2 

~ IXI cosh 1J + t smh 1J1 ~ . t 
smh rJo 

~ ~ It cosh rJ + Xl smh 1J1· (
1 - P cosh 1JO)2 . 

Po smh rJo 
Choose Po such that (1 - Po cosh rJo)/ Po sinh rJo > 1. 
This is clearly possible in the range 0 < Po < 1 since 
the expression diverges as Po ~ o. 

Then we can apply Lemma 2 to show that, in the 
second region, 

I/(A )1 A«(1 - Po cosh 1Jo)/ Po sinh 1Jo' 2) 
x < (1 + x~ + x: + IXI cosh 1J + t sinh rJ12)2 

< A2 
{1 + [(1 - Po cosh 1Jo)/sinh 1JO]2t2}2 

This clearly implies the inequality (2.5). To prove 
(2.6), if Ixl < PII for some PI independent of x, I, and 
A, then by the result just proved, 

Ixllf(Ax)1 < PIIA(l + II/)-i, 

as required. We need consider only the points with 
Ixl ~ PIt. This can happen in two ways: 

IXII ~ (PI/V)t (3.23) 
or 

IXII ~ PI/V and. (x~ + x~)! > [('II - l)/v]Pl t. 

(3.24) 
We choose'll, independent of A, x, and I, later on. 

If IXII > (PII/v), then 

IXI cosh 1J + I sinh rJl 

~ IXI cosh 1J1 - t sinh 1J 

~ IXI cosh rJl - IXI sinh rJl - t sinh rJ - t cosh rJ 

+ (t cosh rJ + IXI sinh 1J1) 
~ It cosh rJ + Xl sinh 1J1 

provided 

IXII (cosh rJ - sinh 1J) ~ t(cosh 1J + sinh 1J), 

that is, provided IXII ~ e2lft for alllrJl < 1Jo and x, t of 
the region. This holds, in view of (2.23), if we choose 
PI/V = e2"o. In this region, by Lemma 2, Eq. (3.15), we 
have 

Ixll/(Ax)1 
Alxl 

< (1 + x; + x: + IXI cosh rJ + t sinh rJ12)N 

B < B 
< 1 + (x~ + x: + XD2N- I 1 + IxI 12N

-
I 

< B 
1 + [(PI/V)t]2N-I ' 

which shows the result for this region. 
In the region (3.24) we have 

x~ + x: + (Xl cosh 1J + t sinh 1J? 

~ [('II - 1)/v]2pft2 + (Xl cosh 1J + t sinh 1J)2 

~ [(v - 1)/v]2pft2 ~ P2(t cosh 1Jo + IXII sinh 1Jo)'1. 

(3.25) 
provided PI' P2 are chosen such that P2 > 1 and 

[('II - 1)/v]2pf ~ p:[cosh 1Jo + sinh 1JO(PI/V)]2, 

consistent with PI·= ve2"o, since IXII < PI/V in the 
region (3.24). This is clearly possible if we make 'II 
large enough. Then, from (3.25), 

x~ + x: + (Xl cosh 1J + t sinh 1J)2 

~ p~(cosh 1Jot + sinh 1Jo IXIl)2 

~ p~ It cosh rJ + Xl sinh 1J12. 

Thus, again by Lemma 2, we can bound r If(Ax)1 by 

I (x~ + xi) + p;!21! max I/(Ax)1 

~ [(x~ + X:) + (pfjv2)t2]iA 

[1 + x: + x: + (Xl cosh rJ + t sinh rJ)2IN+I 

[
1 + pf Jt 

v2{[(v - 1)f'P]PI}2 '" C 
~ C lor some , 

[1 + {[('II - 1)/vJpI}2t2]N 

which proves Theorem 2. 

Proof of Theorem 3. The idea of this proof is the 
classical one, that the volume of space inside which 
f(x, t) is not very small, increases at worst like Itl 3 

as I ~ ± 00. We first prove the result for 1J > 0, 
I > 0; the other cases are proved similarly. 

We split the integral into two main parts, each with 
a finite number of subdivisions. Then each integral is 
shown to be bounded uniformly in A by a function of 
the form A(1 + Itl)!. In the part (a) we have 

Ca) x~ + x: + (Xl cosh rJ + t sinh 1Jl 
~ a2(xl sinh 1J + t cosh 1J?, (3.26) 



                                                                                                                                    

UNIQUENESS OF HAAG-RUELLE SCATTERING STATES 1691 

where a > 1 is chosen later. In part (b) we have 

(b) x~ + x= + (Xl cosh 1'/ + t sinh 1'/)2 

~ a2(xl sinh 1'/ + t cosh 1'/)2. (3.27) 

The region (a) is again split up into the regions (al) 
and (a2), given by 

(al) IXI cosh 1'/ + t sinh 1'/1 > IX lXII, (3.28) 

This deals with the region (a). In region (b) we wish to 
show that Ixl is bounded by a fixed multiple of t. 
Because of (3.27), IXII < d It I is sufficient for this for 
some d independent of 1'/. For then 

IX21 ~ a IXI sinh 1'/ + t cosh 1'/1 
~ alxll sinh 1'/0 + a cosh 1'/0 It I 
~ (alX sinh 1'/0 + a cosh 1'/0) It I = E Itl, 

(a2) (3.28a) say, and the same for IXal. Then 

IX to be chosen later. In the region (al), clearly, by 
Lemma 2, 

If(Ax) I < A(a, N) 
1 + [x~ + x= + IXI cosh 'I] + t sinh 1'/12]N 

< A(a, N) 
1 + [x~ + x: + 1X2X~]N 

(3.29) 

by (al). Therefore 

flf(AX)1 d3x < C, 

some number, from which (2.7) follows. Expanding 
the inequality (a2), we arrive at four cases: 

(a2i) 0 ~ Xl cosh 1'/ + t sinh 1'/ ~ IXXI; 

(a2ii) 0 ~ Xl cosh 1'/ + t sinh 1'/ ~ -IXXI ; 

(a2iii) 0 ~ -Xl cosh 1'/ - t sinh 1'/ ~ IXXI ; 

(a2iv) 0 ~ -Xl cosh 1'/ - t sinh 1'/ ~ -IXXI . 

The first and third are impossible, since IX < 1 and 
t > 0, 1'/ > O. From (a2ii) we see 

t sinh 1'/ ~ -Xl cosh 1'/ = IXII cosh 1'/ ~ lXII, 
so 

IXII ~ t sinh 1'/0' 

In (a2iv) Xl < 0 and 

IXII (1 - IX) ~ IXII (cosh 'I] - IX) 

(3.30) 

= -xI(cosh 1'/ - IX) ~ t sinh 1'/ ~ t sinh 1'/0 (3.31) 

showing that, in (a2), 

IXII ~ [sinh 1'/0/(1 - 1X)]t = {Jt, 

say by combining (3.30) and (3.31). 
It follows that 

flf(Ax)1 d3x 

~ (fJtdXlf A(a, N) dX2 dX3 
Jo 1 + [x~ + x~ + IXI cosh 1'/ + t sinh 1'/12]N 

~ (fJt
dx fA(a, N) dX2 dXa 

Jo I 1 + [x~ + xi]N 

~ C{Jt for some C. 

f
lf(AX)1 ~x < C! fdt dXlf<t dx2 fEt dXa 

(1 + t) -6t -.t .t 

< B(l + ltD! for some B. 

Equation (3.27), valid in region (b), clearly implies 

IXI cosh 1'/ + t sinh 1'/1 ~ alxl sinh 1'/ + t cosh 1'/1. 

Again there are four cases: 

(bi) 
o < Xl cosh 1'/ + t sinh 1'/ < a(xi sinh 1'/ + t cosh 1'/); 

(bii) 

0< -Xl cosh 1'/ - t sinh 1'/ < a(xi sinh 1'/ + t cosh '1]); 

(biii) 

0< Xl cosh 'I] + t sinh 'I] < a( -Xl sinh 1'/ - t cosh 1'/); 

(biv) 

o < - Xl cosh 1'/ - t sinh 1'/ 

< a( -Xl sinh 1'/ - t cosh 1'/). 

