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The dispersion of electromagnetic waves in molecular crystals has been studied using the second
quantization formalism. The excitation spectrum, the Green’s functions for the optical exciton and photon
field, as well as the corresponding distribution functions, are calculated and discussed. The ground state
energy of the crystal is derived in a closed form with the polarization of the medium taken into account
explicitly. In the low-density limit the expression for the ground state energy corresponds to the sum-
mation of an infinite sequence of terms in a perturbation-theory approach.

1. INTRODUCTION

N a recent paper! the excitation spectrum and the
ground state energy of a molecular crystal has
been calculated using a microscopic approach. In
this treatment a molecular crystal has been considered
in the tight binding approximation where an electron
and a hole are tightly bound at the same lattice site
and only contributions arising from the direct
electron—electron interactions up to terms of the
order N-% in the crystal Hamiltonian have been taken
into account, N being the total number of unit cells
in the crystal. In the present paper we discuss the
same problem in the presence of an electromagnetic
field.

The problem is formulated in Sec. 2, where the
total Hamiltonian of the system, consisting of the
crystal Hamiltonian with direct interactions between
the electrons plus the Hamiltonian for the electro-
magnetic field and the electron-photon interaction,
is-expressed in the second quantization representation
and is used to derive the equation of motion for the
two-particle double-time retarded Green’s function.
The higher-order Green’s functions appearing in

1 C, Mavroyannis, J. Chem, Phys. 42, 1772 (1965).

the equation of motion are decoupled by making use
of a procedure which is equivalent to the Hartree-
Fock self-consistent field approximation. Then a
general equation is developed for the two-particle
Green’s function which describes under certain
conditions the excitation spectrum of Frenkel or Mott
excitons in an undeformed lattice.

The equations of motion for the Green’s functions
of the optical exciton (polariton) and photon field for
a molecular crystal are developed in Sec. 3, while the
dispersion of electromagnetlc waves is discussed in
Sec. 4. The expression for the excitation spectrum of
optical excitons is identical to that found by Agrano-
vich,? who used the Bogolyubov’s canonical trans-
formation to diagonalize the crystal Hamiltonian
plus the electromagnetic field.

Using the expressions for the optical exciton and
photon Green’s functions, we derive the corre-
sponding distribution functions which are used in
Sec. 4 to average the Hamiltonian of the system. The
ground state energy of a molecular crystal is obtained
in closed form. The polarization of the medium

2V. M. Agranovich, Zh. Eksperim. i Teor. Fiz. 37, 430 (1959)
[English transl.: Soviet Phys.—JETP 10, 307 (1960)].
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resulting from the electromagnetic field of the atoms
or molecules in the crystal has been included fully in
the expression for the ground state energy. Since no
restriction has been made about the strength of the
interactions involved, the result is exact in the model
under consideration up to terms N—% in the total
Hamiltonian. In the limiting case where the density
of the crystal is small, an expansion of the expression
for the ground state energy in powers of the density
leads to an infinite sequence of terms corresponding
to an expansion in perturbation theory.

Higher-order effects will be the subject of later
publications; broadening of the exciton spectrum,
scattering and absorption of electromagnetic waves
including the phonon field, and the dielectric prop-
erties of molecular crystals are discussed.

2. FORMULATION OF THE PROBLEM

The Hamiltonian of a crystal, in which all the
molecules are fixed at the lattice sites, is taken in the
form

Je=J60+Jeph+Jemt, ¢))

where JC, is the crystal Hamiltonian with direct
interactions between the electrons:

Z fILIf >°‘f°‘r'
+3 3 SLAIVIS f1>°‘f°‘fl°‘fl L

1,70

¢))

The index f=(s,7, 0y), s =na (n being the lattice
site), « (= 1,2 - - ¢) enumerates the molecules per
unit cell, i designates the electron state, and o, is the
spin component of an electron (+4). «} and o, are
the creation and annihilation operators satisfying the
Fermi anticommutation relations

ley, o} )y = 6y,
(fIL|f’) are the matrix elements corresponding to
the additive part of the energy operator, ie., the

kinetic energy and the energy of interaction of an
electron with the periodic field of the lattice,

SILIfY = f v
_1 2 fa
x [—Zm V43V - r,)] v,y dr,

V(r, — r,) being the potential of an electron at the
site s, and the matrix elements,

SIIVILTD = f P,
X V(l', - rsl)wf’(rs)'pfi(ral) dry dr,,

( l')— ]

l‘-—'l'
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correspond to the potential energy of the electron-
electron interaction. e? denotes the square of the
charge divided by the static dielectric constant of the
substance and the y’s are the Wannier functions of
the electron states. The system of units with 4 = 1 is
used throughout.

¥,y is the Hamiltonian for the transverse radiation

field
Jeph = zlcqﬂ:_lﬂq). s (3)
q

where 5, and B, are the creation and annihilation
operators of a photon with wavevector q and polar-
ization A(=1,2), representing the two possible
values of polarization perpendicular to the direction
of propagation q. The interaction between the
electrons and photons in the second quantization
representation may be taken as®

(2)
it = Jia: + Jeiih,
where

(1)
Hini =

S (il T@ ) | f)ahas,e ™ ®F,,,

Q4,117
— T
3«1 = ﬂql + ﬂ-—qin

€, €
Je{%)t= ( q). q}.)

mcV oid. (g ,); [BusBerflq + q)

+ ﬂqzﬂ;r'z'f q—q)+ ﬁ:zﬁq';.'f (—q+14q)
+ Buberf(—a — Q)]

(I T@ DI = =3 e”( )(;,1,, eas),
1@ =3 (IS e

f1fs
i?,, is the matrix element of the momentum operator
of the pth electron of a molecule, e, (=e_,) is
the photon polarization vector, ¥ is the volume of the
crystal, and r{® is the position vector of the pth
electron at the lattice site 5. In the zero approximation,
J{2) may be written as

4

e’

(5a)

lf 2) “flala

Jegfl)tw) p z ﬁ AMqA > (Sb)
o, being the plasma frequency
w) = 4we’NoS/mV, (5¢)

where S and N are the total number of electrons in
the unit cell and the total number of unit cells in the
crystal, respectively. J¢{2 instead of JC{2) is used in
what follows.

To study the exciton spectrum, it is sufficient to
consider the two-particle retarded double-time Green’s
function

(b (Dot (1); ad (), (D)) -

3 L. N. Ovander, Fiz. Tverd. Tela 3, 2394 (1961) [English transl. ;
Soviet Phys.—Solid State 3, 1737 (1962)].
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The retarded Green’s function for the operators A(f)
and B(¢’) is defined as?

(4@); BE'Y) = —ib(t — ')A, B())_,),

where

U)= Q@ 2Tr[Uexp (—pX)]; QO = Trexp (—pX),

ﬂ = (KB T’)-1’
Ky is Boltzmann’s constant, T the absolute temper-
ature, and X is the total Hamiltonian. The value of #
is taken to be either +1 or ~1 depending upon
considerations of convenience, 6(¢) is the step function

6 =0, t<0; 60)=1, t>0,

and the operators A(f) and B(t') are expressed in the
Heisenberg representation

A(t) = exp (i380) A(0) exp (—idr).

The equation of motion for the Fourier transform of
the Green’s function ({(4(#); B(t))),,, is given by®

(14, B(O1-

+ ([A®), X]; B¢ D)) - (6)
In what follows we omit the subscript w for the sake
of convenience.

Using the Hamiltonian (1), the equation of motion
(6) with =1 for the Fourier transform of the
Green’s function ((oc, .} “vl X and the following
decoupling procedure for the hlgher-order Green’s
functions:

W(CAQ); BE Wiy = —21;

bt ot
«aﬁafzafaaf; » mﬂlah>>
t t Lt
A~ (g, o Y 0p O 5 aqloc,,z)) -

+ <°Jfl°(f‘><<“1;‘,“fa’ &gy oz»

() Hrtry3 90,900
(a;rflafa)((ot};a,‘ ; oc;r,loc,s))
O
which is equivalent to the Hartree-Fock self-

consistent field approximation,® we derive the fol-
lowing expression:

w«a;ldfz; 0(:105“» = %r (<a;1a02>6f201 - <aﬂ]:afs>6fxﬂa)
+3 F(faf ) 5 atgyt0,))
-3 F(, AP,

+ 3 K \VILED = RSV ISP

4 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk
SSSR 126, 53 (1959) [English transl.: Soviet Phys.—Doklady 4,
589 (1959)).

5 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.:
Soviet Phys.—Usp. 3, 320 (1960)].

¢ S. V. Tyablikov and V. L. Bonch-Bruevich, Advan. Phys. 11,
317 (1962).
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t t
X (o o (o popns oc‘,1 02))

—-”Zf"[(f,f’l VI D = AV )

b t
X (o gty )((otpttpms ot,l )

+ 3 (il Teh) | ot ane™®™ s af o, )
—lem T(a2) | fi)X(edoty fore ™™ s b, ), (8)

where

F(fif) = (A LIS +,Z,,,[<fvf’| VIfer £

— S LIV IS S,
The last two terms on the right-hand side of (8)
correspond to the electron—photon interaction. Thus
the expression (8) describes a two-particle excitation
spectrum including retardation effects. We note here
that by using the approximation (7), we have neglected
pairing of electrons of the superconducting type,
(otflotf’) and <a:£1a;fz), because they are not of interest
for our problem.

If we neglect the last two terms on the right-hand
side of (8) and set f; = (s, i, 0y), fo = (51, , 03), i and
Jj being the states of the electron and the hole, respec-
tively, then the resulting equation for the Green’s
function

t ot
((aSidlaSIjﬂg ’ asl’j’ag’as'i’al‘»

describes the exciton spectrum without retardation.
In particular, if s = s,, i.e., the electron and the hole
are tightly bound at the same lattice site, the resulting
equation for ((a! sal .. ) will correspond
tg the spectrum sc;?sggle (i;l = :rz)aaor triple (o, ;I:‘ 0y)
Frenkel exciton. If, on the other hand, s # s;, then
one obtains the corresponding spectrum of the Mott-
type exciton. The spectra of single Frenkel and Mott
type excitons have been discussed in this way by
Dzyub? at finite temperatures. Thus, if we introduce
the compound operators b,; = «f, %, and bl =
a;f,.dlocwl, and use (8) and its complex conjugate, we
may calculate the excitation and average energy
corresponding to the Hamiltonian J¢,. Therefore, we
write the Hamiltonian J¢, in the form

¥, = 3 + Jein + i, ©)]
where X' represents the bare or mechanical exciton
spectrum of a molecular crystal correct to the order
N-% and is given by

B = () + 2 E,(K)b](X)b,(K), (10)

71, P. Dzyub, Dokl. Acad. Nauk SSSR 130, 1241 (1960) [English
transl.: Soviet Phys.—Doklady 5, 125 (1959)]; Zh. Eksperim. i Teor.
Fiz, 39, 610 (1960) [English transl.: Soviet Phys.—JETP 12, 429
(1961))].



1518

where E (k) is the excitation energy of the uth exciton
band with wavevector k. Here u is a compound index
that denotes the exciton band, the corresponding
molecular term and the kind of mode, transverse
(u, = 1,2) or longitudinal (u, = 3). In (10) k is a
wavevector in the first Brillouin zone. Effects resulting
from conﬁguration mixing of different states may also
be included in the expression for E (k).® The
operators b (k) and b'f(k) satisfy the commutation
relation

[b,(K), b, (k)] =
where

nok) = (@) and (k) = (x(R)a, (K))

are the occupation numbers of the unperturbed
initial and final state, respectively. (¥,) in (10) is the
average energy resulting from the direct short- and
long-range electron-hole pair interactions including
configuration interaction; at zero temperature, it
corresponds to the ground state energy arising from
the zero-point fluctuations of the excitation field as
has been pointed out by Hopfield® and Anderson.1®
Expressions for (¥,) have been given in the literature.
In (9) %I and XL} are higher-order terms pro-
portional to N-* and N-!, respectively, and express
scattering processes. For example, if the exchange
interaction is neglected, then X[ takes the form311

[ny(k) — n, (k)]0 0 »

FHE =N Uy plk — q)
LK.
Bl t +
x b-K)bQblk — q) + c.c., (11)
where
UOu”,mt’(k z <SO sl;u”l I/ssl ISIu, sllu >
X uu"(k)uu’(q)uu(k - q) €Xp [l(k - q)(rsl - rs)];

and the u’s and v’s are the amplitudes of the canonical
transformation which diagonalize the unperturbed
part of the Hamiltonian, . Since the » amplitudes
are much smaller than the u’s,*® they have been
omitted in (11). Explicit expressions for the u’s and
v’s have been given elsewhere.l® The expression for
Jemt contains four operators but its explicit form
is not given here.

3. GREEN’S FUNCTIONS FOR THE OPTICAL

EXCITON AND PHOTON FIELD

The Hamiltonian X{!} is expressed now in the

representation where X is diagonal, i.e.,

mt = Jeint + Jemt, (12)

8 V. M. Agranovich, Fiz. Tverd. Tela 3, 811 (1961) [English transl. :
Soviet Phys.—Solid State 3, 592 (1961)).

9 J. J. Hopfield, Phys. Rev. 112, 1555 (1958).

10 p, W. Anderson, Concepts in Solids (W. A. Benjamin, Inc.,
New York, 1964), p. 147.

11 1., N. Ovander, Usp. Fiz. Nauk 86, 3 (1965) [English transl.:
Soviet Phys.—Usp. 8, 337 (1965)].
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where
el = 223 Lk, A)[ "(")] BB, (13)

ti
sl = "% z @, z)(E——)
cq

X Bl(K)b,(k — Qf(@), (14)
En(k) = by(—k) - b[t(k),
and the coupling constants are given by
s = ( ) > (e0s  PEIEL®)
X [ (K)ja(k)] exp (ik - ry,), (15)
1}
fl%u,k—q#’(qa A) = (822:15) z (eq). -P
X El%—qu’,kuurta(k)uu’a(k - q) exXp (lq ° rna)’ (16)

Ek—qu’,kﬂ = Eﬂ'(k - q) - E”(k).

P;, and P, . are the dipole moment operators of the
molecule na for the allowed transitions 0 — u and
u— ', respectively. In (14) we have kept only the u’s
while contributions from terms proportional to the
v amplitudes have been neglected. The Hamiltonians

Jel, and X[} describe dispersion and scattering of
the electromagnetic waves, respectively.

We introduce the retarded Green’s function
G,(k; w) = (A, K); A K)))

— 4 u(k) TN - \
= < (b,t ) BlIs ),

and using (6), (9), (10), and (12), we obtain the equation
of motion for G ,(k; w):

E,(K)]G,(k; »)
= Ziﬂ (o — my) + (Bilk, 1); A1)
+ (Taak — q, &); AN + (VEb; Al)), (17)

where we have made use of the following notation:

[éew —

By, p) = — 1‘;’— (o = ) 38,0, )
E (k) [ Buk)
_ , (18
% [ ck ] (—ﬂa(k)) (182)
Tk — q ) = (mg — m) 22'S 1 (a, %)
N&ql,u’

b, (k — )f,(q)

x (@#)%(—b,t(k o) O
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pet = Gt T2,

Nt A

(1 o) (1 0)
& = , I= ’
0 —1 01

= ; {[U. @ + UZ. ,, &bl (—q

L Uk — QB @)}k — @) (18d)

In (17), the term proportional to N-* has been omitted.
Similarly, the equation of motion for the Green’s
function ((B,(k, u); A1(k))) is given by

Bk, p); AL(K))
_ 9 oulk, DE,K)8,6,(k; )
=7 e M) 2 w,)

+ (Cqu, k — qu'); A(k)>>, 19)
where

_; (o —

nku) z f Ou(k }')

al,up’
f Em,k—qn’(_k’ }“)[Eu(k)Ek—au‘,um]&
(0® = *k? — wd)

Clqu,, k — qu') =

X

bl (~q)b, (k —
( p,T( Vb, (k — q) ) 20
—b, (—@b,(k — @)
) 1 -1
%= (—1 1)'
Substitution of (19) into (17) leads to
G‘“"l(kl )G Wk 0) = — (n,‘0 ny,)
+ (Cuk — q, ) + C(qul, — qu) + P ALK
(21
with
(D2
GO kA; w) = 4w — E (k) — ? (Mo — M)
fo,,(kl)E,,(k) 4. (22)
i (@® — k® — wlk)

In the same way, we derive the equation of motion
for the photon Green’s function

D,(k; w) = <<ﬂ;.(k)§ lﬁ(k)»
in the form

DO(k; w)Dy(k; ) = 1 + = "(nko— M)

u( )E k~qu’, ku)%
ckeq

((b (k — @ (@); BiK))

x 3 fhie ofhs <qz'>(

. [ E,®) —

(18¢)
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t @ 4!
+ E————(k) o (Gl — DBl Bl(k)»]
271'!(0, Ek—qu JapL g
+ — N* z fullx k—qu’ (k )')( ck )

27iw,

DXL

[ [ ot Bl

X (br(~Db(k — @); i) +

ck
+ ;,TIEY{) 0! m)»] 23)
where
DO(k; )
= (mfek)o® — *k* — w} + ay(k, WEW)], (24)

and «,(k, o) is the frequency-dependent polarizability
with polarization 4 defined by

ay(k, w) = wﬁ("ko - nk,‘)lZ fou(k, A/ [Ef‘(k) - wZ]-
’ (25)
4. DISPERSION

To study the polariton (dressed exciton) spectrum,
we have to neglect the Green’s functions that appeared

on the right-hand side of (21), i.e.,
GO(kA; w)GO(k; w) = I(ny — my,)[2m. (26)

Taking the diagonal and nondiagonal elements of
(26), we have, respectively,

[k + o) — ® — ay(k, ®)EXK)IGO(k; w)
= (g — "ku)/277'
2k2 + wp _
[ T 9 4 ok, )E (k)] @n

[c*k? 4 w2 — 0 — a,(k, ®)EXK)IGCV(k; )
= (Mo — M2 X $oy(k, W)E,(K), (28)
where
GO(k; w) = (b, (K); biRN®
and
GOk; w) = (b)(—K); biENH®

are the unperturbed single-particle retarded Green’s
functions. The longitudinal excitons are not coupled
with the radiation field; therefore,

G(,?‘)l(k w) = ny,)2m

Gk; w) = 0.

ul

1

n S
(nygo — o — E””(k)

(29

For the transverse excitons, taking into account the
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degeneracy with respect to 4, we have from (27) and
(28)

[, + @] — )3, — a(k, W), EiKGT),  (k; o)

— ("xo - ”ku)
27
2k2 + wp
x [———w—;—@— B + el B |, GO)
[(** + @) — 05 — alk, W), EJIIGE), (k; o)
= (”"°2" Py) 3ok, o) E, k), (31)
37

with n,; = 8, — kk;/k* and i, j = 1, 2. The energy of
excitation is obtained from the poles of (30) or (31),
i.e., from the zeros of the determinant,

I(°,® + @ — 0*)8;; — alk, W)y, EQK)]| =0, (322)
which leads to the following equation:
(*k* + wf, — 0% — (%* + @ — o) ay + ag)

X Eﬁ(k) + (2% — o‘12)5 (k) =0, (32b)
with the notation ay = ay(k, ) = ok, w)y,; and
a,; = ay;. Using the sum rule developed in Ref. 2,
Eq. (32b) may be written as

[c%k? — '3 (k, w)][c*k® — 0¥k, ®)] =0, (33)
where
7k, @) = 1 + oy + as5)
+ ot — 00)® + dady]t (34)

is the index of refraction of optical waves in the
crystal. Thus, the poles of the Green’s function given
by the roots of (33) determine the dispersion of the
electromagnetic waves in a molecular crystal. The
expressions (32b) and (34), apart from the factor
(myy — m,,) that appears in (25) and is of the order
of unity, are identical with those derived by Agrano-
vich?; we refer to his paper for details where expres-
sions for 7% (k, w) are given for crystals of definite
symmetry.

Using (27), its complex conjugate, and (28), we
derive the corresponding spectral functions in the
usual way™® and, integrating over @ and taking the
limit at zero temperature, we obtain the following
expressions for the distribution functions:

(b ®)b, &)

= (Mg —

w Foull, )
nk“) u%ﬂ [En(k) + a"p.ﬂ.(k)]2

(L
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(bu(k)b ()

_ % Jou(k, 2)
= (nk() kﬂ) 4 nzp [E,‘(k) . w,,;(k)]z

8 (w,,f(kk)))( i, w))w-wpgm’ @9
(b, (K)b,(—K)§”

= —(na = 1) 13 14, 0 W) (—E@—)

pl(k)

dw?
73k, 37
(d 3 w))wsmp;_(k) 37

where o, 2(k) is the pth root of the secular equation

— o} + 2,(k, w)Ej(k) = 0. (38)

C()—C

In the limit where w, (k) = E (k), the expressions
(35), (36), and (37) are reduced to those of the bare
exciton spectrum, i.e.,

(BiRDbEN = (b, M)b(—K) =
(b IDbIEND = (Mo — 1y,).