In (bi), if Xl < 0, then -Xl cosh 1'/ < t sinh 1'/ implies 
IXII < t sinh 1'/0' as desired. So we may assume Xl > O. 
Then 

xI(cosh 1'/ - a sinh 1'/) 

< at cosh 1'/ - t sinh 1'/ < ta cosh 1'/0)' 

Let us choose a < cosh 1'/o/sinh '1]0' Then cosh 1'/ -
a sinh 1'/ > 0 for all 1'/ < 1'/0' and we have 

I I 
a cosh 1'/0 ta cosh 1'/0 

Xl < t < , 
cosh 1'/ - a sinh 1'/ cosh 1'/0 - a sinh 1'/0 

the desired result. In (bii), Xl > 0 is not possible (we 
have t > 0, 'I] > 0). Thus (bii) gives 

IXII < IXII (cosh 1'/ + a sinh 1'/) 

= -xl(cosh 1'/ + a sinh 1'/) < t(a cosh 1'/ + sinh 1'/), 
so 

IXII < t(a cosh 1'/0 + sinh 1'/0), 

proving the result for (bii). In (biii) Xl must be negative, 
and then -Xl cosh 1'/ < t sinh 1'/ leads to 

IXII < t sinh 1'/0' 

In (biv) Xl must be negative since 

- Xl sinh 1'/ - t cosh 1'/ > O. 
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But then 

-x1(cosh fJ - a sinh fJ) < t(sinh fJ - a cosh fJ) 

is not possible since the left-hand side is positive and 
the right-hand side negative. This proves Theorem 3. 

Proof of Theorem J. The proof follows that of 
Ref. 2. Suppose we are considering a sequence of 
configurations for the ai' .•. , an in which 

A = max laj - akl 
i,k 

becomes large, and such that the maximum is 
attained for a fixed j = io, k = i~. Consider also the 
family F(io, i:J of all partitions of the set (1, ... ,n) 
into subsets X, X' such that io EX, i' E X'. Define 

p2 = max [ min la. - a~12J' 
XeF(io,to') ieX,i'eX' 

Suppose also that the configurations also are all 
such that this maximum is achieved for a fixed 
partition X = Xo, X' = X~ and for fixed i = jo, 
i' = j~. Then np ~ A. As in Ref. 2, we set 

Xo = (il < i2 < ... < ik) 
and 

X' = (ik'+! < ... < in')' 

and define a permutation 

1= (1,2, ... , n) 

J = (ii, i2,"', ik , ik'+1"", in') 

with the permuted expectation values W~ and W~ 
defined by permuting the fields appropriately. We then 
note that 

F(x1 ," " x.) 
= WI(XI , •.. ,xn) - WJ(Xl' ... ,xn) (3.32) 

vanishes whenever the differences ~w = Xi - Xi' are 
sufficiently spacelike. Therefore 9'(x) does not con­
tribute to 

F,,(al" ", an) 

= f 9'(x1, ••. , Xn)F(Xl + ai' ... , Xn + an) dx 

for any X such that 

(Xi + ai - Xi' - ail < _K2, K = maxKi/' 
This is ensured for sufficiently large p, provided that 

IIxill2 = r2 + x~ < A2,u2 
for some A, independent of ,u, chosen later. For then 

(Xi - Xi,)2 + (ai - a.,)2 + 2(x; - xi·)(ai - ai.) 

= (x~ - xi'!'l - (Xi - X~)2 + (a~ - as,) - (at - ai,)2 

+ 2(x~ - xi~)(a~ - an - l(x; - X;) • (a, - at') 

~ 4A2,u2 + ,u2( -1 + 1/rx.2) + 4A,u(n,u/rx.) + 4A,u' n,u 
< _K2 

if A is small enough (depending only on rx. and K). 
Thus for large enough ,u, i.e., large enough A, greater 
than Ao say, depending only on IX and K, this IS 

negative. The rest of the proof goes as in Ref. 2. 

4. CONCLUDING REMARKS 

Because of the uniform nature of our bounds, the 
lemmas can be immediately applied to prove that 
certain smooth curved surfaces may be used to define 
creation operators. Let o'(t) be a set of spacelike 
surfaces, with a normal at every point, which lies 
everywhere inside a compact timelike cone; then 
if n = (cosh fJ, sinh fJ, 0, 0), we know there exists an 
fJo such that IfJI ~ fJo on a. The operators 

Bt(t) =1 daIiB(x) a n,J,ix) 
a(t) oxli 

exist as creation operators, and 

Bt(t)'P'o 

is a one-particle state independent of a and t, as is 
well known. Now suppose the time dependence of 
a(t) is smooth enough so that B:(t) is differentiable 
in t, and is such that the fixed point 

(xo(t, a), 0, 0, 0) E a(t) 

goes to infinity as t -lo- 00. Then our method proves 
that 

lim B~l(t) ... B~ft(t)'P'o 
t-+±oo 

exist in norm. These states have a right to be called 
asymptotic states; it is therefore an important 
problem to prove that they are independent of the 
series of spacelike surfaces used to define the limit 
states. To prove this in general involves more work, 
though it is easy to show, as above, that it is inde­
pendent of the orientation. Note that the surfaces 
a(t) need not be all the same shape, though the 
dependence on shape with time must be smooth. 

To show the independence of the limit states on the 
sequence, we remark that the limit states may be 
obtained by following the sequence tn:xo(t, ( 1) = n 
an integer; as t -lo- 00, so n -lo- 00, where 

(xo(t, al)O, 0, 0) E a2 • 

Both sequences converge. But there exists a set of 
other surfaces, smoothly interpolating between these 
two surfaces, i.e., a surface a(t) such that a(tn) = a1(tn) 
and a(tn+t) = a2(tn+t) as surfaces. We know that the 
surfaces a(t) converge, showing the other limits must 
coincide. 

The result of this paper, the independence of the 
states on the Lorentz frame, was obtained without 
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using the covariance of the theory under the Lorentz 
group. It is interesting that if the theory is covariant 
under the Lorentz group, then our result is essential to 
show that the asymptotic states transform covariantly. 
It would indicate that the Lorentz invariance of the 
S matrix is not independent of almost locality. 

One might like to extend the results of scattering 
theory to states of the form 

'Y"1 "'''n(t) = B~~(t)B~~(t)··· B~:(t)'Yo. 

However, such states do not seem to converge; the 

reason is that if (11 ¥= (12' there are always some points 
on (11 and (12 with a timelike difference. We cannot 
obtain suitable bounds in this case, unless (11 and (12 

are very close together at 00. We do not pursue this 
question. 
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This paper contains a discussion of unitary irreducible representations of the group U(2, 2) in term~ 
of the noncompact algebra of creation and annihilation operators and some applications to massless 
fields. In particular, the U(2, 2) algebra yields discrete values for P4 (energy), one of its generators. The 
little group and wave equations of massless fields are also derived from the Lie algebra of U(2, 2), 

1. INTRODUCTION 

THIS paper is a contribution to the explosion of 
group theoretical publications pertaining to ele-

. mentary particle concepts. The present state of theoret­
ical research on elementary particles seems to 
indicate that there exist ever increasing possibilities 
for the so-called "classification" of particles. Recent 
attemptsl for the unification of internal and space­
time symmetries into a single group theoretical 
structure aiming at an hypothesis of simultaneous 
charge, hypercharge, and spin independence of strong 
interactions (at high energy) have led to further dis­
cussions of the subject by others. 2 These authors have 
shown that there are some basic difficulties in the 
models proposed earlier.l In particular, if one adheres 
to the existing interpretations of the isotopic spin, 
then spin and isotopic spin assignments to various 
generators of the group SU(3, 1) lead to noncom­
muting operators for the respective observables. There­
fore, what remains as acceptable is the product of two 
commuting groups, i.e., the cover group is just the 
direct product of the Poincare group with an internal 
symmetry group. 

In the light of these investigations the fundamental 
issue appears to be the possible existence of a "non­
compact symmetry group" whose unitary repre­
sentations together with some reasonable physical 
assumptions on the nature of interactions of fields 
may provide a good beginning for particle physics. 

We use here, as in the previous paper,l the tech­
niques of creation and annihilation operators for the 

• This research is supported by the U.S. Air Force Office of 
Scientific Research, Washington D.C., U.S. Air Force Contract No. 
49 (638)-1260. 