The factor
dw?® ,,
k, @
(d 2 i ))w—mﬂ(k)

in the expressions for the distribution functions
represents the admixture of the field oscillation to
each normal mode.!?

The photon Green’s function in the zero approxi-
mation is obtained by neglecting the last three terms
on the right-hand side of (23), i.e.,

DP(k; w) = (ck/m) ik, ) — K"},
which has the same poles as G'(k; w). We also have

and

(39)

1 o + ck — w'u,(k, )/2ck
w*,(k, w) — ck?

(B BIIN® =

>

(40)

__1_ ok, w)/2ck 1)

m 0 3k, 0) — ck

{Ba(—T0); BN =

From (39), (40), and (41), we derive the distribution
functions:

) [ck — 0 WF
BB =3 == 1)

(j“’z (K, o) 2)

)m—m Ap“‘)

12 U. Fano, Phys. Rev. 103, 1202 (1956).
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[ck + w,,®]*

(0)
BB =3 T
—1
x (j“’zﬁi(k, D). o @
0=w,
BB~ = 471:2? 0,003k, @, (K)]
do? —1
% (dw2 7k, w))m=mp;'(k)’ (44)
GEEEEED L ( 7k, o ))
w,1(k)\dw? om0, ()
45)
8,00, G =3 ( i, w)) (46)
m=mpl(k)

In the absence of dispersion, i.e., when 73(k, w) = 1,
then w, (k) = ck,

BIIBND = (B,(K)B(—K))® = 0,
B EBIENP = GlR)FE)® = 1.

It is interesting to note here that if one makes use
of Bogolyubov’s canonical transformation to diago-
nalize the Hamiltonian X° + X[, + 2@ 4 3, , as
was done in Refs. 2 and 3, it is easy to show that the
amplitudes u,,(k), v,,(k), u,,(k), and v ,2(K) of the
canonical transformation are related to the distri-
bution functions at zero temperature by

(WP = W

BB, = 10,,W)I, (472)

BN = lup W1,

BB = 1o, @), 47b)
(bp(k)bu(—k»ao) = luup(k)vup(k)la (470)
(lgx(k)ﬁz(“k»(()m = |“p;.(k)”p;.(k)|'

5. GROUND-STATE ENERGY

The ground-state energy of a molecular crystal,
correct to the order N-1, i.e., neglecting contributions
from JefL,, ¥ | and JLY, is given by

@DP = (Koo + g E,(k)(b}(K)b, &)
+ z ck(BIK)B (k)

+ 223 1he o[22 (")]

X <[b,‘(—k) — biIFIE)
+ 043 L @AM, ©@8)
k4 ¢k
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Using the expression for the Green’s function
k
223 s |20 )] (L) — b(—); Bl
1

~ 1l wuk w)Ej(Kk)
27 ¥ %Ak, w) — 2k

(49

we derive the corresponding expression for the
distribution function

vy, 5 ¢} E, )} 1 — Bt @
=23 rhe, z)[—ck—] (b(~k) — bI@IFEN

E)k) (dw 7k, ))—1

(Opl(k) dw? o=, (k)
(50)

Substituting (35), (42), and (50), into (48) and re-
arranging, we find

HKodo + 3 Z [w,4(K)

=—% Z o[k, w,(K)] ===

@y = — E,(K)]

+13EW - ck]( Ak, w)) , (51)

o=, (k)

with w,,(k) given by the roots of the secular equa-
tion (38). The formula (51) gives the ground-state
energy of a molecular crystal in a closed form exact
to the order N~%. The polarization of the medium
resulting from the radiation field of atoms or molecules
in the crystal has been fully taken into account in (51).
Both the second and third term on the right-hand
side of (51) describe the fluctuations of the polar-
ization field in the medium; in the absence of disper-
sion, i.e., when 7,(k, w) = 1, ck = w,,(k) and both
terms disappear. In the static case, when w,,(k) =0,
(51) becomes

<J€1>(0)

oo + 13 E"<k)(

kst

-1}, (52

i
where the second term on the right-hand side of (52)
gives the local field correction to the energy of
excitation resulting from the static polarization field.
In (52), #(k, 0) is now the static dielectric constant
of the medium. (X)), is given by*

(Kodo = %2[ A, + E (k)] (53)

and A is the excitation energy of an isolated molecule.
Substitution of (53) into (52) yields

E k)
e =13 -8+ 240 ) @
=M o
Thus, the effect of the static local polarization field is
to reduce the energy of excitation by a factor 1/73(k, 0).
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If the density of a crystal is small, N/V « 1, then
one may expand all terms in (51) in power series in
the density and the result is an infinite sequence of
terms that corresponds to an expansion in perturbation
theory for the ground-state energy including retard-
ation. When sums are taken over k, the first non-
vanishing retarded term turns out to be proportional
to e* and R~ for intermolecular distances R 3 c/A,,
a result which is in agreement with one found in the
literature.13-14 This is, of course, a small contribution
to the binding energy of the crystal. But, in the
opposite limit of large densities or large polariz-
abilities, one has to compute (51) for a crystal to find
its binding energy. In this case, it is not obvious at
first sight to what extent the last two terms of (51)

13 H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
14 C, Mavroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962).
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contribute to the binding energy of the crystal unless
an actual computation is performed. In deriving (51),
we have made no assumption about the strength of
the interaction and thus our formalism is more useful
for the case where a perturbation expansion is not
applicable. The expression (51) will be used in
the future to compute binding energies of molecular
crystals.

In our calculation, we have neglected higher-order
effects which are expressed by the Green’s functions
that appear in the right-hand side of (21) and (23)
for the exciton and photon field, respectively. They
describe scattering processes and we shall deal with
them in later publications.
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I. INTRODUCTION
S is well known, the interaction of electromagnetic
waves with crystalline matter can be treated
either phenomenologically or microscopically. In the
first, the characteristic properties of the medium
remain undetermined but they are included in the
dielectric permeability that appears as a parameter
in the theory and may be derived from the experiment.
The mathematical simplicity and the usefulness in
explaining experimental data are the main points

that make this method of great value.

The microscopic theory, on the other hand, consists
of diagonalizing the total Hamiltonian of the system,
crystal plus electromagnetic field. Its mathematical
formulation is much more complicated than that of
the phenomenological method but, in the final
result, all the properties of the medium are revealed
and properly explained. The advantage of this
method is that it gives full physical insight into what
happens in the crystal when the electromagnetic
field acts upon it and answers the question for the
importance of the interactions involved. The
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conventional perturbation theory, which is applicable
for the interaction of the electromagnetic field with
a rarefied gas, is not valid in the case of interaction
with a condensed medium. This is so because, although
for certain frequencies the effect of the electromagnetic
field on the medium may be regarded as a small
perturbation, the reciprocal effect of the condensed
medium on the electromagnetic field cannot be
regarded as weak and accounts for the deviations that
occurred from its behavior in vacuum. Thus, for an
accurate description of the scattering of electro-
magnetic waves in crystals, the scattering amplitudes
must be expressed in terms of quantities that have
been calculated exactly in the zero approximation.

In an other paper,! which we refer to here as I,
the crystal Hamiltonian for a molecular crystal plus
the Hamiltonian for the electromagnetic field has been
diagonalized exactly in the zero approximation and
expressions for the excitation spectrum, index of
refraction, and distribution functions for the exciton
and photon field, respectively, as well as for the
ground state energy of the crystal have been developed
and discussed. The calculation is based on the tight-
binding approximation, where the photons of the
electromagnetic field are acting upon electron-hole
pairs that are tightly bound at the lattice sites. Such a
model is appropriate for describing the excitation
spectrum of a molecular crystal.

The present study, which is a continuation of I, is
concerned with the scattering of electromagnetic
waves in molecular crystals. The theory is developed
in Sec. II, where the Dyson equation is derived for
the exciton and photon field, respectively, and the
corresponding Green’s functions have been expressed
in terms of the polarization operators. Formulas for
the exciton Green’s functions are obtained by con-
sidering the polarization operator in the first approxi-
mation that corresponds to the physical process
where an exciton decays into two excitons. The
polarization operator for the photon field has been
expressed in terms of the exciton Green’s functions.
The results obtained in the zero approximation are in
agreement with those found in I.

In Sec. III the theory is applied to the physical
process, where a dressed exciton (k, x), with wave-
vector k in the uth excitation band, decays into two
excitons: a bare exciton (k — q, #") and a dressed
one (g, #,) with wavevectors k — q and q in the u'th
and g,th excitation bands, respectively. Ail formulas
derived in the zero approximation are now renormal-
ized to take account of the interactions. Expressions

1 C. Mavroyannis, J. Math. Phys. 8, 1515 (1967).
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are derived for the renormalized energy of excitation
and the exciton and photon Green’s functions,
respectively. The expression for the perturbed index
of refraction consists of three terms: the usual linear
polarizability, the Raman polarizability tensor, and
a cooperative polarizability arising from the corre-
lation of the radiation field with the intermolecular
interactions in the crystal and proportional to the
sixth power of the electronic charge. In these ex-
pressions, quantities referring to the excitons (k, )
and (q, py), (k — q, u') are correct in the first and
zero approximation, respectively, with the dispersion
for the dressed exciton (g, u;) taken into account
explicitly.

The spectral intensity for the photon field is
evaluated (by considering the imaginary part of the
photon Green’s function in the first approximation)
and the photon excitation spectrum is discussed.
Formulas are developed for the energy shift and
spectral width corresponding to the process of
resonance Raman scattering. The resonance processes,
occurring when either two excitons are created or one
exciton is created and the other is absorbed by a single
photon, are studied and expressions for their energy
shifts and spectral widths are established. It is found
that the spectral widths for the processes in question
depend on the polarizabilities and the spontaneous
emission probabilities for the transitions under
consideration.

A theory of the dielectric permeability for a
molecular crystal has been developed in Sec. IV,
where a general relation between the dielectric
permeability, the polarization operator of the system,
and the photon Green’s function is established. It is
shown that, if only the linear term in the polarization
operator is retained, the relation becomes identical
with that derived by Dzyaloshinskii et al.? by means
of the diagram technique. There is also a term
proportional to the square of the polarization
operator which, in the final result, accounts for the
difference between the index of refraction and the
dielectric permeability of the crystal. The transverse
and longitudinal dielectric permeabilities of the
crystal have been calculated in the zero and first
approximation, respectively. It is shown that the
expression for the imaginary part of the transverse
dielectric permeability in the first approximation
describes, under the same conditions, the same
excitation spectrum as that given by the spectral
intensity for the photon field.

21. Ye. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Advan.
Phys. 10, 165 (1965); A. A. Abrikosov, L. P. Gorkov, and I. Ye.
Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical
Physics (Pergamon Press, Ltd., London 1965), 2nd ed., p. 260.
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Finally, in Sec. V, the total Hamiltonian of the
crystal is averaged in the first approximation. Con-
tributions to the binding energy of the crystal arising
from the dispersion and scattering of the polarization
waves at finite temperatures are calculated and
discussed. They have been expressed in terms of
the index of refraction and the excitation energies
of both the bare and dressed exciton (k, ).

The effects on the physical processes of the exciton—
phonon interaction and the scattering by impurities
discussed here will be the subject of a later publication,
where the temperature dependence of the dielectric
permeability is investigated as well.

II. THEORY

The total Hamiltonian for a molecular crystal,
where the molecules are rigidly attached to the
lattice sites, has been given in I in the form

3 = 3y + Fpn + Fins + Jin + R,
where

(D

o = () + 3 E,(K)bj(K)b,(k) + Jefai + J@mt(,z)

Feon = 3 ckepi(k(B,(K), (3)

> = 3’-2’2—1- Blmp®), @

Rl = ";’z[f—g‘—j—’w] BAR®,
it = —7 2 Uins-al® DErcawsaral®

n,u

x bj(K)b,(k — @f @ (6)
¥l = 1Nt 2 Ut .,k — b, Kb} (@

X bl(k —q +cc, (7)

2 ,
B =2 2 Uik = K)B,0)
k,k’,q,q4’
Bt 1,001, 8
X b, (K)bADbA )y sqrra> (8)
B,k = b(~k) — bl(k)
and

B.&) =8, + Bi(—=k), =1

E,(k) is the energy of excitation of the bare exciton
(k, ), k is a wavevector in the first Brillouin zone, and
4 is a compound index that indicates the exciton
band, the corresponding molecular term and the kind
of mode, transverse (u;) or longitudinal (). The
quantities bf(k), b,(k) and S](k), 5,(k) are the creation

C. MAVROYANNIS

and annihilation operators for the exciton and photon
field, respectively. The photon operators satisfy Bose
statistics while the exciton operators satisfy the
commutation relation

[b,(), bLK)]_ = (Mo — M, )ouaBp»

where = (afy,) and n,, = (ol o ) are the
occupation numbers for the hole (valence band) and
for the electron in the (k, 4) excitation band, respec-
tively. The quantity (3,) is the average energy due to
direct electron-hole pair interactions correct to the
order N-%, where N is the total number of unit cells
in the crystal; its expression is given elsewhere.® In
(3)-(8) the coupling constants are given by

s 2 = ( s ) S (e - PEEL®)

X [tu(k) + v, (K)] exp (ik - 1y,), (9)
3
féu,k—qu’(q’ Z') = (e%;is) g (eql ¢ P:p')EE—qu’,ku

X u:a(k)uu’a(k - q) exp ('q ¢ rna)’ (10)

= D (50, syl Vi, Ispt’, s112)

n#s

X un(k)uu'(q)uu'(k - q)
X exp [i(k - q) * (rs - r,l)],
E apn = E“,(k —q — E, (k).

The ’s and v’s are the amplitudes of the canonical
transformation that diagonalize the unperturbed
part of the Hamiltonian. In (6)~(8) we have retained
only the «’s while the »’s, being much smaller than
the u’s, have been neglected. The lattice sites where
the molecules « and § are located are s = no and
s; =mf; S and o indicate the number of electrons
and molecules in the unit cell, respectively. In the
formulas (1)~(11) we have used the same notation as
in I, where details are given. We have included here
the expression (8), which was omitted in I, where the
factor of 2 arises from the transformation of electron
operators to the corresponding exciton operators;
ie., if «], and a,, are the electron operators for the
states f and f~ (f # f ), respectively, then ol «, . =
2b!b,. with b, = afx .. In (1) we have retained
only X{Z©® and neglected the higher-order terms
which give rise to photon—photon scattering processes
because these terms are important only in the x-ray
region of frequencies.*

UOu,u’ﬂx(k

(1

3 C. Mavroyannis, J. Chem. Phys. 42, 1772 (1965).
4 L. N. Ovander, Fiz. Tverd. Tela 3, 2394 (1961) [English transl.:
Soviet Phys.—Solid State 3, 1737 (1962)].



SCATTERING OF WAVES IN MOLECULAR CRYSTALS

The equation of motion for the retarded Green’s
function

G (k; w) = (4,(K); AlK)))

= <(b?€(_“]")) : (bl(k)bﬂ(—k»>

has been derived in I in the form

[&.(,O - Ep(k) - 2/ N (”ko nku)q uw ﬂUmt NS u(q)
X (nk——qo nk—qu )]G (k w)
= (I/2m)(nuo = my,) + Bk, p); AL(K)))

+ (Couk — q, 4°); AN + (Pgh; Al

+ (WS 00 AN, (12)
where
B(k, 4) = —"—“2’2 (o — 1)
foulk, DEK)TY Bik)
e (AT

Pal(k - 4q /")

= 1]%, (no — nk“)q,;,u,[fku,k"ﬂﬂ'(q’ A wuy alt
b (k — 9F(q)
x " R (143)
(—b*,(k - q)BI(q))
af (n o 1 p) U fl
Vk,ﬁq = ki Ni k (prf )’ (14b)

z {[Uo” o~ + U, (015 (—9)
.,”,,,la« b, (@}, (k — q), (14c)

(nko nku)(W:z,T: e ), (14d)

i

Wkk LRy

WI:,II‘I,"I,Q’ = 2 [U:£ JH1py” (k - k’)
k:.q.q’
B’
+ U“'ﬂyﬂll‘l'(q - k,)]
X bu(@b,, (Kb, (@)

&= , I= .
0 -1 01

In (12), we have included the term resulting from
Jet¥. The equation of motion for the Green’s
function ((B(k, u); 41(k))) is given by

(B(k, u); AN(K))
3 ﬂ' 1) P
w,, — (o — nku)Z j; & )E &) 2. Os Wk @)
( - C - w,,)

2
+ (Claqu, k — qu); AJK)Y, (15)

(14e)
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where
Clqp, k — qu’) = (ne — ny,) w_,;
X 3 [fol D) foussear(—5 DEMOExou ol

. )_1( b (— @b, (k — q))

bi(—b,(k — q)
i ( 1 —1) a6)
Gy = .
I VS R
Substitution of (15) into (12) yields the following
equation:

GOk, 1; 0)G,(k; w)

x (w* — c%k

—‘nku) + «Fq 2,(k - q9ll',) + C(qﬂl s k— q.u',)
+ VEE + W o AN, (17)

=—(n
2‘”( kO

where
GOk, 2; w)

2
= 80— £,1) = Z2(na — ) 3 JHE DO,
2 i(w? — %k ,,)
- %(n.w 1) S U (@ o — Meew) (18)
q.4',8

is the unperturbed Green’s function for the exciton
spectrum. The last term on the right-hand side of (18)
describes the direct interaction between the bare
excitons (k, x) and (k — g, #'). To proceed further,
we have to consider the equations of motion for the
Green’s functions that appear on the right-hand side
of (17), which are found to be

Tk — g, p); ALBNGOYK, 1; w)
= (Coik — g, &'); T3k — ¢, ")

+ Claui, k — o, p") + DB+ WL o0, (19)
(C(ap, k — qu); ARNGO (K, 4; o)
= <<C(qu1,k aw); C' @i, k — qp)
+ Thok — g, p") + P28+ wisl o), (20)
(VER: ANONCO(K, 4; w)
= (Pk; V“’” + T0 0k — q'p”)
+ C'@u, k — Q) + W o) (1)
AW o T(k)>>c’v"°’-‘(k, ,1; )
——<[Wu e > AML)
: “awit ...,,Wﬁ“.f wa + Tk = 4, 4"
+ Cl@p, k = qu’) + Vi) (22)

In deriving (19)-(22), we have made the assumption
that the average values of the single operators (b'f(k)),

(b, (Kk)), (B1(k)), and (B,(k)) are equal to zero.
Substltutmg expressions (19)-(22) into (17), we
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derive Dyson’s equation
Gulk; w)
= Gk, 1; w) + Gk, 1; w)Py(k; w)G(k, 4; w)

= Gk, 1; w) + GOk, 4; w)P(k; w)G,(k; ),
(23)
where
2m

Pil; @) = (- )) (@t~ a0
kO ku.
+C(q:u1,k q:u'l)+Vl:€+Wkk qq’
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and the polarization operator, P(k; w), is given by

Bk; 0) = Py(k; w)[1 + GOk, 2; w)P,(k; ). (25)

Then (23) may be written as
[G 7k, 4; ) — Plk; )]G,(k; )
= (nko -_ nku_)llzﬂ- (26)

In general, the polarization operator is a complex

vi(k — ', 4" + C'(@w'’, k — q'u”) quantity and may be taken as
17“'” Wi a0 _ .
r Pk; w) = Re Pk; 0) + iIm P(k; w), (27)
+ 5 W 4101} (24)
(2 ) where
~ R : GOk, A; Re Py(k; 0)]? + [Im P,(k; w)}?
Re P(k; o) = ePl(kO, w) +G.( w){[ : e ~(:;’)] [ 1(k; w)] }2 ; (28)
[1 + GP(k; 4; w) Re Py(k; o)I* + [G, (k, 4; w) Im Py(k; w)]
~ Im Py(k; w)
Im Pk; w) = . 29
A O = G0 1 @) Re Pik; o)l + (09K, 4 @) Tm PGk o) @)
We may now distinguish two types of spectra: If b, o
2 __ . b -
»* = (k) are the roots of the equation 1+ G,‘,‘”(k; 25 0)P(k; @) 5 0. (36)

I+ GOk, 1; 0) Re Py(k; 0) =0,  (30)

then, in the neighborhood of these frequencies
w? ~ w?(k), the function Im P(k; w) is a Lorentzian
line if Re Py(k; w) and Im Py(k; w) vary slowly with
w. At 0? = w?(k), (28) and (29) are reduced to

Re Pk; 0,(0] = GOk, 4; 0,01, (3D)
Im Pk; o,(0)] = Gk, 4; o,&)]
Im Py[k; o, (RICK, 4; 0,0)], (32)

respectively. Substitution of (31) and (32) into (26)
yields

Re G,[k; o,(®)] = 0, (33)
while
Im G, [k; w,(k)]
= G\"[k, 1; v, (k)] Im P [k; 0 (KIGPk, 1; w,(k)].
(34)

Then, if Im P, [k; o, (k)] K @?(k), the system resonates
at frequenc1es o?® = wi(k). The spectrum of (34)
corresponds to the strong coupling case and could be
attributed to the spectrum of localized or trapped
excitons. In the limit when Im P,(k; w) — 0, then the
expression (29) becomes a delta function, i.e.,

Im P(k; w) ~ wd[1 + G,”(k, 4; w)Py(k; w)]. (35)

The second type of spectrum that is of interest to
us is that of free exciton which occurs at frequencies

When (36) holds, we expand the denominator in (25) in
a power series of the coupling constant and, retaining
the first nonvanishing term, we have

Pk; w) ~ PV(Kk; w), 37

where
11, . 27 - ’
PO 0) = | o Tk~ 4.0

+ Clguy, k — qu’) + fo, + W;{jk’qq 5
Ihak — q', 4" + C'(q'i, k — qp”)
+ V’“ + Wikl oo

L <[Wkqu : I(k)1_>‘°’}.