1 Proceedings of the First Coral Gables Conference on Symmetry 
Principles at High Energy (W. H. Freeman and Company, San 
Francisco, 1964). See also B. Kur~unoglu, Phys. Rev. 135, B761 
(19M). 

2 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964); F. Coester, 
M. Hamermesh, and W. D. McGlinn, Phys. Rev. 135, B451 (1964); 
H. Bacry and J. Nuyts, Phys. Letters 12,2,156 (1964); M. E. Mayer, 
H. S. Schnitzer, E. C. G. Sudarshan, R. Acharya, and M. Y. Han, 
Phys. Rev. 136, B888 (1964); A. Beskowand U. Ottoson, Nuovo 
Cimento 34,248 (1964). 

representation of the group SU(2, 2), which is locally 
isomorphic to SO(4, 2). Our discussion is confined 
only to unitary, irreducible representations. 

2. REPRESENTATION OF U(2, 2) 

In order to establish the method, we consider a 
special set of ten Hermitian operators satisfying the 
commutation relations for the inhomogeneous Lorentz 
group. These are given by p,. (four translation oper­
ators), and by the relativistic definition of angular 
momenta,S 

R,.v = x,.Pv - Xyp,. = i (xl FM,.y Ip), (2.1) 
where 

-1 0 0 0 Xl PI 

0 -1 0 0 X2 P2 
F= Ix) = Ip) = 

0 0 -1 0 Xa pa 

0 0 0 1 X4 P4 

(2.2) 

and x,., Pv (1', 11 = 1, 2, 3, 4) are subject to commuta­
tion relations 

[X,.,Pv] = -ilig,.v, [X,., xv] = [p,.,Pv] = 0, (2.3) 

with g,.v being the elements of F. Every Lorentz 
matrix L satisfies the condition 

LFL= F, (2.4) 

where L is the transposed form of L. 
The operators x,. and p,. under a Lorentz trans­

formation transform according to 

Ix) = L Ix), 1ft> = Lip)· (2.5) 

In a way similar to (2.1), we introduce complex 
creation and annihilation operators. For example, the 

3 B. Kur~unoglu, Modern Quantum Theory (W. H. Freeman and 
Company, San Francisco, 1962). See p. 254, Eq. (VIII.8.3) also p. 
50 for the definition of the 4 X 4 matrices Mpv. which are generators 
of rotations and Lorentz transformations. The matrices M,.v con­
stitute anonunitary representation of the homogeneous group. 
This book is hereafter referred to as MQT. 

1694 



                                                                                                                                    

UNIT AR Y REPRESENTATIONS OF U(2, 2) AND MASSLESS FIELDS 1695 

Hermitian generators of the homogeneous Lorentz 
group can be represented by [MQT, p. 257, Eq. 
(VIII.8.2I)] 

JjJY = Hal fJa JJY la), (2.6) 
where 

1 0 0 0 a1 

0 1 0 0 a2 
fJ= la) = 

0 0 -1 0 a3 

o 0 0 -1 a4 

t t t t (al = [aI' a2, a3 , a,], (2.7) 

and the operators aa' al (ot, p = 1,2,3,4) satisfy 
the commutation relations 

[aa, a!] = fJap, [aa' ap] = [a1, a;] = 0 (2.8) 

with fJ being taken as the "metric" of the 4-dimensional 
complex space. 

We could, if we wished, use two-component repre­
sentations for the a's. For example, the commutation 
relations (2.8) can be replaced by the equivalent set 

[a;., a~] = [bo<, b~] = do<cl" 
t t [ao<, bw] = [a 0< , bw] = 0, 

[ao<, awl = [bo<, bw] = 0, 

where we put 
t t b as = b1 , a, = 2 

and the subscripts A, W = 1, 2. 
We are using a representation of y's given by 

and 

[Yp, YvJ+ = -2gpv , Y4 = ifJ, 

Y5 = YIY2YSY', 
A± = 1(1 ± iY5), 

ap'V = -!i[yp., Yv], 
_ 1 ap 

Y5a p.v - 2€P.vapa , 

gn = g22 = gss = -g44 = -1, 
gj4 = g4i = 0, gki = 0, k =;f:. I, 

(2.8') 

where Yi (j= 1,2,3) are Hermitian and Y4 is anti­
Hermitian. 

The corresponding commutation and anticom­
mutation relations are 

[tap.y, !aaP] = !i(gavap.p + gpvaap. - gap.ayp - gp.paav), 
(2.9) 

Hap.v, aaP]+ = -Y5Ep.vap + gap.gpy - gp.pg«v, (2.10) 

[ap.y, Y5] = 0, 

Uap'v, Yp] = i(gpvYp. - gpp.Yv), 

Hap. v , Yp]+ = -iEp.yppYPys. 

(2.11) 

(2.12) 

(2.13) 

From the two representations (2.1) and (2.6), it 
follows that we may define a transformation operator 
S, in analogy to a Lorentz transformation L, which 
satisfies the condition 

(2.14) 

in complex 4-dimensional space. However, the 
relation (2.14) implies that the 4 x 4 complex matrix 
S depends only on 16 free real parameters, so that the 
group in question is a 16-parameter group. All 
nonunitary 4-dimensional representations of U(2, 2) 
must satisfy the matrix condition (2.14). This means 
that the S-transformations on 4-dimensional complex 
objects Za must leave the statement 

unchanged. The condition (2.14) is valid only for 
proper U(2, 2) transformation. For improper trans­
formations the right side of (2.14) should be replaced 
by -fJ. In this paper we are not concerned with the 
latter case.' Under a Lorentz transformation of the 
generators Jp.v, the operator column vector la) 
transforms according to 

la) = S la), (2.15) 

but the correspondence here is in the sense of a 
homomorphism. The commutation relations (2.8) are 
invariant under S-transformations satisfying the 
condition (2.14). 

A special type of S-transformations are gauge 
transformations of the type exp (icp). Furthermore, 
from (2.14) it follows that the determinant of an 
S-transformation is defined up to a phase factor. 
Hence the group of S-transformations can be de­
composed according to U = U1 X So x Z, where 
U1 is the one-dimensional unitary group and So is the 
group of S-transformations with determinant + 1. 
The factor Z is of the form exp (!bm), n = 1, 2, ... , 
representing an invariant S-transformation subgroup 
of fourth order whose members consist of ± 1 and 
±i. This means that there are four types of vector 
operators a« pertaining to the representations of the 
group U(2,2).5 

In terms of the operators a« and a!, the Hermitian 
generators of U(2, 2) for the positive energies are 

• See Eq. {VIII.S.55} on p. 240, and Eqs. (VIII.8.21) and 
(VIII.8.22) on p. 257 of MQT. Equations (VIII.5.S6) and (VIII.5.S7) 
on p. 241 of MQT are examples of S-transformations. The operators 
y., iyp, y.yP are also generators of S-transformations. 

• This is a special case of an arbitrary phase factor discussed in 
R. E. Marshak and E. C. G. Sudarshan, Introduction to Elementary 
Particle Physics (Interscience Publishers, Inc., New York, 1960), 
p.59. 
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given by 

J ,lV = i(al (J(f"y la), 

They satisfy the commutation rules for the com­
(2.16) muting angular momenta,7 

pt = -(al Y4A+y" la), 

P-;' = -(al Y4A_y" la), 

, = t(al (Jyo la), 

r = i(al (J la). 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

The 16 Hermitian operators as defined by (2.16)-(2.20) 
provide an irreducible unitary representationS of 
U(2, 2). The commutation rules of U(2, 2) are given by 

[J"v, J .. p] = i(g,zvJ"p + gpyJIt" - glt"Jyp - g"pJlty), 
(2.21) 

[J" .. p~] = i(gpypt - gp"pt), 

cpt, pt] = 0, 

[J" .. p-;;] = i(gpyp-;. - gp"p-;"), 

[p-; , p;l = 0, 

[pt, p;] = 2i(g"y' - tJ "y), 

[pt, '1 = ipt, 

[p-; , '1 = - i p-; , 

[J" .. '] = o. 
These are satisfied by (2.16)-(2.20). 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

The operator r commutes with all the rest of the 
generators. From the above commutation rules it is 
seen that the group U(2, 2) contains the Poincare 
group as its subgroup. The special representation 
(2.16)-(2.20) refers to a massless case. 