The superscript (O) means that the Green’s functions
must be evaluated in the zero approximation, i..,
disregarding the interaction terms in the total Hamil-
tonian but including dispersion. Taking the diagonal,

GO(k; w) = ((b,(k); bT(k))>‘1’ and nondiagonal,
G‘”(k ) = ((b'f(—k), bl(k)))™, matrix elements of
(26) we find

(3%)

GOk; w) = B0 =0 1 4 B4y 4 Py(—a)]
le(w) - le(_w) 2

X {[“’ N 2 ]

_ glit;)(w)[E”(k) + Pku(w) +2Pku(—60) _ P]:,,((D):“_l,

(39)
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6 ) = — T =10 gy )
— Pkn(w) - Pkp(—w) 2
X {[“’ 2 ]

— 8] By + D Tl ﬁ;ﬂ(w)}}_l,

2
(40)
where
) = B,@ + DI g
(41)
2pl:u(w) = ﬁku(w) + Pku(_w)’ (42)
Pkp(:l:w) 9‘ (ngo — nku) Z con(k A)E”(k) P
(0 — Sk — )
+ %("ko nku) 2 ﬁ uu(q)
X (Ny_qo — Mg—qu) + P m(iw) (43)
—_ a_)_jz) fOu(k )')Eu(k)
Pku(:l:w) = 2 (nko nkn) Z( 2 _ 22 wi)
+ %("ko - nku) Z U;ﬁ‘,,u’,u(q)
X (nk——q() nk—qu) + P(U(iw)' (44)

The quantities P{)(+w) and P{N(+w) are the
diagonal and nondlagonal elements of (38), respec-
tively. Using (39) and (40), we derive an expression
for the Green’s function

g (k;w) = G (kiw) + G (k;—w)

— GO (k;0) — GO (k;—w)
in the form
(1)(k w)
_ (nko nku) 1) _ Pku(w) — Pku(_w) 2
B ™ “(w)H:w 2 :l
~ 5o £, + DAL )]
(45)

The Green’s functions (39), (40), and (45) have the
same poles that give the energies of excitation for the
perturbed energy spectrum.

The equation of motion for the photon Green’s
function D ,(w) = ((B,(k); Bi(k))) is easily derived
by means of the Hamiltonian (1) as

Du(w) DP(w) + D(oo)(w)]._[kl (@) DY (w)
DiYN(w) + DiP(w) sz(w)Du(w), (46)
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where D{%)(w) is the unperturbed Green’s function in

the absence of dispersion given by

Di(w) = (ck|m)(@® — ¢*k* — w}) 7,
and the function JT,, (w) is equal to

(47

2

Tl (@) = ( ){ @3 3 o, DE, Mg,k

x 2 [fou(k Z')fqm k—«u( -k, }')Eu(k)Ek—uu um]&

R U0

x [(b,(k) — b)(—K); bl(k — @b, (—Q)
+ bk — @b (—g); bl(K) — b(—Kk))]

4co
qu gu fqul k—aqu’ ( k, Z)Eb—cu sau1

X {(b,(K — @b} (—q); bk — q)bm(—q)»}. (48)

The polarization operator ﬁn(w) and the function
I1.:(w) are related by

[T (@) = Tha @)1 + DIP(@) TTus (@I (49)
or
T @ = [ ~ T(@DP @1 [T (@)
=TT @)1 + Dyy(@) [T (@) (50)
In the zero approximation [i.e., retaining only the

first terms in the expressions (43) and (44)] we have,

from (45),
("ko — nku)

w

(@ K- aDE®
[0? — EXK)][0*%3(k, ©) — c*k?]’
where 73(k, w) is the square of the unperturbed index
of refraction defined by

ﬁﬂz.(ka (l)) =1 + al(k’ 6()),

(52a)
and

fOu(k )
““)z EX(K) — ’]

is the frequency- and wavevector~dependent polariz-
ability with polarization 4. In the absence of dispersion,
i.e., when o (k, ) ~ 0, Eq. (51) is reduced to
gui(k; @) = [(n — my)/TIEM)[0® — E{T,
(52¢)
which describes the bare exciton spectrum. Sub-

stituting (51) into (48) and retaining only the first
term on the right-hand side of (48), we obtain

TI (@) = —(n[ck)w® i3k, w) — 1,

X (0 — c*%k?* — D[k, ©) — k2,

(52b)

a(k, w) = w;(nko

(53)
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with

ﬁfo =1—(ny — "ku)w:/m2~
When Eq. (53) is inserted into (49), the expression for
the polarization operator in the zero approximation
turns out to be

T () = — (i) 7k, ©) — 7

This relation shows that the polarization operator is
entirely determined by the properties of the medium.
Substituting (54) into (46), we have

D (w) = (ck/m[w*7i(k, w) — KT (55)
The Green’s function derived here for the exciton and
photon field, respectively, in the zero approximation
are in agreement with those obtained in I, where the
unperturbed excitation spectrum has been discussed.
A combination of (51), (52¢), (54), and (55) yields

(0) k

which indicates that the ratio of the exciton Green’s
functions with and without dispersion taken into
account depends on the polarization operator of the
medium and the photon Green’s function.

(54

(56)

III. SCATTERING

We here evaluate the Green’s functions for the
exciton and photon field given by (45) and (46),

81(:}4)(0’) = E (k) + 4/N(ny, —

a,u'sB

nku) Z Uy,u uu(q)(nk—ql) -

C. MAVROYANNIS

respectively, for the process where the dressed exciton
(k, #) decays into a bare exciton (k — g, #’) and a
dressed one (q, 4'). For the bare exciton (k — q, u'),
the oscillator strength f, (k — q) for the transition
0 — 4’ is not significant and is taken equal to zero.
Then, using the fact that in the complex w plane the
relations P{(—w) = P(w) and P)(—w) = PP(w)
hold, we evaluate the Green’s functions that appear
on the right-hand side of (38) in the zero approxi-
mation by means of the Hamiltonian (1). Then,
substituting the result into (45), we obtain

("ko — nku)

(0® = k* — w8 ()
X .
[(,0 - Sf,,(w)][wznf(k, w) - 02k2]

(5N

In the absence of dispersion for the exciton (k, ),
expression (57) becomes

gunlks @) = (g — my)/wI6G (0)[w® — G ()]
(58)

which corresponds to the bare exciton spectrum. In
expressions (57) and (58) we have taken

Eeu(@) = ()83 (w),

where &, () is now the perturbed energy of excitation
of the bare exciton (k, u), and &)(w), §X(w) are
given by

nk—qp')

n n _
4 e ) 3 Uk = 0 + Uk @1 @ = gy = Eg)”
sH s 1
2
X (nuo - nqu;)(nk-—qo nk—qn) + ("ko nku)q uzl Y [.fim,k—qu’(qa l’)Ek-—qu’,lm]%
o yHy
+ 1[U0u ,uw( q) + 2U0u ,um(k) + Uﬂm,u u(k (l) + UO# um(k — q) + Uﬁf,,,,,,»(q)]
2 Ek—uu ame — @ Ek—qu’ + Eqm -
X [ﬂ)nl((b g )Eqm] (nqo - nqyl)i D(O)(k —q lu w) (59)
and
(no — ) .
&2(w) = E, (k) + _N—— 2 Uk = @ + Uil @
2
X (CU - Ek-—qu' - Efml)—l(nqo - nqul)(nk—qo - nk—qu’) + (nko nku) 17 z [flm,k——qu (‘l, A )Ek—qu ku]
G148
+ 1|: :I‘ll‘( q) 0#1 u u(k q) Ou.u m(k ([) + Uoﬂ,um (q)]
2 Ex qwiauy — @ Ey qp + Equ — @
X [fou® A)Eq 100 — 1) | DEK — @, 15 ), (60)
where
PO — q,¢'; ) = 2m/cq)(b,(k — QF(@); bk — QFL@N. (61)
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In deriving (59) and (60), we have neglected terms
proportional to the distribution function (b}:l(q)b"l(q))
because their contributions are negligibly small. The
Green’s function DP'(k — q, ¢’; ) is easily evaluated
by using the unperturbed Hamiltonian; we find

ﬁ:(.?(k —g @) = (g0 — "k—au’)
(cq)
X [(0) b Ek—-ﬂl& )2/‘2 (q, Ek-—qﬂ') - 02q2]_1

X ((w — By o )BH @B @)

+ cq{[B:(@) — BIA—DBi()®
’ Ve

+ ’ w, 2 [fo;u(‘L }' )EGMCQ]

m (@ — Ep_qp ) — nux

X {(& = Ey-quX[by(@) — bL(— 1B H@)®
+ Eq ([b,(@ + bll(—-q)]ﬁr(q»“”})- (62)

The distribution functions in (62) are calculated at
zero temperature by making use of the corresponding
Green’s functions in the zero approximation as was

(0)(k - q, ﬂ (Q) = (nk—qf) nk_w')[(w

- %f(‘l, mpl’(q))Equl
((,O - Ek—qu')2 E2

Qi1

Thus, the dispersion of the photon (q, A") is fully
included in expression (65). Let us now examine the
physical meaning of each term on the right-hand side
of (59). The first term E,(k), which is the largest of all,
is the energy of excitation of the bare exciton (k, x)
including the electron-hole pair interactions in the
zero approximation. The second term indicates the
instantaneous interaction between two bare excitons
(k, ») and (k — @, ). The third term corresponds to
the instantaneous interaction leading to the creation
or absorption of two bare excitons (q, ;) and
(k — g, #') simultaneously; it includes both coherent
and incoherent processes. The fourth term consists

Im 8{1)(60) — (nk()

[ 3T ]
X (nqﬁ

wp
+ '1\7 (g — M) Im >

qyl)(nk—qo -

Q.py,4°,4°,8

Ek—-q,u )2 H (q’

w
[© — By o — 0, (@10, (q)[ —ka w)]

Myqu )00 —
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done in I with the result that
© _. -1
Gwh@r =3[ G res]
(63a)
(8@ — B~ 01BN
= Z [—— 7209, w)]mw W (63b)

ipr[fom(‘ls A)Equ, l cq1X[b,,(@ — bl (~1AL, @)

qm dw2 42 -
= = Suds 0@l q)[ i, “’)Lm,,l«(..)’

(63¢c)
iw, Z Uou (@5 A)Eq,, cq ] Eq

x ([b,(@ + b} (—DIF (@)

do” ,
= S ala, 0, @B 22 o w)] , (63)
o=0,1"(q)
where w?,(q) is the pth root of the secular equation
o*2i(g, ) — ¢’g® = 0. (64)

Substitution of (63a)—(63d) into (62) yields
Ek—qn’) - czqzl-l z {w - Ek—-q;s’ + wp).’(Q)

2

(65)

@=apy’(q)

of three contributions: the first is the radiative
interaction between two excitons (k, #) and (k — q, #')
through the exchange of the photon (q, 4'), while
the remaining two are of higher order in the electronic
charge and describe the cooperative effect arising from
the correlation of the intermolecular interactions
with the radiation field where either the exciton
(g, #,) is created and the other (k —q, u’) is
absorbed or both excitons are created or absorbed.
It is clear that under normal circumstances the second,
third and fourth terms on the right-hand side of (59)
give a small correction to the real energy E, (k) but
they may be of importance in the case of resonance.
The imaginary part of (59) is given by

—;Vnkp) E !UOu wuk — @) + Ugﬁ # ‘“'(q)lz

Ek—q#' - E‘U‘l)
[fk.u k—q,u'(q}',)Ek-qu',k‘u]t

2
X [fou(@ A)Equ TH(ngo — 1,

+ 1[U0u nw( Q) + 2U0n :mx(k) + Uom :ut(k _ Q)

Ey awyuuy — @

aur)

Ugf 2 m(k q-) + UOM Hip (l])]
Ey qu + Enm -

DYk — q, 4'; o). (66)
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The first term on the right-hand side of (66) is different
from zero when w = E,, + E,_,, . The first con-
tribution from the second term is the radiative one
which, when the sum over q is taken in the limit of
Im 72 ,(q,  — E, —an ) = 0, is equal to the spontaneous
emission probablhty (in energy units) for the transition
u—u', in the dipole approximation, while the
remaining ones give small contributions when
w=E  +E,. Of course, the expression for
Im §{})(w) must be compared with the corresponding
terms arising from the coupling of intermolecular
forces with the phonon field, but at very low temper-
atures both effects could be of equal importance. A
similar discussion holds for the terms appearing in
the expression for §3(w). Thus, §(}}(w) and &(w)

C. MAVROYANNIS

are the renormalized energies of excitation correct to
the first approximation.

In expression (57), 7j2(k, w) is the square of the
perturbed index of refraction defined by

73k, @) ~ 1 + o'k, 0) — 3@, 4, @) + Bra(®),
(67)
where «{(k, w) is the frequency and wavevector

dependent polarizability expressed in terms of the
renormalized exciton energies, i.e.,

«(k, w) = (e — My )0 %fo”(k, D& (@) — o).
”y

(68)

The quantities «{3(q, A, w) and B, ,(w) are the non-

linear polarizabilities given by the following expres-
sions:

> uw k I 1
2, ¥, ©) = %zﬂ[&,ia?)} (o = ML 5.0 BB rcar@® 2Vl Ey 0O 61y 0) — (@)
+ ("qo - nqul)[f gul(‘l’ f :ﬂl.k;ﬂu'(_k’ }‘)Ecm/ Ek—qu’,uulli(w - Ek-qu'.cul)_l
ny,(k’ l) UOu ,nln( q) - Ug/fl,n’y(k - q)
+ 4o~ g = ) L [ S
Ugf»ﬂ’l‘l(k -9+ Uou,mn'(q) foﬂl(q’ l')E,m ! ’2 D) .
L }[ o ] DYk — g 4 ) (69)
and
2 Ugf ) k — 0# #1
ﬂkl(w) et (”ko nku) z f gy(k’ 2’) [ * ( q) £ (q)]
@A p,utn’,B Su(w) — o
[on,nm (q) + Uo;;.u ul(k - q)] f ( )I ( qul)(nk—qo - nk—qp')
Eg+ By g+ ™ E0(0NEqs, + Ex_gr)
: U , 1 By k + Uon. T4
+%(nko_"kn)‘”"§"ﬂf (k l)[ op (gk(;;_w u (9]
[UOu,uln (q) + UOp 'y m(k q)] ( "qul)("k—qo - k—qu)
- o' 2 70
Ecwx + Ek—qu’ to f ( ) ( )( )(Ecuu + Ek—au) ( )

In deriving (67) we have made use of the f~sum rule in
the limit k— 0 in order to eliminate terms pro-
portional to w2, The first two terms in (69) give the
Raman polarizability tensor while the third term is a
correlation effect of higher order in the electronic
charge. f,,(w) is a cooperative polarizability, pro-
portional to the sixth power in the electronic charge,
arising from the correlation of intermolecular inter-
actions with the radiation field which results in
producing double exciton states. The transition
probability that leads to double excitation of a pair
of atoms by a single photon has been considered by
Dexter,® who employed the first-order corrections in
perturbation theory induced by the electronic inter-
actions to the zero-order wavefunctions. The same

5 D. L. Dexter, Phys. Rev. 126, 1962 (1962).

method has been used by Jortner and Rice® to discuss
the cooperative exciton states in molecular crystals.
In expressions (69) and (70), the excitation energies
for the exciton (k, ) and for the excitons (q, %,) and
(k — q, 4') are correct in the first and zero approxi-
mation, respectively. The dispersion of the photon
(g, ) in (69) is expressed by the function D@(k — q,
p's w). Since af(q, A, w) and B ,(w) are both
functions of w, they are applicable to such phenomena
as that of resonances occurring in the region of
frequencies of either the incoming or the scattered
radiation.

We now calculate the photon Green’s function,
D,;(w), in the first approximation. Substituting the
expression for g'(k; w) given by (57) into (48) and

8 J. Jortner and S. A. Rice, J. Chem. Phys. 44, 3364 (1966).
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evaluating the remaining Green’s functions that
appear on the right-hand side of (48) by means of (19)
in the same approximation as it was done for
g (k; w), we find the quantity for J[{})(w):

(o)) I 2 [k, ©) — 7]
I (@) = (ck) [1 ? ok, w) — c2k2]:|
x {—o?[fik, ) — 731} (T1)

Substitution of (71) into (49) gives the expression for
the polarization operator in the form

T8 = —("

ck

and, from (46), we derive the following expression for
the photon Green’s function:

Di(w) = (ck[m[wTik, w) — KT (73)

Comparison of (72) and (73) with (54) and (55) shows
that the polarization operator and the photon Green’s
function in the first approximation are just the
corresponding unperturbed ones renormalized be-
cause of the interactions. Similarly, combining (72),
(73), (57), and (50), we obtain the relation

)w2 ik o) — L (72)

(1)
;;((';—“’—)) — 1+ I @DR@),  (14)

which corresponds to the expression (56) for the same
relation in the zero approximation.

Knowing the Green’s function for the photon
field, we can calculate the corresponding spectral
intensity by the relation’

(1)(w)
= 2Im D& (w)(1 —
2ck o’ Im 73k, w)(ef® — 1)1
‘( )[w *Re73(k, 0) — k¥ + [w® Im 73k, )]
(5)

eﬂm)——l

where we have taken
7¥(ko) = Re 73(k, ®) + i Im 73(k, o).

Here § = (kzT)™*, where K is Boltzmann’s constant
and T the absolute temperature. Using the relation

w® Re 73k, w) — c*k?

2
=3 [ — a)f,l(k)][iﬂ Re
P dwz
where &?2,(k) is the pth root of the secular equation

w? Re 73k, ) — c%? =0, an

73k, w)] (76)

w=wpik) >

7 V. L. Bonch-Bruevich and S. V. Tyablikov, Green’s Function
Method in Statistical Mechanics (North-Holland Publishing Com-
pany, Amsterdam, 1962), p. 24.
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we rewrite (75) as
-1
e = () 3 (G5 Rete )]
o=dpA(k)
o —1
O Gkl e
[w® — a) AR} + sz(w)
where y, (@) is equal to
Yea(@) = w® Im 73(k, w)
x Z[—— Re 72(k, w):l-l (19)
w=ap3(k)

As Im 7%k, o) goes to zero, the spectral intensity
J{¥(w) tends to a delta-shape distribution, i.e.,

@) = 26k S [ %2 Re s, ]

X 5[60 — @) — 1),
for Im 73(k, w) — 0. (80)

In the limiting case when Im 72(k, w) may be con-
sidered to be very small but finite, Im 73(k, w) < 1,
the function (78) has a steep maximum at some value
w?® ~ @2 ,(k), provided that d Im 7j3(k, w)/dw?® K 1. In
such a case the center of an absorption line described
by the function (78) will appear Lorentzian, while the
wings may not. If we take into account that at
w?~ @?%,(k) the function Im 775(k, @) varies slowly
with »? and we take y,,(w) ~ y,,[6,,(k)], then (78)
becomes
5 ~ () 5[ 9 Re i, o)
d =@ (k)
Vil @pa(R)(eP” — 1)
[0® — @p (K] + leu[(f’p;.(k)]

The function (75) or (78) describes the behavior of the
photon excitation spectrum in the whole range of
frequencies w, while (81) is restricted to those in the
neighborhood of w? ~ @2%,(k). The function (81) is a
Lorentzian line with maximum at »® ~ @?%,(k); the
square of the energy shift is equal to

@ () {Re 77k, @, (k)] — 1}

and the spectral width is of order of magnitude of
Pl®,,(0] = |y, [6,,&)]/®,,(K)| in energy units. The
energy of excitation @2,(k) is determined by the
equation

652,(k) Re 72k, @ ,,(K)] — c*k® = 0,

provided that Im 73[k, @,,(k)] < 1.
Let us consider the case of resonance Raman
scattering that is observed when the frequency of the

-1

=dp (k)

-1

(81)

(82)
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incident radiation falls in an absorption band.® We
describe the process where the frequency of the
incident radiation ck is in the neighborhood of the
absorption band (k, u), while the frequency of
the scattered radiation is in the transparent region of
the crystal. In such a process, the energies &{1)(w)
and §*(w), given by the expressions (5%) and (60),
respectively, are real. Then taking the imaginary part
of (67), we find that the expression for Im 7i(k, w) is

— Soulk, DE, (K81 ()
m ik, ) = I (wz) 2 Ba(@) — o]

In deriving (83), we have retained only the largest
term. Substituting (83) into (79), we get

(83)

Pia@) = mao, 2 fo,.(k DE (K)E{) ()

X B[E8, (@) ~ 21[—— Re 72(K, w)] (84)

w=d, (k)

C. MAVROYANNIS

The spectral width of the absorption band for
resonance Raman scattering in energy units is of the
order of

Frald, (0] = "[w k)} > fuulle, DEQOBG,:00)
oA B,A

X 6{8ku[wpl(k)] - p (k)}

[g— Re 'k, )| D

w=‘I’PA (k)

(85)

with &)@, (k)] given by expression (59) with
@ = @,,(k). Expression (85) gives the electronic
contribution to the spectral width, and at very low
temperatures it could be comparable with the contri-
bution arising from the coupling of intermolecular
interactions with the phonon field. The energy of
excitation @2,(k) is determined by Eq. (82), with
Re 775[k, @,,(k)] obtained by taking the real part of
expression (67). In the case of exact resonance, terms
having a principal value may be taken equal to zero.
Then Re 73k, @,,(k)] turns out to be

w? E (k) ,
Re ﬂf[k p,l(k)] =1~ E’La,m, . Z,m (nqo - num)[folll(q’ 2 )faul.k-‘ut’(—'k’ )')Eqm/Ek—-qy',um]%
2

X [wy3(k) — Ey_qu au,] - ﬁé?[k - D,a(k)] + wi/N (o — nyy)

X a2 A DUk = @) + Uy @V Esae + Ege — 3,001

X (nqo nqm)(nk~q0 nk—qu )/ gliu [wpi,(k)]( an1 + Ek—-qu')' (86)
The second and third term on the right-hand side of o0
(86) will cause a small shift to the energy of the o
incoming radiation. For an approximate evaluation “”(q”}__: 1;2 Zq'b}’ ©) (—k, DJ(E? —~w?) (88)
of (86), one may replace @2 (k) by c*=. - A o kaw'am

We now consider the resonance that occurs when
w=E, + Ek_‘m , corresponding to the process
where two excitons (qu,) and (k — g, &) are created
simultaneously by a single photon. Such a process
may be also regarded as the decay of a dressed
exciton into two excitons.? Taking the imaginary part
of (67) for the process in question and retaining only

the largest terms and using (79), we have

Ye0) = Im {a‘;’(k, WE, K@) + 0*w/N

X . ;ﬂ (M0 = Py ) fou (@ AN E gy Exap,ap)
EL Y 5 §
X oy @t K — i, ) DK — g, ' w)}

-1

xS [-—— Re 72k, cu)] ,

w=d, (k)

(87

& L. N. Ovander, Fiz. Tverd. Tela 4, 1471 (1962) [English transl.:
Soviet Phys.—Solid State 4, 1081 (1962)].