An invariant of U(2, 2) is given by 

.ALI = Hp!p~ + p;p~ + J".1"Y) - '2. (2.30) 

The invariants, for any of the p's either p+ or p_, 
II = p"p", 12 = tJ"YJ"ypPPP - J"pJ"ppvp" of the sub­
group vanish, as can easily be shown via (2.16)­
(2.20). 

Now, from the definition (2.16) of J"v we obtain 

Jz = Jll + J2! (l = 1,2,3), (2.31) 

Jz = iE!skJSk' 
where 

Jll = t(AI (fIlA), J2! = -t(BI (fIIB) (2.32) 

and where (f! (l = 1, 2, 3) are the usual Pauli matrices, 
and 

IA) = [::J. IB) = [::} 

• B. Kur~unoglu. in Proceedings of Second Coral Gables Confer­
ence on Symmetry Principles at High Energy (W. H. Freeman and 
Company. San Francisco. 1965). p. 163. 

where 

[JU ,J2i ] = 0, [JIi , Jli] = iEiiZJll , 

[J2i , J2i] = iEmJ2!, 
(2.33) 

J2 = j(j + 1), Ji = jl(jl + 1), J: = Nj2 + 1), 

(2.34) 

jl = Haial + a;a2), j2 = !(asaJ + a4a!). (2.35) 

Hence we see that the space part of J"y is decomposable 
into a direct product of two 3-dimensional rotation 
groups. The resultant angular momentum j is asso­
ciated with angular momenta 

j = Ijl - hi, Ih - j21 + 1, ... ,h + j2' (2.36) 

where Ijl - hi (= s) is the minimum value of j, it is 
the spin quantum number of the representation 
assuming the values 0, t, 1, .... 

From (2.17) (dropping superscript +) and defini­
tions of y's (see p. 235 of MQT), the translation 
operator p" can be written as 

PI = Jla; - J2z + !(aia4 + a:al + a!a2 + a~as), 
P2 = h.l - J2.y - ii(aia4 - a!al + a~a2 - a~as), 
Pa = J Iz - J2• + Ha~al + aia3 - ala2 - a~a4)' 
P4 = jl + j2 + 1 + !(a~al + aias + a!a2 + a~a4)' 

(2.37) 

Using these definitions we can construct the helicity 
operator of massless particles in the form 

ro = J . P = 1 + i(al (J la) 

= t(aial + a~a2 - asa~ - a4a!), (2.38) 
where 

p = g, , (2.39) 
P4 

and where hal f3 la) commutes with the ten generators 
of the group and is therefore a group invariant. We 
consider only positive energy representations where 
the helicity operator r 0 together with P4, J2, and J3 

form a complete commuting set. A set of simultaneous 
eigenstates of these commuting operators is designated 
by In, ~). The requirement of nonnegativity for hand 
h also assures positive sign for the energy and the 
former is obtained only by defining the vacuum state 
by the conditions 

t a l 10) = 0, as 10) = 0, 
t a2 10) = 0, a4 10) = o. 

(2.40) 

7 The commutation rules (2.33) are the same as the commutation 
relati ons corresponding to the Lie algebra of the 4-dimensional 
Euclidean group, namely the group 0,. 
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These definitions in terms of two-component operators 
as defined in (2.8) can be written as 0A 10) = 0, 
bAIO) = 0, respectively. The vacuum state as defined 
here is invariant under SL(2, C) subgroup of U(2, 2). 

In complete analogy with Fock representation of 
harmonic oscillator (see Chap. 7 of MQT), we find 
that occupation number operators are given by 

t t t t NI = alaI' N2 = a2a2 , Na = aaaa, N, = a,a" 

(2.41) 
which satisfy the eigenvalue equations 

N«ln«) = n«ln«) (oc = 1,2,3,4), (2.42) 
where 

n«=0,1,2,3,···. 

The normalized eigenstates are defined by 

Inl) = (nl!)-i(abn110), In2) = (n2!)-i(a~)n210), 
!na) = (na!)-i(aar 10), In,) = (n,!)-i(a4)n4 10), 

(2.43) 

so that the simultaneous eigenstates In,~) of the 
complete commuting set p" ~o, .J2, and 13 are products 
of these eigenstates. 

From (2.38) it follows that the helicity operator can 
be expressed in the form 

J. p = HNI + N2 - N3 - N4) = iN, (2.44) 

and it acts on the state In, ~) according to 

J . p In, ~) = in In, ~), 
where 

in = t(nl + n2 - n3 - n4) = h - h = ±s 

assumes both positive and negative half odd-integral 
and integral values including zero. Hence we can write 

J . p In, ~) = ±s In, ~). (2.45) 

The eigenvalue equation can further be simplified 
by noting that it is equivalent to 

J • pin" ~) = TasP4ln" ~), (2.46) 
where 

[
In+, ~)] [1 0] 

In" ~) = , T3 = , 
In_,~) 0 -1 

J . p In+, ~) = sp4In+, ~), 

In+,~) = HI + T3) In" ~), 

J. p In_, ~) = -sp4In_, ~), 

In_, ~) = HI - T3) In" ~). 

Hence, the most general state is a superposition of 
two orthogonal states, 

(2.47) 

referring either to two different states of polarization 
or to two different particles. It depends on the 
reflection symmetries of various spin states whether 
one has just a different state of polarization or a 
different particle. Two states of polarizations, whether 
they refer to identical particles (e.g., zeron s = 0, 
photons s = 1) or two different particle states (e.g., 
v, v with s = i) as eigenstates of TS, span a 2-dimen­
sional space. 

Finally we note from (2.37) and (2.43) that the 
diagonal element of the operator P4 with respect to the 
state In, ~) is given by 

(n, ~lp4In, ~) = Hnl + n2 + n3 + n,) + 1 

= in + 1, (2.48) 

where n = 0, I, 2, ... so that zero-point oscillations 
are also included in the algebra of U(2, 2). 

3. WAVE EQUATIONS 

As is well known the group oftranslations, being an 
Abelian subgroup of the Poincare group, has only 1-
dimensional irreducible unitary representations. For 
a translation of states by a real vector b, the unitary 
operator is exp [- ibI'PIl]' This group of translations 
also contains the representations exp [-ibllpll ] 
provided Pil is obtained from Pil by a proper Lorentz 
transformation 

I LV 
Pil = IlPv' 

An infinitesimal translation of a function of co­
ordinates by an amount Ebll is represented by 

exp [iEbllpll]",,(x) exp [- iEbVPIl ] 

= (1 + iEb"PIl}lp(x)(1 - iEbVpv) 

= ",,(x) + iEb"[PIl' ",,(x)]. 

Hence in the limit of E - 0 we obtain 

b"(o",,/ox") = ib"[PIl , ",,(x)] 

or, since this is valid for all b", we have 

(3.1) 

Now consider the eigenstates Ir, t) of the complete 
commuting set q 

q Ir, t) = r Ir, t). (3.2) 

The translation opt:"ator acts according to 

exp [- iEb"p,,] Ix) = Ix + Eb) = (1 - iEb"p,,) Ix). 

Hence, this being valid for every b, we get 

PI' Ix) = -i(O/OXIl) Ix). (3.3) 

A way of obtaining a wave equation may proceed 
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by representing the state Ir, t) in a Hilbert space 
spanned by In, ~). Thus, writing 

(r, tin, E) = Ir, t, s) 

and regarding it as 2s + 1 component wavefunction 
we can derive a wave equation. 

From (2.45) we obtain 

(r, tl J" P In, E) = ±s (r, tlp41n, E) 

or introducing the unit operator 

fir, t)(r, tl d3r, 

using (3.3) and performing the obvious steps we get 
the wave equations 

H Ir, t, s) = ±ili(%t) Ir, t, s), (3.4) 

where the Hamiltonian H is given by 

H = (c/lis)J " p. (3.5) 

For spin i particle (s = !) we have J = ilia. The 
corresponding wave equations are 

where 

HI,,) = iii ! I"), 
HI") = - iii ~ I"), at 

(3.6) 

(3.7) 

H = ca" p, I") = Ir, t, i) = 2~component spinor. 