® L. N. Ovander, Fiz. Tverd. Tela 4, 294 (1962) [English transl.:
Soviet Phys.—Solid State 4, 212 (1962)]

is the frequency and wavevector dependent polariz-
ability corresponding to the transition (g, g,)-—
(k — q, 4’). For the process under consideration,
Ya(®), given by (87), is also a shape function. The
calculation is facilitated if we take only the real part
of & (w) in the denominator of the first term on the
rlght-hand side of (87) while in the expression for the
function D®(k — q, u’; w) we take the limit when

Im (g, 0 ~ E_,,)—0.
Using these approximations, we obtain from (87) the
following expression for the spectral width:

Pral@,1 (0] ~ eV [k, @,,(ONE,K)/d,,(k)]

x Im 8&2[‘%1(1‘)] + wpil(k)wp/N 2 (an — qm)
X Jfour® ANE gy Exqu qp,)“uhﬂl s k q', @,(K)]
xdm Dk = a. ' 20

x 2[ Re 73k, w):! ;

@=d,; (k)

(89)
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where

D3k — q, 4’5 6,,(®)]
~ Tr(nk-—-qo nk—q;g) 2 [wp.l(k) - Ek—-—qp’ + wp'&'(q)]

-1

xw;a@[ 3 1% )]m_a,”(q)

X 8{[,1(k) = Epou i3 [0, ®pa(K) = Epgu] — "%}

(90)
in the limit when Im #%[q, & @,,(K) — Ey_g] 0. In
the derivation of (90), only the first term in the

expression (65) has been retained. The energy of
excitation @,,(k) is determined by the equation

Gjpl(k){l + a(l)[k, é}pl(k)}[l + 1/ N

IUD# vk — Q@) + Uou s1p’ {g®
u(k)(Eqm + Ek—qn’)

[ AT

X (Ngo — Mgy )My — M—qu) || — k2 =0, (91)
which is derived by taking the real part of (67),
equating to zero all terms having a principal value,
and employing (82). The second and the third term on
the left-hand side of (91) will cause an energy shift
which, apart from the very small third term, is
entirely determined by the frequency and wavevector
dependent polarizability. From (91) we see that, apart
from very small corrections, the energy of excitation
@,,(k) is equal to the unperturbed energy of excitation
of the dressed exciton (k, x) derived in I. In (89), the

expression for Im 8‘”[w ,2(K)] is given by

Im &[@,,(K)]
~ w,,/ N(nyo — "ka) Z [fku,k—au'(q’ Z')Ek—w’.h‘]%
SR,

-+ I[U"ﬂ Pxﬂ( q) + 2U0ﬂ m:x(k) + Uom nn(k —
2 pl(k)

]

Ek—q#',cux

X [fou@® 2)Eq,, I (10 — 1)

x Im D[k — q, 4’3 3,2(K)]
+ m(nge — ny) 2 Ui'»ﬁnu,(k -9+ U, (@

QLRI
X (ngo — qm)("k—qo -
X O[@,;(k) — Ey_qu — Eg,)- 92)

To evaluate (92), the sum over q is replaced by an
integral then, after averaging over angles of ¢, summing
over polarizations and integrating over ¢, we find in
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the dipole approximation

Im &3)[6,,(K)]

S 4/ 3cs(nk0 - nk;:)(nk—-q’o - nk—q’u’)z lP;m’lz
wLp

X Eﬁ—q'u’,k,u 'wp).(k) - Ek—-‘q"u’l lukulz luk—q’n’lz

x {Re7,[q, Byi(K) = Ey_yp] + 7200, wp';.'(‘l')]}

d -1
x %5 do” o, w 2] +oE),  O9)
do o=0,, 2l
where (cq')? is given by the equations
[d}pl(k) - Ek—q u’ }2 Re Aa[q,a ~p&(k) Ek——q ' ]
= (cq')* = g ()31, 0 (@] (94

In deriving (93), we have retained only the first term
on the right-hand side of (92), which is proportional
to the square of the electronic charge ¢2. The
remaining terms are of higher order in e arising from
intermolecular interactions, are easily evaluated, and
may be important for crystals having large transition
dipole moments. Expression (93) is the sponta-
neous emission probability in energy units for the
transition u — u’ expressed in terms of energies which
are correct in the zero approximation; effects arising
from the dispersion of the photon (g, 4') are included
as well. In the same way, we can evaluate the second
term on the right-hand side of (89). Then, taking into
account (93), we derive an expression for the spectral
width:

Pral@pa(K)]
3 (1) ~ u(k)
~ 4{3c{(ng — nl:,a)‘x). [k, wp).(k)] 2 IPM
p;l(k)
X Eﬁ—q’u’,k;c lukp!2 ‘“k—q’g’lz + wpl(k) z ‘Pogllz
a1
X (Ee m/ Ek—a’#',ku)(nq'ﬂ - ‘2
X cald s, & = 4, 3,001) 313,00 = Eugy|
PP
x {Re ﬁz (4, @puk) — Ex_pr] + 72 1q"; 0,(q)]}

X [j L C w)] B

o=wy';'(q’)
-1

nﬁ'lh) ! Ugrny

<+ O(eb).

=2k

X [éﬁ)— Re 73(k, w)] (95a)
do®
Expression (95a) for 7,,[®,,(k)] gives the spectral
width at the maximum energy &,,(k), and may be
regarded as corresponding to the process where a
dressed exciton (k, ) with energy @ ,,(k) creates two
excitons, a dressed (¢, #,) and a bare (k, — q/, '),
with energies w,,(q’) and E, ., respectively. It is
easily seen from the whole calculation that the
expression for 7,,[®,,(k)] holds also for the reverse
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process, where two excitons recombine into one. From
(95a) we can see that the spectral width §,;[®,,(k)]
depends on the values of the polarizabilities and
spontaneous emission probabilities of the states in
question. The higher-order terms in the electronic
charge that have been disregarded in (95a) result from
the correlation of the intermolecular interactions with
the radiation field. Their contribution to the spectral
width is much smaller than that of the radiative terms
considered in (95a), and they should be taken into
consideration only when their magnitude is signifi-
cant—as could be the case for crystals having large
transition dipole moments.

In the same fashion, one can study the resonance
occurring when w = +(E,, — E, ), which corre-
sponds to the process where the exciton (q, ;) is
created while the exciton (k — g, #') is absorbed (and
vice versa) by a single photon. The spectral width for
such a process is given by expression (95a) if we
replace the polarizability «,;[q'y;,k — q'’, &,,(k)]
in the second term on the right-hand side of (95a) by
its principal value. The energy of excitation &,,(k)
for the process in question is determined by the
equation

G + aP[k, B, (K)] + Bl 0]} — ¢tk = 0,
(95b)

if integrals having a principal value are disregarded.
Thus, we see that, in this case, the first term on the
right-hand side of (95a) gives practically the spectral
width at the maximum energy @,,(k), given by (95b).
We should note here that, in the derivation of (86),
(91), and (95b), terms having a principal value have
been disregarded; this is justifiable only in the case of
exact resonance, but for energies near resonance these
terms should be also included in the corresponding
expressions.

In the limiting case when Im 7k, w) — 0, the
spectral intensity J{(w) becomes a delta function
given by (80), and the energy of excitationis determined
by equation (77), with Re 73(k, w) obtained from
the expression (67), which is now real. For such a
process, «2(q, ', ®) and f,,(w) may be interpreted
as the probability amplitudes for Raman scattering
and double excitation, respectively, and they may be
utilized for the evaluation of the intensities of the
scattered radiation for the processes in question.

IV. DIELECTRIC PERMEABILITY OF
MOLECULAR CRYSTALS
We perform here a calculation for the dielectric
permeability of a molecular crystal. As is well known,
the passage of electromagnetic waves through di-
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electric media is characterized by a complex dielectric
permeability tensor
€;,(k, w) = Re ek, @) + i Im €k, w),

which is related to the complex electrical conductivity
tensor,

O'”(k, (0),

€k, 0) = 0y + (dmijw)o,(k, ). (96)

Thus, in order to find the expression for ¢;;(k, w), we
need to calculate the complex conductivity tensor.
The electrical conductivity tensor is given by*®

by

-+00 )
Gij(k’ 6()) = IJ; dto(t)e_’k“na
X <[j£np(xo), Pia(xé)]_kiwt, (97)

where ji,(x,) and Pj (x,) are the i and j components
of the current density and dipole moment operators
of the molecules (mg) and (ne) at time x, and x,,
respectively; k is the wavevector of the external field
and 6(¢) is the usual step function. Integrating (97) by
parts and using the relation

(d/dr)Py(t) = gjna(t’)5

we have

7l @) = ‘Zl (g0, Pla(B)] )0

27 = _ikeragss s f
+ T et 0); A, (98)
where the quantity ((ji,(£); ji,(!))) ) is the Fourier
transform of the “‘current—current” retarded double
time Green’s function defined!® by (see, for instance, I)

(ms®; Jat)) = —i6(t — t'X[Tp(8); Jhalt)D-

If we now express in (98) the current and momentum
operators in the second quantization representation,
take the term of the conductivity tensor that corre-
sponds to the interband transitions, and, by means of
(2), express the operators in the representation where
¥, is diagonal, then substitution of the result into
(96) yields the following relation:

ek, @) — 7%,8,] = — (%) Tl (@8, (99)

where the expression for T, ,,(w) is given by (48) with
the exception that, instead of the directions of polar-
ization A(A = pu; = 1,2), we have the components
i, j(i, j = 1, 2, 3). The relation (99) corresponds to the
normal waves, and, since the normal waves in any

10 D, N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.:
Soviet Phys.—Usp. 3, 320 (1960)]; see also Ref. 7, p. 107,
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direction are either transverse or longitudinal, the
expression for TT, .(w) includes both kinds of waves.
Using (50), we may rewrite (99) in the form

wz[fu(k, ) — ﬁioai!]

- (_cf) ﬁk,u(w)[l + ﬁk,if(w)D ki(©)10;;. (100)

This is an exact formula for the model under con-
sideration, relating the dielectric permeability tensor
to the polarization operator and the Green’s
function for the photon field. If we retain only the
linear term in the polarization operator on the right-
hand side of (100) and replace w by ijw,|, the
resulting expression for e(k, i |w,|) is identical (apart
from w? which is also included in the polarization
operator and cancelled in the final result) to that
derived by Dzyaloshinskii et al.* using the diagram
technique. Formula (100) is applicable for any
isotropic crystal (anisotropic effects could also be
included) for which the tight binding picture is
justifiable, where the photons of the electromagnetic
field act on electron-hole pairs that are tightly bound
at the lattice sites.

In the first approximation, the expression for

T1; :(@)d, is given by (71), i.e.,

I8 o0 = (5) {1 - ZEie e =)

x {— ik, w) — 751} (101)

If scattering effects are disregarded and only dispersion
is considered, (101) becomes

s (@) = (czk) {1 B [wz'@é:( (Z;):c;;]}

In Formulas (101) and (102), i=j=A= 1, 2 denote
the transverse components perpendicular to the
direction of propagatipn, while i=j=3 is the
longitudinal one. Substituting (101) or (102) into (99)
and separating the transverse and longitudinal
components, we have, respectively, the following.
Transverse:

eal)_l.(k’ (D) = ﬁiz.(k’ (,0) -

w?[ijik, w) — 73]
[w¥3k, ®) — c%?*]’

(103)

or
2r 22 22 12
W . @ik, ®) — 7]
e}.,.L(ks L()) = "72(]" w) - [ 2/|2(k w) . C2k2] > (104)
Longitudinal:
Pk, w) = [k, 0) = 1 + «{'(k, w), (105)
or

6"k w) =ik, 0) =1 + gk ).  (106)
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In (103) and (104), the notation {3 | (k, w) = ¢, (k, »)
has been introduced. The perturbed and unperturbed
longitudinal polarizabilities are defined by

afll)(k’ (U) (nkO - nku)w2 2 fOp(k)/[aﬁu"(w) - w
" (107)
and
ot”(k, w) = (ny — nku)wz Z fOu(k)/[Ep“(k) — %],

(108)
respectively. In (107),

82, (@) = &1 ()5 (),

where &, (w) is the perturbed energy of the longl-
tudinal exciton (k, ;) and 8‘1’ (w), 8""’ (w) are given
by the longitudinal parts of express1ons (59) and
(60), respectively. Expression (106) is in agreement
with that found by Agranovich and Ginzburg.!* The
frequencies of the longitudinal waves are obtained by
equating to zero the right-hand side of (105) or (106).

Using the results of I, one can easily prove that, for
real 7%(k, w), the following relation holds:

(w[ck) D~ (w)]w®
= 72k, 0) — c*k*|ow?

- {1 + z_wii(li_ (d“’2 H ))w_m lm}_l

p (O —_ wp;'(k) d
(109)
or
73k, w) = k
pl(k) do® 1 -1
{1 +§w — wl(k) (d 2 il )>m m,,m} ’

(110)

where @2 ,(k) is the pth root of the secular equation

ik, w) — c*k? = 0. 11y
It can easily be shown that the formula (110) is
identical to that derived by Agranovich and Konobeev!?
for the unperturbed part of the dielectric permeability.
Expression (110) is also valid when scattering is
taken into account, provided that 73(k, w) in (110)
and (111) is replaced by the real part of 7j3(k, w) and
w,,(k) by & ,,(k). The last term on the right-hand side
of (103) or (104) is a second-order correction, arising
from the term which is proportional to the square of
the polarization operator and accounting for the

11V, M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nauk 77, 663
(1962) [English transl.: Soviet Phys.—Usp. §, 675 (1963)].

12 V. M. Agranovich and Yu. V. Konobeev, Fiz. Tverd. Tela 5§,
2544 (1963) [English transl.: Soviet Phys.—Solid State 5, 1858
(1964)].
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difference between the square of the index of re-
fraction and the dielectric permeability. We write the
expression for €V, (k, w) as

) (k, w) = Re e (k, ®) + i Im €, (k, w), (112)
where Re €}, (k, w) is the real part of the expression
(103) while the imaginary part of ¢{, (k, w) is given
by

Im €, (k, w)
= (® — ®k* — w))[o*(7/ck) Im D{)(w)
I Y
2
w

w® Im 73(k, )
* [0*Re ik, ©) — kP + [0* Im 73k, @))*
(113)
In the limiting case when Im 7%k, w) <« 1 and
dIm 73(k, w)/dw? < 1, the spectrum described by
(113) is the same under the same conditions as that of
the spectral intensity for the photon field J{(w),
determined by either (75) or (78). The most useful
application of formula (100) is the case when the
exciton-phonon interaction is included in the ex-
pression for the polarization operator and photon
Green’s function. This will be the subject of a later
publication, where the temperature dependence of the
dielectric permeability will be discussed.

V. AVERAGE ENERGY OF THE CRYSTALS

The average energy of the crystal in the first
approximation, where scattering effects are included,
is obtained by averaging the total Hamiltonian, i.e.,

3 = ) + 3 E,RXbJB, k)™

+ (¥pn + Jeﬁ’t‘“’ + Jfas + it + Jefar + Felw'™,
(114)

where
(epn)™® = ) k(BB (N, (115)
(FefEionm = w2/4 z 1/ckBIRB @)Y, (116)

el = bio, 3 [fuulk, “DE, ekt

x (BB, (117)

<Jelnt> W= lwp/N z [fku k—aqu’ (q’ }')Ek——qu ku/cq]‘}
X <b,'£(k>b,,'(k VRO
+ bl(k — Qb WBL@™Y, (118)
@ _ - + 00 (1 _ eﬂ(o)—l
<Je> - (Je0> + 1/ 1‘2.;4 —w dw Im [wzﬁf(k, 6()) _ cEkZ]
(wz _ c2k2 2) {
o + & (@)

~ Holi, @) — 1]+ a2}t — E;0/5@)])).
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@EHW = NS bW O + 04 b, ()™,
o (119)

<Je IV>(1) = 2/N z Uuu uu(q)(nk—-qo - nk—qu’)

X <b;(k)b“(k) + b,(k)b}(k)
+ bJKDI(—K) + b(—K)b, ). (120)

The single-particle Green’s functions G{’(k; w) and
GW(k; w) are obtained from (39) and (40), respec-
tively, as

G}‘D(lﬂ w) = (ny, — nku)/27r
{w — ¢ — wplw + () 1} 1

[0® — & ()][w*7i(k, ®) — *k’] 280wy

(121)
GP(k; w) = (nyy — my)2m
wplw®

{@F—c%z— —aﬂﬂwn_l} 1
[w? — 82 ()03, w) — c%k?] )26 (w)
(122)

while the Green’s function <(5,,(k); B, s easily
evaluated by means of (15) and (20):

i0,/2 3 Ufoulk, NE (K)/ck}(B,(k); B, ()™

_ o’[73(k, ®) — 1] + w?
- %7'52 [w*i(k, ) — k%]

(123)

The photon Green’s functions D{}(w) and
(B,(); A1)

are given by expressions (73) and

«BK); AR

o + ck — 0¥k, w) —
[w%73(k, ®) — c*k?]

1]/2¢ck

=} , (124)
respectively.

To evaluate the distribution functions that appear
in the expression (114)(120) we need to know the
corresponding expressions for the Green’s functions
in the first approximation. Thus, using (121)-(124)
and the expressions for (118) and (119) that were
obtained by calculating (19) and (21), respectively, we
find the expression for the average energy:

(w[w + ok + (0 — % — wd)f(@ — B,(w))]

E &) — 3Ei() + & (@))/[0 — &, (@)] — &, (w)}

(125)
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To carry out the integration over w in (125), we assume that w is far from any of the absorption
frequencies of the crystal, which means that 73(k, ») is real. Employing the relation

2Im : Z [dw ik, w):lwimpz(k)[ p:;k)]

[0*73(k, @) — ¢**]

X {8lw — @,:(K)] — dlw + &,,K)]},

(126)

where @2,(k) is the pth root of the secular equation (77), we integrate over w with the result

@* 1" = 3y + %kZ ({1 + QR[6,,M)1},,(k) coth 1pH,,(K) — &,] + (8, — ck))[ 2ﬁf(k w)]
pl( )

% coth }8d,,(k)/ 2‘%;.(1‘)) l:dwz 73k, ~0):|

The function Q{}[& (k)] is defined as

QI@,W)] = —(ck/m) [T (6,006, — 6L ).

(128)

The quantity H‘”[w ,2(K)] is the polarization operator
given by expression (77) with w? = @2,(k); the
notation &, = §,,[&@,,(k)] has been introduced.

In order to identify the terms appearing on the
right-hand side of (127), we refer to the zero approxi-
mation which occurs when we disregard scattering,

i, when §,, = &) = & — E (k) and
7131k, @ ,,)] — 731k, @, K)].

In this case the last term on the right-hand side of
(127) goes to zero. Using the fact that

1+ QOw,®)] = [ o ik, w)] :
o=wp3(k)

we obtain

300 = (F) + 3 kz (w, (k) coth 4w, (k) — E, (k)

+ [EK) — ck]{l + Q3 [w,,&)]}). (129)

This is the average energy of the crystal where the
dispersion of the electromagnetic waves is included
explicitly. In the limit when 8 — oo, Expression (129)

D= p}.(k)

-1

0=0,,K)

coth éﬁw,,l(k)] — (B, + 82) — 8, [E, &) + &}

(127)

is reduced to that of the ground state energy
(Je>(()0) (3o + ‘}z (wp;.(k) E (k)

+ [E (k) — ekt + O [w,,W1}). (130)
Expression (130) is identical to that derived in I
for the ground state energy of the crystal when only
dispersion of the polarization waves is considered.
Comparing Expression (127) with that of (129), we
sec that the second term on the right-hand side of
(127) is the renormalized energy of interaction
corresponding to the last term of (129) when scat-
tering is neglected, while the last term of (127) depends
on the difference Sku E,(k), and is therefore much
smaller than the second. In the limit when g — oo,
(JE)SV gives the ground state energy of the crystal.

Thus, the second and last term on the right-hand
side of (127) give contributions to the average binding
energy of a molecular crystal arising from the
dispersion and scattering of the polarization waves as
well as from exciton—exciton interactions at finite
temperatures. They are correct in the first approxi-
mation where terms proportional to N-! are included
and are expressed in terms of such quantities as the
polarization operator (or the index of refraction) and
the energies of excitation of both the dressed and bare
exciton (k, u). The discussion of the importance of
these terms for actual crystals will be postponed until
numerical calculations are performed; this will be
the subject of a later publication.
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A trial wavefunction of superconducting type is postulated for the ground state of a system of N
positive and N negative charges with Coulomb interactions in the absence of any exclusion principle.
The ground-state binding energy is rigorously proved to be greater than AN® Ry, where A4 is an absolute
constant. Results of earlier perturbation-theoretic calculations for an infinite system are confirmed. The
author, with A. Lenard, has previously proved that the exclusion principle, holding for particles with
one sign of charge only, is a sufficient condition for the stability of matter; the present paper shows that

the exclusion principle is also necessary for stability.

I. INTRODUCTION

“ E take a piece of metal. Or a stone. When we

think about it, we are astonished that this
quantity of matter should occupy so large a volume.
Admittedly, the molecules are packed tightly together,
and likewise the atoms within each molecule. But why
are the atoms themselves so big?

“Consider for example the Bohr model of an atom
of lead. Why do so few of the 82 electrons run in the
orbits close to the nucleus? The attraction of the 82
positive charges in the nucleus is so strong. Many more
of the 82 electrons could be concentrated into the
inner orbits, before their mutual repulsion would
become too large. What prevents the atom from
collapsing in this way? Answer: omly the Pauli
principle, ‘No two electrons in the same state.” That
is why atoms are so unnecessarily big, and why metal
and stone are so bulky.

“You must admit, Pauli, that if you would only
partially repeal your prohibition, you could relieve
many of our practical worries, for example the traffic
problem on our streets.”

These words were addressed by Paul Ehrenfest to
Pauli in 1931 on the occasion of the award of the
Lorentz medal.! We have been unable to find in the
literature of the 1920’s and 1930’s any more exact
calculation of what would happen to matter if the
exclusion principle were abolished. In the present
paper we demonstrate that the effects would be even
more drastic than those envisaged by Ehrenfest. We
show that not only individual atoms but matter in
bulk would collapse into a condensed high-density
phase. The assembly of any two macroscopic objects

1 P. Ehrenfest, Collected Scientific, Papers M. J. Klein, Ed.
(North-Holland Publishing Company, Amsterdam, 1959), p. 617.
The address appeared originally in Versl. Akad. Amsterdam 40,
121 (1931). The author is indebted to Dr. H. B. G. Casimir for this
reference.

would release energy comparable to that of an
atomic bomb. It is thus fortunate that Pauli was
unwilling to comply with Ehrenfest’s well-intentioned
proposal.

As a simple model to illustrate the nature of the
problem, we consider a system of N positive and N
negative charges, all having equal mass m and equal
magnitude of the charge e. The Hamiltonian of this
system is o s ,

H=3 2 sy 20 1)

i=12m <7 |x; — x4

where x;, p; are position and momentum of particle
number j, and #; = 1 accordingly as the particle has
positive or negative charge. We suppose that the
system obeys the rules of nonrelativistic quantum
mechanics without any exclusion principle. We find
a wavefunction which we conjecture to be a good
approximation to the ground state, and for which the
expectation value of H can be calculated exactly. This
leads to a rigorous proof of the following statement,
which was announced earlier® in a tentative way.

Theorem: The ground-state energy Ey of the
Hamiltonian (1) satisfies the inequality

Ey < —A;N¥Ry, Ry = (met/2h?), )
where A, is an absolute constant.

The binding energy of a macroscopic number of
charges (N ~ 10%), according to Eq. (2), would be at
least of the order of 10%2 Ry or 1 megaton.

Real matter differs from the model (1) in many
respects, First, the masses of nuclei and electrons are
not equal. This difference does not weaken our
conclusion, because Eq. (2) will continue to hold as
long as all particles have masses not less than the value
m which can be taken to be the electron mass. Second,
nuclei and electrons have different charges. This

2 F. J. Dyson and A, Lenard, J. Math, Phys. 8, 423 (1967).
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difference also does not weaken our conclusion,
although the details are rather more complicated if
the charges are unequal. Provided that the over-all
system is approximately neutral, Eq. (2) will hold for
unequal charges if each charge is not less than the
electron charge e. Third, real matter contains many
effects, such as nuclear forces and the finite sizes of
nuclei, which are not represented in the model. These
differences again do not really weaken our argument.
If in a piece of real matter the exclusion principle
ceased to operate, the matter would collapse to a
density so high that nuclear forces would become
dominant. Instead of Eq. (2), the energy available in
nuclear reactions would determine the over-all
binding. In particular, any material containing
hydrogen would be a nuclear explosive. Thus our
theorem, although mathematically exact only for a
simple model, shows quite generally that matter
without the exclusion principle is unstable.

The result (2) is not unexpected, if one looks at
perturbation-theory calculations which have been
made of the ground-state energy of a Bose gas with
Coulomb interactions.® These calculations have
always considered an infinite uniform system or a
system in a box with periodic boundary conditions.
They give an energy per particle

E = —A4,[pa"}t Ry, ©)

where p is the number of particles per unit volume, a
is the Bohr radius, and A, is another absolute con-
stant. If one assumes that Eq. (3) also holds in some
approximate sense for a finite system of 2N particles,
then the binding energy of the finite system will be
proportional to N+, However, the step from Eq. (3)
to the finite system is not rigorous, and Eq. (3) itself
is only the leading term in a perturbation series. The
series in inverse powers of [pa’]t, of which two terms
have been calculated,® may or may not converge, and
the perturbation calculations give no control of the
error in Eq. (3). As a by-product of our study of
the finite system, we recover the formula (3) for the
ground-state energy of the infinite uniform system,
thus verifying that our wavefunction preserves the
essential features of the perturbation-theory treatment.
In our earlier paper,? we proved the lower bound

@)

3 1. L. Foldy, Phys. Rev. 124, 649 (1961); M. Girardeau and R.
Arnowitt, ibid. 113, 755 (1959); M. Girardeau, ibid. 127, 1809
(1962); W. H. Bassichis and L. L. Foldy, ibid. 133, A935 (1964);
W. H. Bassichis, ibid. 134, A543 (1964); J. M. Stephen, Proc. Phys.
Soc. (London) 79, 994 (1962); D. K. Lee and E. Feenberg, Phys. Rev.
137, A731 (1965); D. Wright, ibid. 143, 91 (1966); E. H. Lieb,
ibid. 130, 2518 (1963); E. H. Lieb and A. Y. Sakakura, ibid. 133,
A899 (1964).

Ey > —A;N* Ry,
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which complements Eq. (2). The results of the present
paper make it extremely plausible that Eq. (4) actually
holds with § replaced by . There is reason to
hope that our trial wavefunction is simultaneously
simple enough and accurate enough, so that it may be
made the basis of a rigorous proof of an improved
lower bound. But the problem of the lower bound is
not discussed further in this paper.

There is one philosophical question which is in
some sense related to Eq. (2). Suppose that there
existed in nature a weakly interacting charged boson
(WCB). Then we could construct from N positive
and N negative bosons a state with energy satisfying
Eq. (2). For large enough N, the binding energy
proportional to N* would appear to outweigh the
rest-energy 2Nmc? necessary to create the particles
from the vacuum. The vacuum would be unstable and
the world as we know it could not exist. Thus we may
claim that our theorem to some extent explains the
observed fact that WCB do not exist in nature. This
argument is unfortunately defective because the
densities required to make

Ey 4+ 2Nme®2 <0 ®)

are so high that the nonrelativistic Hamiltonian (1) is
inadequate; the stability question ought to be studied
within the framework of a fully relativistic theory. A
relativistic treatment cannot at present be made
rigorous since there exists no fully rigorous relativistic
quantum electrodynamics. Our “explanation” for the
nonexistence of WCB remains only suggestive and
heuristic, not mathematically compelling. Still, it is a
striking fact that the known charged bosons, for
example the pion and the deuteron, all have strong
interactions which, at high densities, would over-
whelm their Coulomb binding energy.

II. DIMENSIONAL ARGUMENT

Before beginning the exact analysis, it is useful to
explain qualitatively by an elementary argument the
origin of the Z power in Eq. (2). The ground-state
wavefunction of a system of 2N charges will involve
two lengths, the over-all diameter A of the system
and the range A of two-particle correlations. The
total energy Ey will be a sum of three parts,

Ey = Eg, + Exg, + Eg, (6)

Eg, being the kinetic energy of the over-all wave
packet, Ex, being the kinetic energy of short-range
correlations, and E being the Coulomb energy.

Disregarding numerical factors of the order of
unity, we have

Eg, = N(#mA3). )
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The Coulomb energy of the mean charge distribution
is zero since the system is, on the average, everywhere
neutral. Therefore E, arises only from the short-range
correlations, which produce around each charge a
charge cloud containing one unit of charge of the
opposite sign distributed over a region of size 1. The
interaction of each charge with its charge cloud
produces an energy of the order (—e?/2), while the
self-energy of the charge cloud is positive but only
half as great. Again discarding a numerical factor, we
have

Eo = —N(et[2). ®
Finally we must estimate Ex,, which requires a rather
more careful discussion. The charge cloud around
each charge is produced by a cooperation of all the
particles which are within a volume of the order of A3,
The number of these particles is

v = N(A/A). )

To produce the net excess or deficiency of one unit of
charge within the cloud, each of » single-particle
wavefunctions must be increased or decreased by a
factor [1 + »}¥in passing from the edge to the center
of the cloud. This distortion of the wavefunctions
produces a kinetic energy of the order of

(#[m) |(grad p)/p* = (B/m)(»A)*  (10)
for each particle in each cloud. Altogether then,
Exy = No(FP/m)(vA)~2 = (BBA3(mA%). (11

Choosing A to minimize the sum of Egs. (7) and
(11), we find
A = Nt\, Eg, + Egy, = N¥(i2mi?. (12)
Then, choosing 4 to minimize the sum of Eq. (8) and
(12),
A = N-%(h*/me?), Ey= —NiRy. (13)
This argument shows that the decisive factor in
making matter without exclusion principle unstable
is the cooperative effect of many particles in screening
each other. The charge cloud around each particle is
composed not of one or two nearest neighbors, but of
a large number » ~ N* of slightly distorted wave-
functions. This enables the charge clouds to be
produced with a very small expenditure of kinetic
energy. The exclusion principle makes matter stable
by forbidding such a cooperation of many particles
with small momentum.

III. DEFINITION OF WAVEFUNCTIONS
Let 9,(x) be any complete orthonormal sequence of
real functions of the single space point x. A “kinetic
energy” integral is defined by

T, = (F)2m) f V(I dyx, (14)
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and an “exchange Coulomb energy” integral by

€y = & f PPV [x — Y7 dyx doy.
(15)

It is convenient to label each particle with a space
coordinate x; and a charge coordinate u;. Each x; is a
3-vector, and each u; takes the values +1 to indicate
whether the particle is positive or negative. A sym-
metric two-particle wavefunction is given by

G(xl » Uy, Xas “2)

= Aowo(x)po(x2) — u1uzu§01¢'/’a(x1)'l’a(x2)- (16)

This is intended to represent a pair of particles which
are mainly distributed independently in the one-
particle state 1,, but have a short-range correlation
which is repulsive for like charges and attractive for
unlike charges.

Our basic wavefunction for a 2N-particle system is
Won(xs, uy, -

"5 Xon s Usy)

11 G(xpaj—1» Upes1> Xpass Upes), (17)
where P is any permutation of the integers 1, - - - , 2N,
and, for typographical reasons, we write P2j — 1
instead of P,,_,. This wavefunction is similar in form
to the ground-state wavefunction of the Bardeen-
Cooper-Schrieffer theory of superconductivity.? To
obtain a BCS wavefunction, we have only to replace
symmetrization by antisymmetrization and replace
the charge coordinate by a spin coordinate. The
state W', describes a state in which all the 2N
particles are correlated in pairs, and each pair has the
identical wavefunction G. These boson pairs may be
called “Bogoliubov pairs”3; they are analogous to
the Cooper pairs in the theory of superconductivity.®
The state W,y does not have a well-defined total
charge. It contains components with N, positive and
N_ negative particles, where N, and N_ are any

integers with
N, + N_=2N. (18)

(19)

where Qy_y_1is the projection operator for states of
N, positive and N_ negative charges. Our trial wave-
function for the ground state of the Hamiltonian
(1) is then @y 5.

We write
q)N+,N_ = QN+.N_\F2N9

4 J. Bardeen, L. N. Cooper, and 1. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

% N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).

¢ L. N. Cooper, Phys. Rev. 104, 1189 (1956); M. R. Schafroth,
ibid. 96, 1442 (1954).
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To make the calculations simple, it is convenient to
consider a state of indefinite particle number, namely,

¥(2) = 3 (W) ¥ax (20)
with

wy = (z/16)(2N)) (N ). D
Here z is a positive real parameter, and ¥'(z) contains
components with all possible values of N, and N_such
that (N, + N_) is even. Since H commutes with N,
and N_, the expectation values are related by

H(z) = (M(2)/N(2)), (22)
M(z) =(¥(z), H¥(2)) = %wanNHzN’ (23)
N(z) = |¥(2)]* = g Waton > (24)

nogyHay = (Voy, HY 1y)
= z |q)'n,2N—n|2 Hn,2N—n ’ (25)

Boy = I‘FEle = z |(I)n,2N—‘n|2' (26)

Here H(z), H,y and H,,y_, are the expectation
values of H in the states ¥'(z), ¥,y and @, ,y_,,. The
Rayleigh-Ritz principle asserts that the ground-state
energy Ey of Eq. (2) satisfies

Ey< Hyy.
IV. CALCULATION OF EXPECTATION VALUES

We begin by calculating the normalization integral
nyy defined by Eq. (26). From this the expectation
value of the Hamiltonian can be deduced rather easily.
By virtue of Eq. (17), the normalization integral
becomes

noy =22 f ) 'fdaxl cerdgxay
P Q

N
x X 2 TT {G(xpaj1> Upas—15> Xp2ss Ups;)

u1 usy 5=1
X G(XQ2j—1, Ugaj—1sXQajs u02i)}' )

The symbols P and Q denote independent per-
mutations of the indices (1,---,2N). For any
particular choice of P and Q, the integral on the right
of Eq. (27) will break up into a product of cyclic
factors of the form

K, =f' ) 'de1 e dyy

2j-1
X 2 Tt Z{HG(}’M Vs Yrt1s ”k+1)}
01

v3j
X G(ij 3 027 > yl ’ Ul)' (28)
Each factor K; arises from a cycle of 2j indices which
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are connected in pairs by the kernels G in Eq. (27).
Thus,

N
= 2 o0{ I (K77 @9)
where £; is the number of cycles of length 2j, the sum
extends over all integers (4;,:--, hy) consistent
with the condition

;]h; = N, (30)
and »(h) is the number of pairs of permutations
(P, Q) which give rise to the pattern of cycles
specified by the 4;.

The evaluation of »(h) is a familiar problem of
combinatorics. In fact, »(h) is a product of three
factors, v, »”, and »”, where

v = (2N)! 1:[ {@HnH™(h, 7"} (3D

is the number of ways of grouping 2N indices into the
cycles of given lengths, then

V= 1;[ {@nyen

is the number of ways of arranging the indices in each
group in cyclic order, and

" = (N!)222N (33)

is the number of ways of choosing the labels P, ,,
Py, Qs 1, Qy; for the consecutive pairs of indices
within each cycle. Thus,

w(h) = QNI N2V TT{@) ™07} (39)

which, with Eq. (29), completes the evaluation of n,y .
The utility of the composite state ¥'(z), defined by

Eq. (20) and (21), is now apparent. The normalization

integral for this state, by Eq. (24), (29), and (34), is

(32)

Mo=211 :(i)j (%)M(h‘!)—l} - [f(Z)](ss)
with j
020G o

The summation over N has disappeared by virtue of
Eq. (30). Since K; is just the trace of the 2j-fold
iterated kernel G*, Eq. (36) may be written

f(z) = —4 Trlog [1 — $2G?], 37
and Eq. (35) becomes
N(z) = At (3%)

where A is the Fredholm determinant of the kernel
G2,
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With the particular choice of kernel given by Eq.
(16),

G'=2 g CHACATNEN (39)
is independent of the charge coordinates, and
K; =23 2%
Equations (36) and (38) thenagive
f@@) =~ %Z log (1 — z2;), (40)
N@) =TI — 220 (41)

We take z smaller than the smallest of the 472, so that
the series (36) converges absolutely. The mean
particle number in the state ¥'(z) is

A(z) = (g 2NwNn2N)/(g wanN)

= 2zN"Y(dN/dz)
= 2z(df [dz)
= z R, (42)
with :
By = zA(1 — zA%)™. (43)

We now calculate the expectation value H(z) given
by Eqs. (22) and (23). The Hamiltonian H is a sum of
kinetic and Coulomb terms, and M(z) splits corre-
spondingly into a kinetic part Mz and a Coulomb
part M. The quantity (H,y)xn,y is obtained from
nyy according to Eq. (27) by applying the operation

(F*[2m) % [Vl? (44)

to the integrand, with one gradient operator v, acting
upon each of the two G kernels which contain the
coordinate x,. When the integral (H,y)yx is divided
into cyclic factors as in Eq. (29), the gradient
operators appear in each factor X; in turn. As a result
we have

(Hoy)ay = 3 (LK may,  (49)

with

L;= ij' ) 'de1 o dyy;

x 3+ (1160w 0 et he)

v2; \ I=

X (hz/Zm)(V G(y2;, 255 Y15 1)
*ViG(y1, 01, y2, v2)). (46)

By virtue of Eq. (16) and the orthogonality of the
¥,(x), this becomes

L;=2j-2%3 2T, @7)
with T, given by Eq. (14). When Eq. (45) is multiplied
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by wy and summed over N, the result is

Mx(2) = 3 (LAA/OK )N()
= NG 3 (L@RK ) (@),
M(z) = M) 3 (:14(L,[2)
= N@) 3 3 AT,
= N(z)Z:: Tn (48)

with n, given by Eq. (42). This result is physically
reasonable, since the kinetic energy is an additive
property of single particles.

In a similar way, we now consider the Coulomb
energy (Hyy)ongy, which is obtained from nyy
according to Eq. (27) by inserting the factor

> efuuy|x; —

i<j
into the integrand. When the integral is factorized into
cycles, two cases arise. Either the points (x;, x;) belong
to different cycles or to the same cycle. In the first
case the summation over the charge coordinates
within either cycle gives zero. This expresses the
physical fact that the Coulomb energy of the average
charge distribution vanishes. The surviving Coulomb
terms then factorize just as do the kinetic energy terms,
and in analogy with Eq. (48), we obtain

M(z) = 3 (CA2/0K )N(2)
. = N(z) Z (z/9(C,/2)),
with

C == 2jf fdxl * dxzj

X z Z(lez)Elxl - xkl

w1 uz4

2j—-1
x {q Gy, Uy Xpsas um)}G(xw Sty Xp, 0. (51)
1=

49)

x|t

(50)

Uil

When the kernel G from Eq. (16) is substituted into
Eq. (51), we obtain a sum of Coulomb exchange
integrals e,; given by Eq. (15). The sum over the
charge coordinates gives a vanishing coefficient to e,
if o, B are either both zero or both nonzero. We are

then left with
C — 2] 22.’12ea02( -2 )k—1121+1—k (52)

Substituting this into Eq. (50) and using Eq. (43), we

find
ngA, + n,a

M = —N(2) Y e,of 12—22 "")
C(Z) ()ago o( }'a n lo

= N(2) 3 ealngng — [nong(ne + 1)(n + D).
«>0 (53)
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Combining this with Eq. (48), we have for the ex-
pectation value of the energy in the state ¥'(z) the
exact expression

H(z) = Z Tn,
+ 3 eaolton, — oo + 1, + DI (54)

The remarkably simple way in which the Coulomb
energy appears in Eq. (54) is the main reason for our
choice of trial wavefunction.