If we call I") the neutrino state then the anti~neutrino 
state can be defined by 

I;;) = T Iv), (3.8) 

where T = iO'l; is the time reversal operator for a 
2-component spinor state and C is just complex 
conjugation operation. The operator T acts on O'i 

according to (see p. 221 of MQT) 

(3.9) 

Hence the wave equation (3.7) can be written as 

, 

yields the wave equations 

H 11]) = iii :t 11]), 

H 11]) = - iii ~ 11]), at 

(3.11) 

(3.12) 

where 117) is a 3-component complex vector, and 
H = cK "p is the Hamiltonian of a single photon. 
Now, defining Ip) as a 3~dimensional column vector 
in terms of Pi' (i = 1,2,3) and operating on H from 
the left we obtain 

(pi H= 0, 
which is due to H being a 3 X 3 anti-symmetric 
matrix operator in p's. Hence the Eq. (3.11) yields 

V" 'I) = 0, (3.13) 

which is the transversality condition of the photon 
wave (see Chap. II of MQT). 

The wave equation (3.12) refers to a state of polari­
zation opposite to the one described by (3.11). This 
can be seen by performing a parity operation on 
1'1).8 Thus if we take 

117} = C 117} (3.14) 

and noting the transformation 

CHC= -H, 

the wave equation (3.12) becomes 

H Ii]) = iii :t Ii]), (3.15) 

which is of the same form as (3.11) but refers to a 
state of polarization opposite to the one contained in 
(3.11). The corresponding transversality condition is 
obtained as V "17 = 0. 

A third example is the wave equation for zeron. 
We first observe that 

(n, ~I S" pin, $) = ±1, (n, ~ I n, E) = 1 

for every n, where S = s-lJ. Thus for zero spin we 
must have S = ±p. Hence 

p2 10, ~) = p~ 10, ~), 

HI;;) = iii ~ I;;), at 
which, using the same methods, yields the scalar 

(3.10) wave equation 

which is of the same form as (3.6) but refers to anti­
neutrino. Reflection symmetry here consists of time 
reversal operation alone, since space parity is not 
valid in this case. 

As a second example, we take s = 1 with J repre­
sented by Ji = IiKi' (i = 1, 2, 3), where K; are the 
generators of 3-dimensional rotations. Thus (3.4) 

1l.2c/> - (C2)-1(02c/>/ot2) = O. (3.16) 

8 All of this analysis could also be carried out by using the other 
alternative of helicity operator which involves P!i in place of pt. 
The results are the same and the two helicity operators commute. At 
this point it is tempting to assume that the electron and muon 
neutrinos belong to the massless representations of U(2, 2) instead of 
that of Poincare group. However, this interpretation entails doubling 
of integral spin massless particles, also on the basis of the discussion 
of U(2, 2) in this paper alone it is not possible to speculate on the 
existence of two kinds of photons. 
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4. THE LITILE GROUP 

The group of Lorentz transformations which leave 
a null vector invariant is isomorphic to the two­
dimensional Euclidean group. This is a known 
result.9 However, here we derive it in a direct way. 

Under an S-transformation, the requirement of 
invariance of pp. is contained in the statements 

Pp. = -(al Sty,A+yp.S la) = -(al y,A+yp.la) = p 

(4.1) 

This must hold for every all and a~, which is possible 
only if the S-transformations in question commute 
with Pp.. The operator J . Ii = IN is the only nontrivial 
invariant of the group, and therefore, a given S­
transformation must be a function of IN and also 
must satisfy (2.14). Such an operator is uniquely 

• E. P. Wigner, in Theoretical Physics. A. Salem, Ed. (Inter­
national Atomic Energy Agency, Vienna, 1963), pp. 59-82. 

defined to be 
(4.2) 

where () can be regarded as an angle of rotation in the 
xy plane. For an electromagnetic wave, () is the angle 
of rotation of the electric vector in the plane per­
pendicular to its momentum. 

The result (4.2) proves the required isomorphism 
between the group of Lorentz transformations which 
leave a null vector invariant and the 2-dimensional 
Euclidean group. Thus the representation of the little 
group for massless particles is I-dimensional. The 
representatives of S are of the form 

(n', ~I S In, ~) = !5"",tFS6
, (4.3) 

where 

-8 ~ in ~ 8, -8 ~ In' ~ 8 

and the dimension of the representation is 2s + 1. 
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The infinitesimal operators of a class of representations of the GBM group described in a previous 
paper are given in explicit form. All unitary representations of this type with positive "rest mass" are 
shown to be completely reducible; each irreducible component is characterized by the eigenvalue m" of the 
rest-mass operator, by the lowest eigenvalue s(s + 1) of the "spin" operator and by the sign of an eigen­
value of a suitably defined operator R; . 

I. INTRODUCTION 

I T has been shownl that from any linear representa­
tion b == {T(l)} of the inhomogeneous Lorentz 

group L, acting on a linear space .le, it is possible 

to construct a linear representation TI == {T(g)} of the 

GBM group, acting on a linear space Je, TI being 
unitary and faithful whenever b is such. The restric­

tion of TI to a specific subgroup of the GBM group 

isomorphic with L will be denoted by 'rlL == {T(l)} 
and called the induced representation of L. Whenever 
b is irreducible, so that its rest-mass operator p2 is 
a multiple of the identity with eigenvalue m2 , the 
rest-mass operator p2 of the (reducible) induced 

representation TIL is also a multiple of the identity, 
with the same eigenvalue. 

In Sec. II of this paper the representation of the 

GBM Lie algebra associated with TI is derived in 
explicit form, and a basis is introduced in the repre­

sentation space Je. In Sec. III, b is assumed to be 
unitary and irreducible, with positive rest mass: the 
irreducible components of the induced representation 

TIL of L are determined. It is shown that the GBM 

representations '% of this type are themselves com­
pletely reducible, and their irreducible components 
are characterized. 

n.~ESllWAL OPERATORS 
AND REPRESENTATION SPACE 

A. Infinitesimal Four-Rotations 

The notation being the same as in Ref. 1, consider 
anyone-parameter subgroup {At} of the homogeneous 
Lorentz group (Ao = 1; ArAt' = At"+t'). 

• Sponsored in part by the Aerospace Research Laboratories 
under Contract AF 61 (052)-877, through the European Office of 
Aerospace Research (OAR), U.S. Air Force. 

t NATO research scholar, on leave from Gruppo di ricerca No. 
36, C.N.R., Roma. 

l V. Cantoni, J. Math. Phys. 7, 1361 (1966). 

The element TA , E'rl, corresponding to At E {At}, is 
defined by 

TAI«(), ([!) = T(A t), [T(A t ) E b]; 

TA, transforms the generic element <I> E Je into the 

element <I> A, E:k defined by 

<l>A,«(}, ([!) = KA,(At
l (}, Atl([!)T(At)ci>(Ail (}, Ail ([!), 

[ci>A,«(}, ([!), <I>(Atl (}, At
1([!) E .le]. 

Throughout this paper the mappings <I> E Je are 
assumed to be twice differentiable on the two-sphere. 
KA,(Atl(}, Atl([!), Atl(} , and Atl([! are differentiable 
with respect to 1 (see the Appendix). Therefore one 
can write 

<l>A,«(}, ([!) 

= [1 + (aKAJAi
1

(), Ail([!)) t + 0(/2)J 
at 1=0 

x [1 + Mt + 0(t
2
)] [<I>«(}, ([!) + e<l>~~ ([!)a~~l() 

+ a<l>«(}, ([!) aAt
l
([!) t + 0(t2)J 

a([! at t=o 

= {I + [M + (aKA,(At
1
(), At

1
([!)) 

at t=O 

(
aA -l(}) a (aA -1) a J + _t_ _ + -1J.. _ t + 0(t2)} 

at t=o ao at t=o a([! 

x <1>(0, ([!), 

where M is the infinitesimal operator ofb correspond­
ing to the one-parameter subgroup {At}. 

Hence one gets the expression for the infinitesimal 
operator M corresponding to {At} in the representa­
tion '%: 
M(O, ([!) = M + (aKA,(At l

0, At
1
([!)) 

at t=O 

(
aAt10) a (aAe1([!) a + -- - + -- - (1) 

at 1=0 ao at 1=0 af{J 

1700 
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which transforms any element <i> E:1e into the element where 

'Y M E:1e such that <i>M(O, rp) = M(O, rp)<i>(O, rp). The 
expressions for and 

and 

(
OKA,(AelO, Aelrp») , 

at t=O 

(
OAe1rp) 

at t=o 

(
OAe

lO
) , 

at t=O 

are derived in the Appendix for the six one-parameter 
subgroups of four-rotations in the coordinate planes 
(Xi, Xi), (i,j = 0,1,2,3; i ~ j). One obtains for the 
corresponding infinitesimal operators M;; in the 

representation il: 
- a M12«(J, rp) = Ml2 - - == M12 + IDll2 , 

orp 

M2a(0, rp) = M 2a - sin rp :0 

a 
- cotg ° cos rp orp == M 2a + IDl23 , 

- a 
Mal(O, rp) = Mal + cos rp 00 

- cotg ° sin rp.i. == Mal + IDlal' (2) 
orp 

MOl(O, rp) = MOl - sin (J cos rp 

a sin rp a + cos ° cos rp - - -- -
00 sinOorp' 

M02(0, cp) = M02 - sin ° sin rp 

. a cos rp a + cos ° sm rp - + -- - , 
00 sin ° orp 

Moa(O, rp) = Moa - cos ° - sin ° :e ' 
where the IDli/S (i,j = 1,2,3; i ~ j) are the oper­
ators corresponding to the infinitesimal rotations in 
the representations of the three-dimensional rotation 
group acting on spherical functions. 

As usual, it is convenient to replace the operators 
Mij by their linear combinations 

ii+ = iM23 - Msl , ii_ = iM2a + Mal, iia = iM12' 

F+ = iMol - M02 , F_ = iMol + M02 , Fa = iMoa . 

The "angular momentum" operator 

ii2 = l(ii+ii_ + ii_ii+) + fj~ 
can be written in the form 

(3) 

fj2 = H2 + f>2 + 2Haf>a + H+f>- + H_f>+, (4) 

B. Infinitesimal SupertransIations 

Let a = (aO, at, a2 , a3) be the vector of a 4-transla­
tion of L, represented by T(a) in the representation "b. 
It is well known that T(a) has the form 

T(a) = exp (-iakpk), 

where Pk is the kth component of the linear momentum 
operator in "b. 

Consider now a supertranslation (1, <x), character­
ized by the function <x(0, rp), and denote by a8<p the 
vector of its asymptotically tangent translation in the 

ray direction (0, rp). In the representation 13, the oper­
ator Ta. corresponding to (1, <x) is defined by 

Ta(O, rp) = exp (-ia~<pPk) 

and transforms any element <i> E:1e into the element 

<i> a. E :1e defined by 

<i>"Co, rp) = Ta.CO, cp)<i>(O, rp) 

(see Ref. I, Sec. V). 
The supertranslation (1, <x) belongs to the one­

parameter subgroup {t<x} of supertranslations whose 
generic element is characterized by the function 
t<x(O, cp), t being the parameter; the corresponding 

infinitesimal operator Sa. in il is defined by 

- • k S,,(O, rp) = -W8<pPk' 

and transforms any element <i> E.Je into the element 

<i> 8 E :1e defined by 

<i>.(0, rp) = -ia~<pPk<i>(O, cp). 

Following Sachs ,2 one can expand <x(0, rp) in 
(normalized) spherical harmonics Ytm(O, rp), 

00 I 

<x(0, cp) = 1 1 (ZtmYlm + (-l)mzlmYI_m) 
1=0 m=O 

(the bar denotes complex conjugation), and consider 
the complete set of one-parameter subgroups 

t<X /m = t(Ylm + (_1)m YI- m), 

t{3lm = it(Ylm - (_l)m Y I- m). 

The operators Aim and Blm of i; which represent the 

• R. Sachs, Phys. Rev. 128,2851 (1962). 
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corresponding infinitesimal elements may conven­
iently be replaced by their linear combinations: 

81m = l'(.llm - iB,m), 

81-m = H-l)m(A'm + iB1m), 

(/ = 0, 1,· .. ; m = 0,1,· .. ,/). 

Making use ofthe expressions for a~<p (i = 0, 1, 2, 3) 
given in Ref. 1, one obtains 

81m = -i(1 - t)l(l + I)YzmPo 

+ {ll(l + 1) sin () cos <p Yzm 

sin <p oYzm II OYzm]p - -- -- + cos v cos <p -- 1 
sin (J o<p o() 

+ {t/(1 + 1) sin () sin <p Yzm 

+ cos <p oYzm ll' OYzm]p -- -- + cos v sm <p -- 2 

sin ° 0 <p O() 

+ {l/(1 + 1) cos OYlm - sin ° O;~m ]Pa , 

(1 = 0, 1, ... ; m = -1, -I + 1, ... , I). (5) 

The operators Pi (i = 1, 2,3) defined by Pi«(), <p) = 
Pi and the operator P2 = -P: + P~ + Pi + Pi may 
be expressed in terms of the 81m'S: 

Po = i(417)!800 

PI = - i(i17)!(811 - 81_1) 

P2 = -(i17)!(811 + 81-1) (6) 
- .(4 )!s-Pa = -/"317 10 

p2 = !17(2811S1_1 - 8~0) + 48:0 , 

According to Sec. VII, Ref. 1, Pi and P2 are, respec­
tively, the linear momentum and the rest-mass oper­
ators of the induced representation t;L of L. 

C. Introduction of a Basis in jC 

It is well known3.4 that the representation space Je 
of the representation b of L admits a basis whose 
elements are simultaneous eigenvectors of the momen­
tum operators Po, PI, P2 , Pa , the spin operator and 
the operator Wa = i€aHkMij pk (€ denoting the permu­
tation tensor and indices being raised with the Lorentz 
metric). Whenever b is irreducible (as it is here 
assumed to be), PiPi and the spin operator are multi­
ples of the identity, and the elements of the basis may 
only be labeled by the corresponding eigenvalues of 

3 E. Wigner, Ann. Math. 40, 149 (1939). 
'S. S. Schweber, An Introduction to Relativistic Quantum Field 

Theory (Row & Peterson, Evanston, Illinois, 1961). 

PI' P2 , Pa, and Wa. The generic element of such a 
basis is denoted by q»1>{' where p stands for the set of 
eigenvalues (PI' P2, Pa) of PI' P2, and Pa, and, is a 
discrete index corresponding to the eigenvalue of Wa. 
The generic element of Je has the form 

<I> = t I f(p, ')<Pv~ dp. 

According to the definition of the representation 
space :k of t;, the generic element 4> E.1e maps each 
point «(), p) of the 2-sphere on an element 4>«(), p) E 
Je, so that one can write 

4>«(), p) = t I f(p, ,; 0, p)CPV{ dp, 

and the functions f(P, ,; (), p) are continuous and 
twice differentiable on the 2-sphere for all values of P 
and ,. 

If f is expanded in spherical harmonics, 4>(0, <p) 
takes the form 

4>«(), p) = t ~lmtl I f,m(P, OYzm«(), p)q»V{ dp 

from which it is clear that the elements CPv~lm E Je 
defined by 

CPv'lm(O, fP) = Yzm«(), fP)q»p{ (7) 

constitute a basis for ie. 
Note that.1e can be regarded as a linear space over 

the ring of twice-differentiable complex functions on 
the 2-sphere, the "product" of a function/«(), fP) and 
an element 4> E Je being the element'Y E.1e defined by 

'Y(O, fP) = /«(), p)4>(O, fP). 