V. MINIMUM-ENERGY STATES

Let us hold the y,(x), z, and n, fixed, and vary the
A, for & > 050 as to make the energy H(z) a minimum.
There is a unique minimum, which occurs at

lﬂ = z—iewa’ nd = [e?‘pa - 1]—1’
with the exponent ¢, given by

cosh Pa = ["o(no + l)]_%[no + (Taleao)]a P > 0.
(56)

(53)

The minimum of H(z) is then
H(ng) = Tyny — Hnalng + DI 3 ecaf ™™
= Ton, — %ugo[Ta + ngeqo
— (T2 + 2Tne, — mael)l, (57)

while the corresponding mean particle number is, from
Eq. (42),
A(ng) = ng + %a‘;} (T + noes)

X (T2 + 2T,ngee0 — noel) ™t — 11 (58)

From Eq. (57) and (58) it is easy to chart the relation
between energy and particle numbers for any particular
choice of the y,(x).

In particular, we may consider the case of a Coulomb
system in a finite box of side L with periodic boundary
conditions, and use for y,(x) the plane-wave states

p;(x) = L% exp [mi[L)(j- x)], (59)

where j = (ji,/2,/s) is a triplet of integers. Strictly
speaking, the y,(x) for j # 0 should be taken to be
sines and cosines rather than running waves, but Eq.
(59) gives the correct values for the kinetic and
exchange energies,

T, = Qn*W3tmL?), (60)
ejo = (e*/Lmj®). (61)

We go to the limit of an infinite uniform system of
density p by letting L — oo with

ng = poL?. (62)
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We find then from Eqgs. (57) and (58),
[H@m)/nol = —([m)[8mpea® BT Ry,  (63)
[plpal = 1 + /) Bmpea®I 1)’  (64)

with
J = f dx[xt + 1 — Xt + 2, (65)
0

J = f Tt + DA+ D — %7, (66)
J=Q)[THIOITG]=081--+, (67
J =@ HTBHTO/TD] =052---. (68)

These results exactly coincide with the leading terms
of the perturbation-theory calculations,® which are
valid in the limit when pya® and pa® are large.

In one respect we have gone beyond the pertur-
bation-theory results. Since Eqs. (63) and (64) are
exact for our particular choice of wavefunction, they
set upper bounds to the energy per particle in the true
ground state. Now, there is a discrepancy between the
various calculations of the second term in the pertur-
bation expansion of the ground-state energy. Girar-
deau® obtained a term in log [pea®] with a positive
coefficient, while Lee and Feenberg? obtained only a
constant term which has recently been confirmed by
Brueckner.” Our calculation provides additional
evidence that no positive logarithmic term can exist.

VI. RIGOROUS UPPER BOUNDS

To prove a rigorous upper bound of the form (2)
for a finite system, it is inconvenient to use the
optimum choice for the parameters 4, given by Eqs.
(55) and (56). Instead, we make the simple choice

).0=1’ }’a=% fOI' a=1"..’Q’ (69)

where Q is an integer to be fixed later, and take 4, = 0
for « > Q. Then Eqgs. (41), (42), (43), and (54) give

no=z(1—z)—1, na=z(4_z)—1, a=1,"-,0,

(70)
N(z) = (1 — 27%a — 32179, 1)
A(z) = 2(1 — 2™ 4 Qz(4 — 2), (72)

H(z) = [To - %?e,o]z(l - z)t
+ [? (T, — %eao)] z(4 — 2yt (73)

By Eqs. (22), (23), (24), H,y is the coefficient of zV¥
in (N(z)H(z)), divided by the coefficient of z¥ in N(z).

7K. A. Brueckner, Phys. Rev. 156, 204 (1967).
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Now
N(2)A(z) = 2z(d|dz)N(z) (74)

has coefficients equal to those of N(z) multiplied by
2N. Therefore

Hyy = 2N|:T0 - %ie,o]

Q
+ ﬁN[g (T, + HQ — De) — QT.,], (75)

where By is the ratio of the coefficients of zV in
(z(4 — 2)7*N(z)) and N(z). For large N and Q we have
approximately Sy = 4; it is easy to prove rigorously
for all N and Q that

By < 1.
Hence Eq. (75) implies that

(76)

Q Q
Huy <3 T, + (N - Q)[To —13 e] an

For the theorem, we are interested notin H,, , which
is the average energy of a mixture of states of different
charge, but in Hy 5 which is the energy of a pure
state of charge zero. It is highly plausible that

Hyon a2 Hyy, n=0,1,---,2N, (18)

so that the neutral state has the lowest energy of all
states of 2N particles. If Eq. (78) were true, then by
Eqs. (25) and (26)

Hyy 2 Hyny 2 Ey. (79)

However, we have not proved Eq. (78) and therefore
we do not make use of it. Instead we use the fact that
the ground-state energy ey, n_ of a system of N,
positive and N_ negative charges is a decreasing
function of both N, and N_. The decreasing property
follows from the consideration that any added
particle can be placed infinitely far away from those
already present without increasing the total energy.
Also,

€N,0 = €0 2N = 0. (80)
Therefore Eq. (25) gives
2N-1
nonHon 2 Z_1|®n,2N—n|2 €n,0N-n 2 NaN€aN_1,2N-1>
(81)
and so
Hyy 2 Exy 3 2 Epy. (82)

From Egs. (77) and (82) we see that, whether N is
even or odd,

Q Q
Ey<3IT+(N-— Q)[To - ége,o]. (83)

It now remains to choose the functions y,(x) so
as to make the right side of Eq. (83) large and
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negative. We need the T, to be as small and the ¢, to
be as large as possible. Fortunately, these two
requirements work in the same direction, since 7T,
and e,, are approximately reciprocals of each other.
There is a strict inequality

eaﬁtaﬂ > 47792(’ aﬁ)2’ (84)

where
reg = f (WP dyx, (85)
g = f V(0w dyx. (86)

Equation (84) follows immediately from Schwarz’s
inequality when the integrals ez, 7,4, #,5 are written
in terms of the Fourier transform of (y,y5). Now, r,,
is just a measure of the mean density of particles,
while ¢,5 is closely related to (T, + T,), so that
Eq. (84) gives an inverse relationship between e,, and
T,. We must therefore choose the y,(x) to make the
T, as small as possible for a given over-all particle
density.

Guided by the heuristic argument of Sec. II, we
choose a length A which fixes the mean particle
density, and write

2\ 2 T
)= (3) toin [ (B)omn]
for points x within the cube
0<x,<L, p=1,2,3, (88)

with p,(x) = 0 outside the cube. The index j represents
a triplet of strictly positive integers. We then have

T, = n%2(2/mA?). (89)

Instead of j we may use the index «, which labels the
triplets j in increasing order of j2. Equations (84)—(87)
give

Yoo = A—as (90)
taO = 77'2A_5(j2 + 3), (91)
e.oT, > (4m3)(e*h2/mA3). 92)

Without any attempt to find the best numerical
coefficients, we write

j2< 6at for o« >1, (93)
and deduce from Eqgs. (89) and (92)

Q s 2

3T, < 3! (m—’;;) (94)

3 LAV

Sew2 (570N ©5)
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Assembling Eqs. (83), (89), (94), and (95), we find
Ey < 3m*(N + QH(R]mA?)
— (@27m)(N — Q)Q¥(e}/A). (96)

It is of interest to compare this estimate (96) with
the considerations of Sec. II. The physical meaning
of the estimate is somewhat obscured by the use of
Eq. (84) to avoid a direct but tedious calculation of
the e,o. The physical basis of Eq. (95) is the fact that

Q
3 ew = f f g6, ) |x — Y dyx dyy, (97

where

Q
g(x, y) = po(x)vo(y) g Y9 () (98)

is a measure of the short-range two-particle correlations
in the wavefunction (17). If we introduce the corre-
lation length

A=0HA, (99)

then the function g(x, y) has a sharp peak of mag-
nitude (AA)~2 extending over the volume |x — y| ~ 4.
The right side of Eq. (97) will be of the order (¢?/4),
which agrees with Eq. (95). Thus the three terms on
the right of Eq. (96) correspond exactly to the three
terms of Eq. (6), whose magnitudes were estimated
in Egs. (7), (11), and (8). The precise inequality (96)
fully confirms the correctness of the earlier heuristic
argument.

To complete the proof of Eq. (2), we take in Eq.
(96) @ = (3N)%. This gives

Ey < 3mN(B[mA?) — (187)IN3(e?/A). (100)
Finally we take
A = 10873N-3(#2[me?),
and Eq. (100) becomes
Ey < —[19447%1N% Ry,
which proves the theorem,

(101)

(102)

VII. CONCLUDING REMARKS

It would be easy to obtain a more reasonable
numerical coefficient in Eq. (102). We know that for
al N

Ey < —3NRy, (103)

because N separated positronium atoms form a
possible state of N positive and N negative charges.
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On the other hand, for large N we can use much better
numerical estimates than Eqs. (76), (93), (94), (95).
The combination of Eq. (103) for small N with
improved estimates for large N will give a coefficient
in Eq. (102) which is not enormously less than unity.

More interesting than making piecemeal improve-
ments is the determination of the best possible
coefficient 4, in Eq. (2). A plausible conjecture is that
(—4,) should be the minimum of the quantity

og) = f VoI dyx — 2/m)8m)] f lpo)I} dex,

(104)
minimized over all functions ¢(x) with

J' )P dgx = 1, (105)
the coefficient J being given by Eq. (65). This con-
jecture results from a Thomas—Fermi type of approxi-
mation, in which it is assumed that the total energy is
a sum of kinetic and correlation energies, the corre-
lation energy being a function only of the local density
according to the perturbation-theory formula (63).
The minimization of Q(¢) will give a nonlinear
equation for ¢(x), similar to the Thomas-Fermi
equation, which could be solved numerically once
and for all. The minimizing |p(x)|? will give the shape
of the density distribution in the ground state of 2N
particles. We conjecture that this recipe will give the
best possible coefficient 4; in our theorem, at least
in the limit N — co. We have no idea at present how
the conjecture might be proved.

The main part of the work of this paper (particularly
Secs. III and IV) does not require a Coulomb inter-
action, but would apply to a system of bosons with
any two-particle interaction bilinear in the charges,
provided that there is no hard core. For example, if
the Coulomb potential in Eq. (1) were replaced by a
potential

Vir)=c™™, 0<n<2, (106)
then the ground-state energy Ey would satisfy
EN < _AN(10—31!)/(10—5M). (107)
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It is shown that K > 2u, for a system of fermions. X is (P%/2m), and u, is the Fermi energy of an
ideal gas of fermions of the same mass, and at the same density, as the system under consideration,

HIS paper derives a rigorous lower bound for the
mean kinetic energy of a one component system of
fermions in thermal equilibrium. The analogous
result for bosons is seen to be trivial.
The system under consideration has a Hamil-
tonian given by
N P2
H, = 2 =+ V.
i=12my,

O

The potential V' is completely arbitrary, except for
the requirement that the partition function,

Z = Tr [exp (—BH)]

exists. For the purposes of the proof we consider a
comparison system with Hamiltonian

N p?

H=3%

i=12m

The potentials ¥ of Eqgs. (1) and (2) are the same, and
we require that 0 < m < m,. We further define

+ V. )

N P?
Hi=H-Hy=3—*, 3
i=12m,
m'=m™ — mgt. (3a)

That is, H, is the Hamiltonian of an ideal gas of
particles with mass m, .

Let F(H, f) denote the Helmholtz free energy of a
system with Hamiltonian A and temperature T
f = (kT). Then the inequality of Gibbs' and
Bogoliubov? states that

F(Ho, /3) + <H - H0>0 2 F(H9 .B)’ (4)

where the brackets denote a thermal average with
respect to the statistical operator of H,. In addition,
there is an inequality recently derived by Falk® which

* Supported by a National Science Foundation Grant GP-6002.

1J. W. Gibbs, The Collected Works (Yale University Press,
New Haven, Connecticut, 1948), Vol. II, p. 131, Theorem III.
Naturally, Gibb’s proof is only for classical systems.

2 N. N. Bogoliubov (unpublished); cited in footnote 4 of V. V.
Tolmachev, Dokl. Akad. Nauk SSSR 134, 1324 (1960) [English
transl.: Soviet Phys.—Dokl. §, 984 (1961)].

3 H. Falk, J. Math. Phys. 7, 977 (1966). (Penultimate equation,
first column, p. 978, withy = 0.)

states that
F(H, ) > F(H,, 2p) + F(H,, 2p).
Since we know from thermodynamics that
(aF/aT)N.ﬂ = _S,

the entropy, F must be an increasing function of f.
Hence

&)

F(H,, 2f) > F(H,, p). ©®

Combining (4), (5), and (6), we can eliminate all
mention of F(H, ) and conclude that

(H — Hy)o 2 F(Hy, 28). M

F(H,, 2f) is the Helmholtz function of an ideal gas of
mass m, at a temperature $7. Now

(H — Hy)y = (my/m)NK, ®
where K = (P%/2m,),. Hence
K > (m,/myN)F(H,, 2f). )]

Equation (9) is a general result, independent of the
statistics obeyed by the particles. For the bose case,
however, the free energy of the ideal gas is always
negative; since H — H, is a positive semidefinite
operator, Eq. (9) does not teach us anything. We
henceforth confine ourselves to the Fermi case.

The auxiliary mass m can be chosen to be arbitrarily
small; hence m; can be made arbitrarily small.
Therefore, at any finite temperature and any positive
density, the ideal gas described by H; can be made
extremely degenerate, so that F(H;,28) can be
replaced by (3) Ny, . Here g, is the Fermi energy of an
ideal gas of mass m,. Furthermore, since the Fermi
energy is given by

p = (2[8m)(3N|=Q)A, (10)
where  is the volume of the system, we have
(my[mo)py = o, (11)

where u, is the Fermi energy of an ideal gas of mass
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m,. Our final result is, then

KZ %,uo, (12)

where y, is the Fermi energy of an ideal Fermi gas of
particles of the same mass and at the same density
as the system under consideration.

The result (12) is somewhat reminiscent of the
Hugenholtz—van Hove theorem.? It is less powerful
since it is an inequality. On the other hand, it is not
restricted to zero temperature, and, being independent
of the nature of the forces, will also be valid when the

¢ N. M. Hugenholtz and L. van Hove, Physica 24, 363 (1958).
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forces can produce bound states not accessible by
perturbation theory, as in superconductors.

We give one example. For liquid He?, the zero-
point kinetic energy has been estimated to be of the
order of 60 cal/mole,® although this is probably
somewhat high. The right-hand side of our inequality
is 5.8 cal/mole. In this case, the lower bound does not
yield much of practical interest, but this is perhaps too
much to expect for an estimate which utilizes ab-
solutely no information about the dynamics of the
system.

5 F. London, Superfluids, (John Wiley & Sons, Inc., New York,
1954), Vol. 11, p. 165.
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The null tetrad formalism of Newman and Penrose is used to investigate empty space-times which
are algebraically special on a given world line. It is found that, when the world line is timelike, the
space-time admits a congruence which is geodesic and shear-free on the world line. A similar result is
obtained for those empty space-times which are algebraically special on a given space like hypersurface.

1. INTRODUCTION

HE four null directions corresponding to the
vectors p; satisfying the equation

P[in]kl[mpn]PkPl =0

are called principal null directions of the Weyl tensor.
Space-times for which two or more principal null
directions coincide are algebraically special and the
vector p; corresponding to the repeated principal null
direction satisfies the equation

Cﬂcl[mpnlpkpl = 0.

An important geometrical characteristic of alge-
braically special empty space-times is that the repeated
principal null direction is geodesic and shear-free.!
The purpose of this paper is to investigate those
empty space-times which are algebraically special on
a given submanifold. The following two theorems are
proved.

1 A, Lichnerowicz, Compt. Rend. 246, 893 (1958).

Theorem 1: Let V be a locally empty space-time
(with C® metric) which is algebraically special but not
flat on a given world line W. Let I be a principal null
direction of the curvature tensor which, on W, points
in the repeated principal null direction. Then:

(a) if Wis null, / is shear-free on W;
(b) if W is timelike, / is geodesic and shear-free
on W.

Theorem 2: Let V be a locally empty space-time
(with C3 metric) which is algebraically special but not
flat on a given spacelike hypersurface S. Let / be a
principal null direction of the curvature tensor which,
on S, points in the repeated principal null direction.
Then [ is geodesic and shear-free on S.

2. NOTATION

Newman and Penrose? introduce at each point of
space-time a tetrad of null vectors /%, ré, m¥, and '

2 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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satisfying the orthonormality conditions
n,= —m'm; =1, Im;=n'm,=mm=0 (2.1)

The propagation of the tetrad is specified by certain
linear combinations of the (complex) Ricci rotation
coefficients,® called the spin coefficients. The spin
coefficients 7, «, p, and o, introduced by the equation

l‘;,m‘ = Tl, + Kn; — ij - U”-'lj,

are closely related to the geometry of the null con-
gruence defined by the tetrad vector /*. In particular
the congruence is geodesic if « = 0, and shear-free if
g =01

The Weyl tensor of a space-time is specified by five
complex tetrad components vy, ¥, ¥z, ¥, and y,.
The empty space—time Bianchi identities can then be
written

Dy, — 8y, = —3ky, + [2¢ + 4ply,
- [_77 + 4“]'[’0,
Dy, — S'Pl = —2kys + 3py.

22)

— [=27 + 2a]yy — Ay, (2.3)
D'ps -— 5'/)2 == —K?/)4 — [25 _ 2P]'/’3
+ 3wy, — 24y,, (2.4)
Dy, — by = —[4e — ply,
+ [47 + 2a)ps — 32y, (2.5)
Ay, — Oy, = [4y — uly,
~ [47 4+ 281, + 30y, (2.6)
Ay, — Oy, = vy + [2y — 2uly,
— 37y, + 2095, (2.7)
Ay, — dyy = 2vyp; — uy,
+ [—27 + 2Blys + oy, (2.8)
Ayy — dyy = 3vy, — [2y + 4ulys
+ [—7 +4Bly.. (29)

Here D, A, and 6 are the intrinsic derivatives defined
by
D¢ = ¢,£li’ A¢ = ¢,ini, and 6¢ = ¢,s’mi'
The intrinsic derivatives do not commute. In particular,
0D—Dé=@+ f— 7D + «kA
— a6 —(p+ e—dd. (2.10)

Only one of the field equations developed by Newman

3 L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, New Jersey, 1925).
4 R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).
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and Penrose is used here, namely

Do — dk = (p + p)o + (3e — é)o
—(r—7+a+ 30+ y,. (2.11)

When space-time admits a preferred direction
corresponding to a (normalized) vector v* the tetrad
vectors /* and r* can be chosen so that

v = + ) | V2, (2.12)

where ¢ is +1, —1, or 0 according as v* is timelike,
spacelike, or null. A short calculation shows that those
tetrad transformations which leave invariant the
orthonormality conditions (2.1) and the vector (2.12)
are

m' = e*m’, (2.13)
and I" = A(l' + aan* + am’ + am’),
n' = A(n* + cadlt — cam’ — cam'),
m' = A(m* — ca*m* — cal’ + an’)
with A= (1 + cady’. (2.14)

Under (2.14) the tetrad components of the Weyl
tensor transform as follows:

N 4
2 NClea)¥ Ty = A¥N 3 “Cralyy,
I=0 I=N
for N=0,+-+,4. (2.15)

Using this transformation the tetrad vector /* can be
chosen to correspond to a principal null direction of
the Weyl tensor. With this choice y, = 0. If the space-
time is algebraically special, the tetrad vector /* can be
chosen to correspond to the repeated principal null
direction and then y, = 9, = 0.

3. PROOF OF THEOREM 1

Let the vector (2.12) be tangent to the given world
line W. Let P be an arbitrary point on W. A given
function ¢ is zero at all points of W only if the function
and its derivatives in the direction n* 4 ¢l* are zero at
point P. In terms of intrinsic derivatives

$=(A+cDy=(A+cDypZ0,

where = denotes equality at P. Since P is chosen
arbitrarily on W the equality

$=0
implies
(A + cD)$ £ (A + cDy¢ £ 0.