In particular the element CPv,zm of the basis can be 
denoted by YzmCPp, and regarded as the product of 

YZm(O, fP) and CPP" where CPP' E ie is defined by 
CPV{(O, fP) = fPP,' 

III. REPRESENTATIONS WITH 
POSITIVE REST MASS 

A. Analysis of the Induced Representation i L 

Throughout this section it is assumed that b is 
unitary and irreducible, and that 

(8) 

with m > 0. 
The induced representation t;L of L is unitary, and 

therefore fully reducible. a Since (8) implies P24> = 
m24>, (4)E.1e), the irreducible components of t;L all 
correspond to the same eigenvalue m2 of the rest-mass 
operator P2, but not, in general, to the same eigen­
value of the spin operator. 
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• • I-I 1+1 
S integer • • • 

I 2,-1 
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• • • 
• • • 

• • 

2. +1 
• • • • 

• half-integer I-I "" I • • • 

• • . . 
• • • • 

• • • 

• 

FIG. 1. Here each dot represents a subspace of Jeo irreducible 
under O· (or the corresponding irreducible representation). The 
(I + 1)th row represents the subspace of .reo spanned by the elements 
{Y!mqiod. Elements of the same column correspond to the same 
weight, which labels the column. 

The irreducible components of ~L can be found4 by 

considering the subspace Jeo of Je spanned by the 
elements {qJo,lm} == {YzmqJo,} of the basis, and by 
determining the subspaces of Jeo which are irreducible 
under the three-dimensional rotation group 0 3 [the 
operators which correspond to the infinitesimal three­
rotations being the Mi;'s (i, j = 1, 2, 3; i ~ j) given 
by (2), up to a common factor m]. 

It is clear from (2) that for every fixed value of I the 

subspace of Jeo spanned by the elements {Y1mqJo,} of 
the basis may be identified with the representation 
space of the product of two irreducible repre­
sentations of the rotation group, namely the repre­
sentation with weight I acting on spherical harmonics 
of order I, and the representation with weight s acting 
on the subspace Jeo of Je spanned by the elements 
{lJ?o~}, s denoting the spin of the representation. Such 
a product is reducible,s and can be decomposed 
into irreducible representations of 0 3 with weights 
1+ s, 1+ s - 1,"', \/- s\, each of these repre­
sentations appearing once in the decomposition. 

The number I takes all possible values 0, 1, 2, ... 

in :reo; consequently if s is an integer (half-integer), 

jeo is the direct sum of subspaces invariant under 0 3 

and corresponding to irreducible representations of 
0 3 with integral (half-integral) weights. It is clear 
from the diagrams (Fig. 1) that the number of such 
subspaces corresponding to any given integral (half­
integral) weight a is 2a + 1 for a ~ sand 2s + 1 
for a ~ s. 

Hence one is led to the following conclusion: 
Whenever the representation b of L is irreducible and 
unitary with positive rest mass and integral (half­

integral) spin s, the induced representation -GL can be 
decomposed into irreducible representations of L with 
mass m; each integral (half-integral) value a of the 
spin appears Na times in the decomposition with 
Na = 2a + 1 for a ~ sand Na = 2s + 1 for a ~ s. 

B. Properties of the Representations 1; 

(1) The whole representation space Je can be gener­

ated from the element qJ0300; i.e., every element cf> E Je 
is of the type cf> = f' ~qJ0800' where f' ~ is a linear 
combination of products of operators belonging to 
the representation of the GBM Lie algebra. 

Proof Since every element qJ'P~zm of the basis which 

does not belong to :reo can be obtained from some 

element 'If E Jeo by acting upon it with the operator 
fA of a suitable homogeneous Lorentz transforma-

tion A, it is sufficient to show that Jeo can be generated 
from the element qJosoo' 

According to (7) one has for the 2s + 1 elements 

qJo~oo : 
qJo,oo(6, IJ?) = Yoo(6, 1J?)lJ?o, = (47T)-llJ?o, 

a = -S, -s + I, ... ,s), 

and it is clear from (2) that by repeated application of 
multiples of H+ and H_ any of these elements can be 
transformed into any other of them. On the other 
hand, in the representation b of L one has 

P,ff'o, = ° (i = 1,2,3), 
(9) 

Poff'o, = mlJ?o~ 

so that in ~ one gets from (5) and (7) for I ~ I: 

QzmqJo~oo = (47T}t(1 - tI(l + 1»-18zmqJo,oo 

(10) 
where 

Qzm == (47T)l(1 - tl(l + 1»-18zm (l ~ 1). 

This shows that every element qJO,lm of the basis of 

Jeo with I ~ 1 can be generated from any of the 
elements qJo,oo. 
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To complete the proof, it must be shown that the 
elements <PoClm can also be generated from an element 
<Po~oo' By repeated use of the relationn 

(I + 1)[(21 + 1)(2/ + 3)}-tYl+1 0 

+ l[{21 + 1)(21 - 1)]-1 YZ- 1 0 = {41T/3)1 YlO Y10 

satisfied by normalized Legendre polynomials, one 
can derive the following expression for Y10 : 

Y10 = 1(l401T/3)1 Y20 Yao - 50/9. 33-! Y50 

- 28/9.21-!Yso • (11) 

From (11), taking (5), (7), (10), and (2) into account, 
it is seen that the operators 

transform the element <Po,oo into the elements 

Qlm<Po,oo = <Po,lm (m = -1,0,1), 

which is the desired result. 

(12) 

Note that each operator Qzm transforms any ele­
ment of :leo into its product (in the sense of Sec.HC) 
with the function Yzm with the same indices. 

(2) The operators 0+.0_, Os, and QZm satisfy the 
commutation relations 

[0+, QlmJ = [{l + m + 1)(1- m)11Q,m+1> 

[0_, QlmJ = [(1 + m)(l - m + l)}fQlm_l, (13) 

[Ha, QzmJ = mQlm' 

[H2, QlmJ = 1(1 + I)Qlm + 2mQ'mDa 

+ [(I + m)(l - m + 1)1IQzm_lD+ 

+ ((I + m + 1)(1 - m)]IQlm+lO_, (14) 

[D -). ] 2f ?i -),-1 -,Qn = lotlOQll 

[02 Q-).] 2f~ - -),-1-
_, 11 = IIQIOQU H_ 

~ ~ -2 -). 2 - -). 1 + 21\(11 - I)QI0Ql1 + 2..tQl-lQl1 , 

(15) 

which can be obtained from (2), (3), (5), (10), and 
(12) by straightforward calculation (see also Ref. 2). 

(3) Whenever an element <P E Jeo is a simultaneous 
eigenvector of 0 2 and 0 3 with eigenvalues ..t(J + 1) 
and ft, respectively, it is denoted by <P,\p and caned an 
element of type (A, p,). 

~ I. M. Gel'rand and Z. Ya. Sapiro, Am. Math. Soc. Trans!.. 
Sec. 2. Vol. 2 (1956). 

Consider the operators 

R+ == Qll' 
R; == 21..1Qlo - Q110 _, 
RJ; == 2A(2A - 1)Ql_1 - 2t(2A - l)QloH­

+ QuO: (A = 0, t, 1,' "). 

(16) 

Making use of (13) and (14) one can verify the relations 

02R+iPu = (A + 1)(,1 + 2)R+<P;.;., 
O -+3.. -+-aR 'V;.;. = (A + I)R $)..<, 

H2R"i.<PU = A(). + l)R:;ib;.;., 
HaR'liP H = :iRA<P).)., 
H2RJ;<P).). = (A - I)AR'iiP).,l., 
HaR'iiP,\,\ = (A - I)R'i<l>,u. 

which show that R+, Rr, and Ri' transform any 
vector of type (A, A) into vectors of type (A + 1, 
A + 1), (A, A), and (A - 1, :i - 1), respectively. 

The operators R+, R=, and R- satisfy the relations 

R;:2 = i.. A2 + R+RJ;, 
21T 

RJ;+1R+ = - 2 (2A + 1) + R+R;. 
21T 

C. Reduction of tbe Representations i: 
Whenever it is necessary to specify the particular 

value s of the spin of the representation 13 from 

which TI is constructed, the latter is denoted by ~ •. 

1. Irreducibility of~o 

In the case s = 0 it is already known from Sec. 
lIlA that the induced representation t; L contains, 
exactly once, each irreducible representation of L 
with mass m and integral spin. Here the index , 
takes the unique value 0, and it is clear from (4) that 
the elements rpOOlm (for any fixed value of I, and 
m = -I, -I + 1,' " ,/) span the intersection of 

~o with the subspace of .re which is invariant under 
13L and corresponds to the value I of the spin. 