This last remark saves a lot of calculation, although

the results can also be obtained analytically.
Choosing the tetrad vector /* to correspond to a

principal null direction of the Weyl tensor which, on
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W, points in the repeated principal null direction
yields

=0, 3.1
(A + cDyy;, = (A + eDYyp, = £o. (3.2)
Under (2.13) v, transforms as
p = ey,
This transformation can therefore be used to make
Y1 = Py. 3.3)

Obtaining 6Dy, and Ddy, from (2.2) and (2.6),
substituting into the commutator (2.10), using Eqgs.
(2.3), (2.7), and (2.11) to eliminate Dy,, éy,, and
Do — d«, respectively, and putting ¢, = 0 gives
408y, — 4xAy, + 29;(— 5y, — 2Ak + 280

+ «(10y + 27 — 2i) + o(—10ax — 27 + 26)] = 0.

34
From Eq. (3.3)
Syy = (dyp),

and this can be eliminated using (2.6). Also
Ay, = (A + Dy, — cDy; = (A + cDyy; — c(Dyy),

and (Dy,) can be eliminated using (2.2). Equation
(3.4) then becomes
—12(a6 + cki)py — 4x(A + cDyy, + v, F =0,
(3.5

where F is a function, not necessarily zero.
Equation (3.5) can be used to prove

66 + CKR £ 0.
The method is by reductio ad adsurdum. Suppose
hereafter that

od + ki :ﬁ 0.
From (3.5)

P =0 (3.6)

and so
(A + cDyp, = (A + cD)y, = 0.
Substituting (3.6) into (2.2) and (2.6) yields
Dy, £ Sy, <0
and also, from (3.2) and (3.3),

Ay, £ Sy, 0.

3.7

Hence
(A4 cD)Dy, = (A + cD)oy, = (A + ¢D)Ay,
£ A+ cD)Sap, = 0,

Since all the first derivatives of y, are zero at P, the
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second derivatives commute at P. Differentiating (3.5)
now gives

—12(05 + cki)DPy = 4xD(A + D)y,
£ 4x(A + cD)Dy, £ 0.

Hence
Dy, = 0. (3.8)
Similtarly,
Ayy £ oy, = 5y, £ 0, (3.9)
and so
(A + cD)Dy, & (A + cD)Ay, £ (A + cD)dy,
£ (A + cD)dy, = 0. (3.10)

Substituting (3.8) and (3.9) into (2.3) and (2.7) yields
P P
Ky = oty = 0.
Hence, since both « and ¢ cannot vanish at P,
Y3 £0.
Differentiating (2.2) and using (3.8) and (3.9) gives
DDy, & ADy, £ 6Dy, £ 0. (3.11)
Differentiating (3.5) twice now gives
—12(06 + cxR)D D,
£ 4xDD(A + cD)y,
£ 4kD(A + cD)Dy, + D (first derivatives of y,)
£ 4xD(A + ¢D)Dy, + first derivatives of Dy,
£ 4« D(A + cD)Dy,. (3.12)
Substituting (2.2) into the right-hand side of (3.12)
gives
—12(05 + cxR)DDPy = —12k2D(A + cD)y,
£ _12¢%A + cD)Dy, £ 0.
Hence
DD§, £ 0.
From (2.3) and (2.4)
DDy = —2zDj, £ 2%y, = 0,
Similarly it can be shown that
385, £ —258p, = 25%, £ 0.
Since both ¢ and « cannot vanish at P,
P
v =0.
This contradicts the hypothesis that the space-time
is not flat at P. Hence
0G + cxie £ 0,
If W is null, ¢ = 0 and therefore o = 0. If W is time-
like, ¢ = 1 and therefore o £ « £ 0. Since the point
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P was chosen arbitrarily on W, the theorem is proved.

4. PROOF OF THEOREM 2

Let the vector (2.12) be normal to the given hyper-
surface S. Then § is generated by the three real
tangent vectors

- cl’)]ﬁ, (m'* + n'fz‘)l\/f, and i(m* — n’i‘)}ﬁ
The transformation (2.13) can again be used to make
1= %1 “4.n

Let P be an arbitrary point of S. Choosing the tetrad
vector I* to correspond to a principal null direction
of the Weyl tensor which, on S, points in the repeated
principal null direction, now yields

@4.2)
@.3)

Yo =0,

¥ & (A ~ cDyy, £ oy, £ 0,
and
(A — cDPy, & (A — D)oy, = ',y
£ 8(A — cDyp, £ 88y, = 0. (4.49)
Following the proof of Theorem 1,

. _ P
o — cxii = 0,

4.5

If ¢ = —1, that is, if the hypersurface S is timelike, o
and « both vanish on S. The more interesting case is
when ¢ = 41, Equation (2.6), with the conditions
(4.3), yields

oy £o.
Suppose hereafter that R
o3 0.
Then
Yo £ 0.

As in the last proof, because P is chosen arbitrarily
on S,
A% Dy, £0 (4.6)
and
Sy £ 0.

Substituting (4.7) into (2.7) gives

@.n

Ay, = 209y,

C. D. COLLINSON

But from (4.3) and (2.2),
A’f’l "f: CDV’I =-_}: 0’
and so
oYy £0.
Hence
’!’s _'—2 05
and again
Sy £ 0. 4.8)
Substituting (4.8) into (2.8) gives
Ay, £ O
From (4.6) and (2.3)
Ay, & cDy, Lo
and so
oYy 0
or
Py Lo

This contradicts the hypothesis that the space-time
is not flat at P. Hence
o £0.

Substituting this into (4.5), with ¢ = —1, yields
¥ 34
k=0,

Since P was chosen arbitrarily on S, the theorem is
proved.
5. REMARKS

The methods employed here can be used to investi-
gate space-times algebraically special on a given two-
dimensional submanifold M. The only technical
difficulty is that both normals to the submanifold
cannot be given a simple canonical form. For this reason
an unknown complex function appears in the work.
The analysis gives no indication that the congruence
! should be geodesic and shear-free on M, except in
the trivial case when M contains a timelike world line.
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An associative algebra of continuous operators in a rigged Hilbert space, which contains the en-
veloping algebra of the Poincaré group and gives rise to a discrete mass spectrum, is studied. In
Appendix B some general results on the representation of Lie algebras in a rigged Hilbert space are

derived.

1. INTRODUCTION

TTEMPTS to combine the Poincaré group § with
an intrinsic symmetry group to obtain a mass
formula as a property of an enveloping algebra &(G)
of a large group G, containing T and the intrinsic
symmetry group, have been unsuccessful. According to
O’Raifeartaigh’s theorem,! the momentum operators
P, can not be in the Lie algebra of such a group G.
Therefore, keeping the general concept of the dynam-
ical group approach,? but dropping the restriction to
an enveloping algebra &(G) of a group G, might
overcome the difficulties. The first attempt in this
direction has been undertaken by Werle,® who sug-
gested using an algebra that is not an enveloping
algebra of a group.
In a recent work* it has been suggested to describe
a physical system by an algebra £ < L(¢) of con-
tinuous operators in a rigged Hilbert space
$ < kcgx.
In the frame of this program we want to try to
construct an associative algebra £ containing the
enveloping algebra of the Poincaré group &(9)
and giving rise to a mass formula. That this associative
algebra 4 cannot be the enveloping algebra of a Lie
group is a consequence of the O’Raifeartaigh
theorem,! which is valid for enveloping algebras of
continuous operators in a rigged Hilbert space.*

2. DEFINING RELATIONS OF THE ALGEBRA

In the present work we study a simple model to learn
about the mathematical problems involved; in a

* Supported in part by the U.S. National Science Foundation
and the U.S. Atomic Energy Commission.

1 L. O’Raifeartaigh, Phys. Rev. Letters 14, 332 (1965).

? (a) A. O. Barut, in Proceedings of Seminar on High Energy
Physics, Trieste (1965) (IAEA, Vienna), and references therein;
A. Bohm, in Proceedings of Seminar on Elementary Particle Physics,
Boulder, Colorado (1966) and references therein. (b) N. Mukunda,
L. O’Raifeartaigh, and E. C. G. Sudarshan, Phys. Letters 19, 322
(1965).

3 J. Werle, preprint 1.C./65/48, Trieste (1965).

4 C. M. Andersen, A. Bohm, and A. M. Bouncristiani, “Rigged
Hilbert Space and Mathematical Description of Physical Systems,”
Boulder Lectures, Mathematical Methods (1966).

forthcoming work we will consider a more realistic
case, and compare the results with experimental data.
Our model, in which the (noncompact) intrinsic
“noninvariance” group® is SL(2, ¢) and the intrinsic
symmetry group is SU(2), will provide a generalization
of the mathematical structure of the rotator model.4-$
The physical interpretation, however, will be different;
i.e., the generators of the algebra will represent
different physical observables. The associative algebra
#, as the mathematical image of this model, is
generated by

P

w?

Ii5 Fi

L

uv

M, puv=20,1,2,3,
i=1,2,3,

in which the multiplication is defined by the relations?

(M

M= PP, [P,,P,]=0,
[Pp > Luv] = i(guva - gvau),

[Luvs Lyl
= i(8upLve + 8valup = 8uoLup — 8vplua)s (2)
L, 1] = i€l ©)]
U;, F,l =iepF,, [F;, F)]="—ier,, )
Ly, L]1=0, [Ly,F]=0, (5)
[P, 1:1=0, ©
[MP,, F;M] = ibe#{I,, F,}P,, )
P,FM — MF,P,= 0. (8)

[b is a universal constant of the dimension (MeV)?;
in the units we use, i =c = 1.] We see that the
subalgebra generated by P,, L,, is the enveloping
algebra of the Poincaré group &(), so that P,, L,,,
and M have the usual physical interpretation. The
subalgebra generated by I; is the enveloping algebra
of SU(2), which we want to call the isospin of our
model; the subalgebra generated by I, F; is
5 A. O. Barut and A. Bohm, Phys. Rev. 139, 1107 (1965).

8 A. Bohm, Nuovo Cimento 43, 665 (1966).
7 Notation [A4, B] = AB — BA; {A, B} = AB + BA.
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8(SL(2, c)), so that the F; are the step operators
transforming the different isospin states into each other.

We always want to assume that M? is a positive
operator; i.c., (f, M*f) > m}(f,f), m3 > 0 for every
Jf of the representation space, which is a physical
assumption excluding zero-mass particles from our
consideration. As we see later, this assumption
amounts to an appropriate choice of the irreducible
component of A, describing our physical system, and
is always possible.

3. LIMIT OF ZERO-COUPLING CONSTANT

In addition to the above properties, A& goes into
the enveloping algebra of the direct product ¥ x
SL(2, ¢) if the coupling constant b — 0. To prove
this, it is sufficient to show that

[P,, F]—0 for b—0.
For b — 0, (7) goes into

MP,F, — FMP, =0, (9a)
which together with (8) gives
{Pus [M, F]} =0, (9b)
which can only be fulfilled if
M, F]=0. (9c)
From this we obtain
[Py, Fi]=0 (9d)
because of the equation
[P,, FJM = [M, F)]pP,, (10)

which is an immediate consequence of relation (8).
4. SYSTEM OF COMMUTING OPERATORS

We want to find an appropriate complete system
of commuting operators (CSCO). Since we assume
that the physically preparable states are eigenstates
of Iy and I2, we choose the CSCO such that I; and

I? belong to it. The spin operator
I'= —(P,P)'I % T, =1}e,,P'” (11)

is already an invariant operator of #£. To prove this,
it remains to be shown that

[T,F]=0. 12)
From relation (8) we obtain
[P"/M, Fi] =0, (13)

an equation “derived” before by Werle,*® Equation

8 Equation (8) is only another way of writing this relation of
Werle.
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(12)is an immediate consequence of (13). The operator
of the spin component

v Iy L T

Sy = LyP) 2 =~ — ————

M M MM+ Py

also belongs to this system of commuting operators

because of relations (5) and (6).
The Casimir operators of SL(2, ¢)

Q=F-1, I-F

are also already invariant operators of A. That Q
and I-F commute with L,, follows from relation
(5); we still have to show that

[P,, Q] = [P,,Ft] = 0

Py

(14)
(13)

and
[P, FI'] = 0.

Proof of (14). From (10) we obtain, using (13),
[P, FIF = [M, FJF(P,/M),
which is
P,FF' — F,F'P, — F|[P,, F]
= (MFF = FF'M — F,[M, F))(P,/M).
Again using (10), we obtain

[P,, F.F]l = [M, F,F)(P/M).
From (21)

(16)

[M?2, F;] = ibe;{I*, F'},
which is derived later, it follows that
[M2, F.F'] = ibfikz{{lk, F}, F'}
Using
{{Ie, Fi}, Fi} = {L, {F:, Fi}} + (804 — 0,091,
which follows from relation (4), we obtain
[M2, FF'] = ibeg{I{F,, F}} = 0.
Therefore [M, F,Fi] = 0, and (14) follows from (16).
Proof of (15). From (13) we obtain
[MP,u F]= {P“, (M, Fi]}
and from (7), (8), and (6),
[MP,, FI' = ibe; {I*, F}I'(P /M) = 0 (18)

because e, {I*, F'}]' =0 as a consequence of (4).
Thus we obtain from (17) and (18)

{P,, [M,FI'l} =0

an

or
[M, FI'] = 0. (19)
From (10) follows
[P, FI'l = [M, F)I'(P,[M),

and therefore from (19) we obtain (15).
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It follows in particular from (14) and (15) that M?
commutes with Q and I-F, so that M? belongs to
the system of commuting operators

FP—-1, I.F, I, B, S,. (20)

However, M? is not an invariant operator of A
because

- [M2, F] = by {I*, F*} 5 0. @n

Proof of (21). From (7) we obtain
ibgikl{Ik: Fl}(Pp/M) = [MP,n F];

multiplying with P,/M from the right and using (13),
we obtain (21).

Comparing (21) with
%, F) = {I*[L,,, F}]} = —ieg{I*, F7},
we see that the operator

Z = M? 4 bP? (22)
commutes with F;.

[Z,F]=0, (23)

and we see immediately from the relations (6) and (5)
that Z also commutes with all the other generators of
#; thus Z is a new invariant operator of £.°
Following the convention we also adjoin P; to our
commuting system; this is possible because of (6).
Thus our maximal commuting system is given by

Z’FsQ=F2—Iz’ F-1, Ias 12’ Sas Pds (24)

where the first four operators are invariant operators
of #, the cigenvalues of which characterize our
physical (model) system.

5. CONSTRUCTION OF THE RIGGED
HILBERT SPACE

To obtain the rigged Hilbert space in which 4 is an
algebra of continuous operators, we first consider the
limiting case b — 0. In this case £ — §(T x SL(2, ¢).
We should therefore start with the representation
space of &§(F) and &(SL(2, ¢)).

We denote by ¢, = ¥, < ¢ the rigged Hilbert
space in which &(F) is an algebra of continuous
operators. According to Appendix BI and BIII this
is indeed a rigged Hilbert space. The topology in ¢,
is given by the countable set of scalar products

(@] V) = (9. AFY) (25)

where (-, ) is the scalar product in J€,, which is the
usual Hilbert space for an irreducible unitary repre-
sentation of ¥, ¥(m,s), and Ag is the Nelson

? A has been constructed such that Z is an invariant operator.
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operator of J,1¢

Ag

= U‘Ir—

§+b1>*‘+N”+M2

1
; PP, + ;‘g L, L,

In the case we consider here, where M? is positive,
Ag is a positive operator, so that (pALg) is already
a system of norms which is obviously equlvalent to
the system of (B1).

In ¢, = X(m,s) = ¢X one conventionally uses
the bases |p,, s3), which are eigenvectors of p; and s,
and elements of X and therefore do not represent
physically preparable states.!! The physical states are
the antilinear functionals y € ¢, on ¢&:

82 dp(p) | pssa)(ssp; | ¥

(26)

27
wherel?
(S35 P l v) = 9(|pi> s3)) = (p |Pusa>

To make the subsequent considerations clearer, it is
useful to introduce a basis of elements of ¢, (which
should be chosen adequately to the measurement
system), though it is for our consideration irrelevant
and we could as well work with the states |p,s;). We
denote this basis by |£, 5, {, s3), and it is

16,7, L, 55) = f (D) 1Pess)Disa | £m, L s). (28)

The irreducible representation space of &§(SL(2, ¢))
characterized by (k,, @) has been constructed in Sec.
IIC of Ref. 4 and is denoted by ¢, < ¥, < ¢ . Then
we obtain in

$1® by = B, B K, < () & $)* (29)

the rigged Hilbert space for §(SL(2c) x F).1% Here
¥, ® X, is the completion of the direct product of
linear spaces ¥, ® ¥, and ¢, & ¢, is the completion of
the direct product of the linear spaces ¢; ® ¢, with
respect to the projective tensor product topology of
¢, and ¢,.1%1 In ¢, we had the basis |13, 7, (k,, a));
in ¢, we have the basis (28);

l139 I’ 5; 771 Z.:, ss; (ko, a)’ S m>
= ‘5’ 7, C’ ss) ® l[a Is) (30)

10 The factor 1/b is just a scale factor of dimension (MeV)—2
converting the dimension (MeV) of P into the dimension 1 of I,
and L.

11 Cf, Sec. IID in Ref. 4.

12 We consider antilinear rather than linear functionals. The
usual notation is (s3p; | ) = Y(D, s59).

BR. Maurin and L. Maurin, Studia Math. 23 (1963).

ULet @) Edy, ¢1EP;y, and ¢, ® ¢33 ¢ = T ® ¢i; then
Pll5,09, = Zi 15115, 1931l5, (Where [|@f]l 54 are the norms ingy)isa
norm in ¢; & ¢, and the projective tensor product ¢, ® ¢, is the
completion of ¢, ® ¢, with respect to the topology given by these
norms.
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is therefore a basis of ¢; ® $5.2* ¢, @ &y is then the
completion of the linear envelope of (30) with respect
to the projective tensor product topology (in particular
all eigenstates of I2 are in ¢, ® ¢s).

6. RIGGED HILBERT SPACE OF +

We should also expect something like this for the
rigged Hilbert space of A. One physical system is
described by an irreducible component of #, which
is characterized by the eigenvalue of the generators of
the center of #:

FP—P=(+d— k),
F-I= koal,
F'=8(S+D1, Z=1:1

Thus the invariants (k,, @) and s of §(F x SL(2, ¢))
are also invariants of . Therefore an irreducible
component of 4 contains only one irreducible com-
ponent of &(SL(2, ¢)) characterized by (k,,a) and
reduces out with respect to §(SUZ(2)) generated by
I, in the same way as &, ,,(SL(2, ¢)):

E)))

Rky, a) = 3 ¥7,

I=ko

(32

i.e., #4 contains every isospin I > k, exactly once. As
s is an invariant of A, it describes only one spin.
However, m is no longer an invariant. So we should
expect instead of (29) a direct sum or integral of (29).
We therefore take instead of J; the continuous direct
sum

g, = f @ %(m, s) d(m®). (33)

m >0
po>0

Let us call the corresponding countably Hilbert space
¢, then we conjecture in an irreducible subspace of

‘51 ® ¢ = 361—@_ ¥, < (551 & $2)%,

the rigged Hilbert space for a representation of #.
In Appendix A it is shown that #£ is an algebra of
continuous operators in the countably Hilbert space

$ = ($1 ® ¢2, ('a ')p)9 (34)
where
(p1¥)y = (9, 7p) @pe $1 ® ¢, (35)
with
0 =1+ Ay = I* + (1/b)P2 + (1/b)P? + N2 + M?
(36)

and (-, ) the scalar product in J~€1 ® JC,. From the
definition of the projective tensor product topology

18 G, Kéthe, Topologische Lineare Rdume (Springer-Verlag, Berlin,
1960), Vol. 1.
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one sees that the topologies of ¢ and &, ® ¢, are
equivalent.

7. MASS SPECTRUM IN AN IRREDUCIBLE
REPRESENTATION

With these preparations it is now easy to reduce A
into its irreducible components #, , (4 ;,) and find the
mass spectrum in an irreducible representation space
of 4.