Suppose that X has a proper subspace Ii which is 
invariant under the GBM group: a fortiori h is 
invariant under L, and must contain at least one of 
the elements <POOH for some A. Hence to prove that 
:ie has no proper invariant subspace under the GBM 

group, it is sufficient to show that X can be generated 
from any of the elements <Poo;.;., or on account of 
the result of Sec. IIIBl, that any element <Poo,\),. can be 
transformed into the element <Poooo. 
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The element R+).cpoo is obviously of type (A, A) and 
equal to CPoou up to a scalar factor. By acting upon 
it with the operator it, taking (15), (16), and the 
condition [Lcpoo = 0 into account, one gets 

R-R+J. - - 1. A2R.+).-1- • ). IPoo - - 27T IPoo, 

the element obtained is equal to CPOOJ.-U-l up to a 
scalar factor. Thus by successive application of the 
operators R:;:, RJ:....1 ,···, R1, the element CPoou is 
transformed into a multiple of CPoooo, and the irreduci­

bility of "Go is proved. 

2. Reduction of"G! 

In the case s = t, a decomposition of 13L into 
irreducible representations of L gives, exactly twice, 
each representation with mass m and half-integral spin, 
and the index ~ takes the values -t and t. 

The operator Rf has two independent eigenvectors 
of type_ (t, t), namely the elements ~+ = CPO! + 
(87Tj3)!RfCPo! and if- = CPO! - (87T/3)! Rrcpo!; the 
corresponding eigenvalues are (3/87T)! and -(3/87T)!, 
respectively. It is shown that the two subspaces of 

Je generated from if+ and tp_ by acting upon them 
with all possible sums of products of operators of the 
GBM Lie algebra are disjoint, invariant, and irreduc­

ible, and that"G! is the direct sum of the corresponding 
irreducible representations of the GBM group. 

Consider the two sequences 

(17) 

of elements of Je: the kth element of each sequence 
is of type (t(k - 1), !(k - 1» and belongs to a 
subspace of Je irreducible under "GL , corresponding 
to a representation of L with spin t(k - 1). Denote 

by Je+ the sum of all the subspaces of ;fe which are 

irreducible under "GL and contain one of the elements 

of the sequence ~+, and by Je_ the subspace of Je 
defined in an analogous way in terms of the sequence 
L . It is easy to verify that the linear independence of 
tp+ and tp_ implies the linear independence of R+J.if+ 
and R+;'tp_ for all values of A, so that, for each half-

integer A + t, Je+ and :Ie_ contain distinct subspaces 

which are irreducible under T;L and correspond to a 
representation of L with spin A + t, (A = 0,1," .). 
Hence one is immediately led to the conclusion that 

Je+ and Je_ are disjoint, and that Je = Je+ + Je_. 
It must be shown that X+ and X __ are invariant 

and irreducible under the operators of b!. 

The irreducibility follows, exactly as in the case of 

the representation ~o, from the fact that any vector 
of each sequence (l7) can be transformed into any 
other vector of the same sequence by acting upon it 
with a suitable product of the operators R+ and RJ:. 
To prove that Je+ and Je_ are invariant subspaces it 
is sufficient to show that if+ cannot be transformed 
into ip_, and vice versa. Consider any element if of 

type (t, t): the subspace of Jeo generated from if is 
easily seen to be constituted of elements of the form 

ip' = L alm~lmtp + L blm~lmR-VJ, 
L,m tJm 

where the aIm'S and the blm'S are arbitrary constants. 
ip' is also of type (t, t) if and only if R3VJ' = tif' and 
R+ip' = 0: from (2), (3) and the concluding remark 
of Sec. IIIB 1, one sees that this is only possible if alO + 
2-!bn = 0 and all the other constants aIm and b1m 

vanish, except aoo which remains arbitrary. In other 
words, any operator which transforms an element of 
type (t, !) into another element of the same type is a 
linear combination of the operator Rf and the 
identity operator. Since tp+ and tp_ are independent 
eigenvectors of the operator Rf, both of type (1. i), 
there exists no operator which transforms one of them 

into the other, and the invariance of Je+ and Je_ is 
proved. 

Thus 13! is the direct sum of two irreducible 
representations tt an~ ti of ~he GBM group, with 
representation spaces Je+ and Je_, respectively. 

3. Reduction of "G. (s > t). 
In the general case the operator R; has 2s + 1 

independent eigenvectors of type (s, s). Two of these 
eigenvectors, denoted by tp+ and tp_, are characterized 
by the additional condition 

R-;tp+ = 0, R-;tp_ = 0; 

their eigenvalues are (3/27T )!s and - (3/27T )!s, respec­
tively. 

The subspaces :Ie+ and :Ie_ of Je which can be gener­
ated from ip+ and if- are disjoint, invariant, and irre­

ducible, and the restrictions of~. to Je+ and Je_ are 
irreducible representations of the GBM group 
(denoted by tt and r;, respectively). The reduction 
of the corresponding induced representations of L 
gives in both cases, exactly once, each irreducible 
representation of L with mass m and spin s, s + 1, 

s + 2, .... The restriction of T;. to the orthogonal 

complement of Je+ + Je_ in Je is equivalent to the 

representation T;S-l' The proofs of these statements 
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are straightforward generalizations of the analogous 
proofs given in the special case s = 1. 

One can conclude that the irreducible components 
of the representations considered are characterized by 
the eigenvalue m 2 of the rest-mass operator, by the 
lowest eigenvalue s(s + 1) of the spin operator, and 
by the sign of the eigenvalue belonging to the eigenvector 
of type (s, s) of the operator R; . 
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APPENDIX 

Denote by (A~) the matrix of the homogeneous 
Lorentz transformation A in the Cartesian frame 
{yi} associated with the polar coordinates (u, r, (), cp). 
One has1 

r' = KA «(), cp)r + J + 0(,-1), 

u = yO - r, u' = yO' - r', 

so that the transformation 

u' = K/!«(), cp)u + 0(r-1
) 

can be written in the form 

AgyO + A~r sin () cos cp + A~r sin () sin cp + A~r cos () 

- KAr - J + 0(r-1) = KA1
U + 0(r-1). 

Dividing by r and passing to the limit for r -+ 00, 

U = const, one gets the following expression for KA : 

KA(O, cp) = Ag + A~ sin 0 cos cp 

+ Ag sin () sin cp + Ag cos (). 
Hence, denoting by AaP (IX, fJ = 0, 1,2,3) the value 

JOURNAL OF MATHEMATICAL PHYSICS 

of [oKAJA;-l(), A;lcp)/ot]t=o corresponding to the 
one-parameter subgroup of rotations in the coordinate 
plane (y«,yP), one obtains 

AH = ° (i,j = 1,2,3), 
A01 = [(%t)(cosh t - sinh t sin At1

() cos At1cp)]t=o 

= -sin () cos cp, 

A02 = -sin () sin cp, 

AOll = -cos (). 

Denote by BaP and cap the values of (OAt1()!ot)t=o 
and (OA;1 p!ot)t=o, respectively, for the one-param­
eter subgroup of four-rotations in the coordinate 
plane (ya, yP). By differentiation with respect to t of 
the equations 

and 

A3 -

A-1() -tIY' cos t = --, 
r' 

-1 A:'tiyi 

tanA t cp = -1-i' 
A_tfy 

one obtains, passing to the limit for r -+ 00, U = 
const: 

B12 = -1, B23 = -sin p, B31 = cos cp, 

BOI = cos () cos cp, B02 = cos () sin cp, 

B03 = -sin (), 

C12 = 0, C23 = -cot () cos cp, 

C31 = -cot () sin p, 

C01 =_sin p , 
sin () 

C02 _ cos cp 
- sin () , C03 = O. 
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THE term (e2Aw' A!/mc2)a .. was omitted from the 
right-hand side ofEq. (2.14). This term can be com­

bined with the first term on the right-hand side of 
Eq. (2.14) if we replace !ico" by 

!iw .. == !ico .. + (e2Aw • A!/mc2), 

which corresponds to the addition of the electron's 

zero-point energy due to the presence of the electro­
magnetic field described by the vector potential (2.3). 
Thus, in the subsequent equations it is necessary to 
replace !ico .. by !iw .. in every equation referring to the 
solution (or properties of the electron state) in the 
presence of the laser field. 
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