We take the expectation value (eigenvalue) of Eq.
(22) in the states (30) and obtain

m? = z —bI(I + 1). 37
For an irreducible component £, , (, .., Z is a number
characterizing one physical system together with
5, (ko, @)1
For the reducible representation space of £,

% = ( f ©¥(m, ) d(m?) iie)(ko, a)),

- f ®K(m, 5) d(m?) & 2 LA

= [dom) S @0etm,  8L.0: @9
i.e., the direct sums over I and m are independent
such that, for a given 1, (m, s) & J€! is contained in
J for any m. In the representation space ¥X(z, s, k,, a)
of the irreducible component #£, , 4, 4, for a given
I only that J¥(m,s) ® J; can be contained in
X(z, s, k,, a) for which m = mj given by (37). Thus
reducing J€ out with respect to Z we obtain from (38)
by reordering the direct sums according to (37):

Je = fdz z @ (Je(m_(, S) @ JeI)(z,s,ko,a)’
I

= [z © %z, 5, ks, (39)
Thus we obtain the canonical triplet of spaces of an
irreducible component of £, , ¢ '

¢ < 36(29 S, k03 d) < ¢X’ (40)
where ¢ is the irreducible subspace of § with the same
topology given by (35). ¢ is even nuclear, so that
(40) is the rigged Hilbert space of our system.
According to theorems by Grothendieck, the direct
product, the direct sum, and the completion of
nuclear spaces are again nuclear. By this the nuclearity
of ¢ follows from the nuclearity of ¢, and ¢,, which
is proved in Appendix Secs. BII and BIII. [It also
follows directly by Theorem 1 of Ref. 17 if we
choose (I2 + 1) for the operator A in Sec. BIL]

18 Here we see the confirmation of the statement in Sec. 2; for
b < 0, m* > 0 in a system characterized by z > 0.
173, E. Roberts, Commun. Math. Phys. 3, 98 (1966).
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Instead of the basis (28) of physical states (which
we do not completely know) we could also have used
the conventional basis of generalized eigenstates of the
maximal commuting system (24) of self-adjoint
operators in ¢ < X < ¢X. If we assume that (24) is
a CSCO, the Dirac spectral theorem applies (cf.
Sec. 10 of Ref. 4), and we obtain the basis of general-
ized eigenvectors:

|Ia» I’PiSB; (a’ ko), S$>'
The expectation (eigen)value of (22) in this basis
again gives (37).
Thus we have found in (40) the rigged Hilbert space
of an irreducible component of 4, which reduces out
with respect to § x SUZ(2) [by (391 according to'®

¢ =I;’; & (X(my, 5) & &, (41)

where the spectrum of m; is given by the mass
formula (37).

8. FINITE MASS SPECTRUM

Concluding, we remark that we could have chosen
instead of J€(k,,a) an irreducible representation
space ¥(k,,n) of a nonunitary representation of
SL(2,c) or a unitary representation of SO(4) (cf.
Ref. 6), which would have amounted to considering
SO(4) as the intrinsic noninvariance group. The only
difference in the foregoing consideration would have
been that, instead of (41), we would obtain

kogt+n—1

$= 2 (Kmy,s)®X,

I=ko
i.e., a finite mass spectrum. In this case too, for b > 0,
(37) would not lead to unphysical masses and
describe a spectrum in which the masses decrease with
increasing isospin.

42)
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APPENDIX A

To prove the continuity of 4 in ¢, where the topol-
ogy G, is given by the countable set of norms

(p, ‘p)p = (g, GP‘P)’

1 1 Al
0=l2+E§PuPu+§”va#vLuv, ( )

8 ® indicates that the limit is to be taken with respect to the
topology of ¢ and is to be contrasted with J(z, s, ke, a) =
X @ K(my,s) @ JeI where the limit is being taken with respect to
the Hilbert space topology.
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we have to show that from
p,—0 for n— o0, ie., (¢,,¢),—0
for every p, (A2)
follows
A, —0, ie., (49,,4,9,),—>0 forevery p,

for every A4, € generators of .

I. The Continuity of I;
From

1,6°I = QoL (A3)

follows

(Ii(pn » Ii(pn)p = (It'(p'n’ 0pli(pn) = ('pneplztpn)’
< (@, 0%09,) = (0" @,),
(q)n 3 (pn)p+1 L

so that from (A2) we obtain

(A4)

d;p,, '), >0 forevery p and n-— oo,

and from

(Ii(pns I."Pn)mz S (Ii(PnIi‘pn)y
we obtain
(Lp,,1,9,)—0 for n->ocoandevery p; (AS)

i.e., I is continuous. In the same way it follows that
all 7, i = 1, 2, 3, are continuous.

II. Continuity of F;
We write

0°= [I* + (1/b)Pe + (1/b)P* + N* + M?)®

in the form
b4 v p—v
6> = z(")(zF +-1-Pg) (N"+ M: — 12) :
v=0 \ ¥ N b b

(A6)
using (22). Then we calculate

(F,, 0°1F, =3 (1’ ) [F (212 + -II;P?,)V]

v=0 \ ¥V

—V

P
x F*‘(N2 +ME— %z)

P Vv p » 2¢
= z 2 ( ) (m) b(v—a)
x ([F;, PIPg™ + I*[F,;, P{"~*])

P—v
x F"(N2 + M — %z) : (A7)

where we have used the fact that L,, and Z commute
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with F,, with

Pﬁ(v—a) a( )
[Fi’ Pg(v—-a)] = Y= [F,, M v—a 1,
Pz(v—a)
_ _b(v—a) Iz(v——u)], (AS)

M2(v a) [F' ’

where we have used (13) and (22). We obtain for

I d—e-f([F, , I ]Pz(v—a) + IZG[F‘, Pﬁ(v—a)])Fi’

II = (Pg(v—a)/Mz(v—a))
X ([F, , I‘Za]Mz(v-—a) — b(v—a)I2a[Fi , I2(v—¢)])Fi’

II = (Pﬁ(""')/MZ("_“))
X ([F,-, Iza]FiMz(v—a) + [F,-, Iza][lz(v—a), Fi]b(v—a)
— b(v—a)lh[Fi , Iz("_“)]F").

In the last step we have again used (22). With

[Fi’ IZa][I2(v——¢)’ F,] — F‘[I2v’ Fl] + I2a[I2(v—¢)’ F,-]Fi
+ Fi[I2¢’ Fi]I2(v—¢),

which one calculates easily, we obtain

Pz(v—a)
I = Mg(v - ([F, , 12¢]F1M2(v-—a)
+ b(v—a)(ZIZa[IZ(v—a)’ Fi] F? + Fillzv: Fi]
+ F,»[Iz“, F:‘]Iz(v—-a)' (A9)
We now use
[F,, Pr]F* = C,(ko, @)

+ Cn—l(ko’ a)12(n—-1) + - Co(ko, a). (AIO)

Here C,(k,,a) are constants depending on the
invariants

FPF-DI=(1+a— (All)

F-I=kyal (A12)

of the system. (A10) can be calculated from the

commutation relations of SL(2, ¢): (3), (4), (Al1),and
(A12). Inserting (A10) into (A9) we obtain

kO)ly

II = ( z Ck(koa)lmt) PZ(v—a)

=0 2(v—a)
+ (za,;(ko, a)I”‘) po-a (3’) , (A13)

=0

where the new constants a (k,, a) are combinations
of various C,(k,, a).

Inserting (A13) into (A7) and rearranging the
three finite sums, we obtain

(F;, 6°]F = ( ic”vl“ ( fb_f))(m~v) + ﬁ e ( Po)z(p—v))

v=0 v=0
1

x (Nz + M — ;z) " (A14)

where the new constants ¢, and 4, are combinations
of the C, and a, and binomial coefficients.

ARNO BOHM

Let ¢ € ¢; we then obtain from (A14)
(fP, [Fi’ om]Fi(p)
D 1\
<Sa(no(vem-12 )
v=0

4 O(T—-V) 1 p—V
+3 é‘v(tpﬂ“ (N2 + M — ;z) gv)
v=0

Mz(p—v)

< 2 &g, 0% )

2 y 1
+ goav(tpﬂ”O‘”‘ )M2‘ — <p).
Here we have used the fact that I?, N2, M®, P? + P2,
(1/b)Z are positive, which follows from the fact that our
space ¢ = J = ¢X is constructed in such a way that it
reduces into representation spaces of the groups
SL(2,¢) or T such that the generators are essentially
self-adjoint®?, and from the fact that for our physical
systems Z has a positive eigenvalue.2
As
FiepF" = OFiFi + [Fi’ 0’)]Fi
= 01 + a(k,, a)0” + [F;, 0*]F%,
we obtain
(F i(p’ BTDF ‘(P)
= (pF0°F'p) < (9, %*9) + (g, 679)

L4
+ 3 élg, 07 9)
v=0

LN - 1
+v§00v(¢02” <P)(<PW_T, <P), (A17)

(A15)

(A16)

where

[p6%~(1/M*~)g] < (6%~ @)lp(1/ M) ¢]
has been used. With the aid of (A17) the continuity
of F; is easily seen: Let
¢, >0 for n— c0; ie.,

(Pnn), = (pa079,) =0 for every p. (Al8)

Then
(qu)n’ Fl(pn)ﬁ = (FltpnepFl‘pn) S (Fi(pnOpFi(pn)

< (9.8"79,) + «(9,0%9,)
P
+ 3 6P, 077,)

F
+ Zo G @n, 7 )@, MTHPp,),
(A19)

M? is a continuous operator, as shown in Appendix
AIIl. Since M? is a positive operator, (M)~ is
defined everywhere in ¢. Thus M2 fulfills the conditions

19 E. Nelson and W. F. Stinespring, Am. J. Math. 81, 547 (1959).
20 For b < 0 the argumentation has to be changed a bit by going
to the absolute value; the result also remains true in this case.
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of Banach’s theorem on the inverse operator? and
therefore M~2 is also a continuous operator; i.c.,
from ¢, — 0 follows M—2»—"g 0.

By using (A18), then it follows from (A19) that

(Frp,, Fi9,), — 0 for every p,

i.e., Fy, and in the same way F, and Fj are continuous.

III. Continuity of the Generators of ¢

To prove the continuity of P, in the topology of ¢
given by the scalar products

(@, ¥)p = (p, 079) with 6 = Ag + I,

we calculate
D

(PP P @) =S (ﬁ) (PP AFP I ")

n=0

»

<s (" ) IPcAZ Pegll [P ).
n

n=0

We use, as in Appendix B, Lemma 6.3 of Ref. 22,
from which follows

[P«AF Pegll < ¢ (A — )" 'gl, ¢=const, (A20)
so that

@PO*Ppl
<c3 (” ) > (" + 1) A ] [P,
n=0\ N/ m=0 m
(PP
p ntl
<e3 Y (”) (" + ’) (@AXmH I G [ g,
n=0 m=0\ M m

(A21)
We have to show that from | ¢, ||, — 0 for every p and

v — oo follows || P, ¢,|, — O for every g. Using (A21),
we obtain

1P,z = (@, PbPugp))|

p ntl

1 —n
<c3 Z(f’l)("; )u%umm [P, 0

n=0 m=0

for » — oo because ||@,lly,. —> 0 for every n and
because of the continuity of I2, which is proved in Sec.
AlL

The continuity of L,, follows in the same way;
to prove it one just has to replace P, by L,, in the
above proof.

The continuity of M follows from the continuity of
M? = P,P* and the commutativity of M and 0, and
the continuity of M~ follows then from Banach’s
theorem of the inverse operator.

21, M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic Press Inc., New York, 1967), Vol. 1l.

22 E, Nelson, Ann. Math. 70, 572 (1959).

23 We use the notations of Ref. 4.
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APPENDIX B

I. Continuity of the Enveloping Algebra with
Respect to the Topology in ¢ Given by the
Nelson Operator

Let E(G) be the enveloping algebra of the Lie
group G of linear operators on a linear space ¥'; let
(-, *) be the scalar product in ¥ with respect to which
X e£(G) (Lie algebra of G) is symmetric; let J be the
completion of ¥ with respect to the topology given by
the scalar product (-, -). Let X, be a basis of £(G) and
A = ZX? the Nelson operator; and let ¢ be the com-
pletion of ¥ with respect to the topology given by the
countable number of compatible scalar products:

(¢, ¥)p = (9, (A + 1)*y).

Then E(G) is an algebra of continuous operators on
the countably normed space ¢ < XK.

The proof is a simple consequence of a lemma by
Nelson: ¢ < ¥ follows from (-,),_,=(,"). It
remains to be shown that the generators X; of E are
continuous operators. According to theorem of Sec.
IE of Ref. 4 we have to show that from ¢, — 0 with
respect to T, (topology of ¢) follows X;¢, — 0 with
respect to G.

(B1)

@, — 0 with respect to  G,<=>(@,, ), >0 (B2)

for every p (cf. Sec. IC, Ref. 4). Therefore it is to be
shown that

(Xian s Xiwn)a g 0
for every q.
From lemma 6.3 of Ref. 22 follows

(pX:(A + 1)'X,9) < k(9(A — 1)) (B3)

for every ¢ € ¥ and all positive integers ¢, where k is
a constant k < 0. From this we obtain

(Xi(pn’ Xi(pn)q = (?’m X:(A + l)qu(Pn)
<q+1

< 2 eleA + D™,

v
<q+1

S z cv((pn H (pn)v+1 - 0;

ie., X;9,—0.

For the triplet § = 3 < ¢ to* to be a rigged Hilbert
space it has still to be shown that ¢ is nuclear.

The proof of the nuclearity for this general case is
not known to us. However, in some more special
cases of physical importance, where G is semisimple
or G is the Poincaré group and X is a representation
space of an irreducible unitary representation of G,
the nuclearity can easily be proved with the aid of a
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theorem by Roberts!” and some results on group
representation dueto Harish-Chandra and Godement.

II. Nuclearity of ¢ for Semisimple
Lie Groups

Let g — T, be a unitary irreducible representation
of the semisimple Lie group G in J and ¢ the count-
ably Hilbert space of I. Then ¢ is nuclear and conse-
quently ¢ < J& < ¢X, a rigged Hilbert space.

To prove the nuclearity of ¢ we have to show,
according to Theorem 1 of Ref. 17, that there exists
an 4 € E(G) < L(¢$) with A self-adjoint in J¢, whose
inverse is nuclear.

Let K be the maximal compact subgroup of G and
C the second-order Casimir operator. We consider
A = (C + )" € E(G), where n is a sufficiently large
integer. C and C" are essentially self-adjoint according
to a theorem by Nelson and Stinespring!®; conse-
quently A is also essentially self-adjoint.

It remains to be shown that 4~ is nuclear. We first
remark that it is sufficient to show that 4~ is Hilbert-
Schmidt, because the product of two Hilbert-Schmidt
operators is nuclear so that 4% would then fulfill the
above conditions. A Hermitian operator B is Hilbert-
Schmidt if B = XA P,, where the projections P,
project on finite dimensional spaces J¢, and

T(14,] dim J€,)2 < oo.

Let d be an equivalence class of unitary representa-
tions of K and let J; denote the subspace of J€ which
transforms according to d when G is restricted to K.
Then dim J; < oo (Harish—-Chandra)®* and the irre-
ducible representation d occurs at most (degree of d)
times in the restriction of g — T, to K (Godement);
consequently (dim ¥,) < (degree of d)®. From this
and the fact that the irreducible representation d of
K is characterized by a finite number of Casimir opera-
tors it follows that dim ¥; < N dim ¥, ,,,, where X,
is the eigenspace of C with eigenvalue ¢; and N is a
number depending upon the number of independent
Casimir operators of K, ie., depending upon K.
Therefore A7 = X[1/(c; — 1)"]P,, where P, projects

24 E. M. Stein, A Survey of Representations of Non-Compact

Groups, Proceedings Trieste Seminar (1965) IAEA Vienna, 1966)
and references therein.
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on finite dimensional spaces X, . Further, we calculate

2 ((T?iT) dim Je) =Mz ((c,- i 0

2 __1___ )2 2
<N ; [(Ci e (degree of d(c,)) ] < o0

2
dim Jed(w,)

for sufficiently large n. {Comparing Eqs. (117) and
(103) of Ref. 25 one finds that [degree of d(c,)] £
const (c;)™, where m depends upon the number of
roots of K, i.e., upon K.} This completes the proof of
the nuclearity of ¢.

III. Nuclearity of ¢ for the Poincaré Group

The proof of Sec. BII depended on the fact that
dim J¢; < oo, which is true for semisimple Lie groups
but not generally so that for a general Lie group the
proof of the nuclearity cannot be carried out as in
Sec. BII. However, in the case that G is the Poincaré
group (or more generally, any inhomogeneous pseudo-
orthogonal group) we can reduce the proof to the
former case.

Let H(m, 5s) be a representation space of a unitary
irreducible representation of . Then the countable
Hilbert space ¢ with the norms given by (Bl)is nuclear.

To show this, we use the connection between an
irreducible representation (m,s) of § and the irre-
ducible representation («, s) of SO(4, 1).26

Let P,, L,, be the generators of E,, (F); then L,
and

B, = P, + (A[2m)(P*L,, + L, ,P*) € E,, (7)

form a basis of the Lie algebra SO(4, 1) in the irre-
ducible representation

{o = [(m?/2%) + 9/4 — S(S + D}, S}

of SO(4,1). Theelements B;and M, = }§,,L* (i, k,] =
1, 2, 3) form a basis of the Lie algebra of the maximal
compact subgroup SO(4) of SO(4, 1). Therefore the
second-order Casimir operator B2 4+ M%e E, (T)
fulfills all the conditions of the operator 4 in BII,
which proves the nuclearity of ¢.

28 G. Racah, ‘“‘Group Theory and Spectroscopy,” Lecture Notes,
Princeton (1951).
26 E.g., A. Bohm, Phys. Rev. 145, 1212 (1966).
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Spinors obeying the Dirac equation also obey the Klein-Gordon equation, but the converse is not
true. In this paper we make a systematic study of four-component spinors obeying the Klein-Gordon
equation, with special regard for the additional solutions. The starting point is the Lagrangian density
£ = P, Yupvp,y — m*Py, and we first develop from it the theory of a classical spinor field. We then
proceed to the canonical quantization of this field and are confronted by some anticommutators of
creation and annihilation operators equal to —1, and the subsequent need for an indefinite metric in
Hilbert space. Quantum electrodynamics can be reformulated, and in spite of a modified fermion
propagator, gradient coupling, and vertices with two photon lines, the amplitude for Compton scat-
tering to order e? is the usual one. Special problems arising for massless fermions are indicated, and we
note that the four-fermion point interaction is now renormalizable. Some interesting variations of

strong interactions also become possible.

1. INTRODUCTION
THE usual presentations of the Dirac equation

(—id + myp(x) = 0 %)

involve, directly or indirectly, the factorization of the
Klein-Gordon equation

(O + m?yp(x) = 0. @

It is quite obvious that not all solutions of Eq. (2)
are solutions of Eq. (1); the purpose of this paper is
to study the properties and possible relevance for
physical problems of the discarded solutions.

In Sec. 2 we deal with the classical theory of a four-
component spinor field (it has the same behavior as
the Dirac spinor field under Lorentz transformations)
that has Eq. (2) for its equation of motion. We
choose an appropriate Lagrangian density, and we
find the canonical momenta, the conserved quantities,
and their expansions in terms of plane wave solutions.
It is observed that the contributions to conserved
quantities coming from the “anomalous” solutions
have the opposite sign from those pertaining to the
“normal” solutions. The separation of the angular
momentum tensor into spin and orbital parts shows
some interesting features even when the anomalous
part is eliminated.

In Sec. 3 we follow the canonical quantization
procedure to obtain the anticommutation relations
for this field. The anomalous solutions again show an
additional minus sign; therefore an indefinite metric
in Hilbert space is introduced to avoid contradictions.
The space of physical states can then be restricted by

* Present address: Drexel Institute of Technology, Philadelphia,
Pa.

means of the Dirac equation applied to the state
vectors.

In Sec. 4 we obtain the electromagnetic interaction
of the field by means of the usual gauge-invariant
substitution. Although the fermion propagator and
the vertices are changed, the amplitude for Compton
scattering in lowest order remains the same.

In Sec. 5 we present a number of difficulties that
arise when the mass of the fermion tends to zero. In
Secs. 6 and 7 we discuss briefly the possible forms of
weak and strong interactions, respectively.

Finally, in Sec. 8 we mention some of the open
questions that can be a subject of further research.

Conventions to be used throughout this paper are
that Greek indices run from O to 3 and Latin indices
from 1 to 3, unless otherwise stated; we use the time-
favoring metric, i.e., the nonzero components of the
metric tensor J,, are

0gp = =0 = —0pp = —0y3 =1, 3)
so that the scalar product of two four-vectors is
a*b=ab, =aby, —a-b=ah,—ab, (4)

where an explicit representation of the Dirac matrices
Y, is used; it is

1 0 0 ¢ s
70—<0 _1)’ Y—(—O' 0)’ ()

where the o, are the 2 X 2 Pauli matrices, and we add
the matrix

0 i
Vs = Y1Y2¥3Yo = ( ) (6)
i 0

We write
a=ayy,, @)
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and derivatives are indicated by
0, = o/ox* ®

or an index u following a comma. Summation over
repeated indices is implied, modified according to
Eq. (4) for Greek subindices, and we set i = ¢ = 1.

2. CLASSICAL SPINOR FIELD

The factorization of the Klein-Gordon equation
into

(@0 + m)(—id + m)y = 0 ©)
shows that either of the equations
(Fid + myy =0 (10)

could be chosen for the Dirac equation. Bogoliubov
and Shirkov? further remark that both are equivalent
under the unitary transformation of the Dirac matrices

Ya = VsVa¥s =~V (1)
Nevertheless, when both equations are considered
simultaneously, they are not equivalent.

The Lagrangian and Hamiltonian formulations for
fields obeying the Dirac equation appear unsatis-
factory for various reasons. We can use the Lagran-
gian density .

£ = ipoy — mpy, (12)
where?

P = 'y = §*y,, (13)
and vary y and § (or y?) independently to get the
equations of motion. Corresponding to these general-
ized coordinates we have the canonical momenta®

v = iy, (14)
I’ = o, (15)

a rather unpsatisfactory result. A more symmetric
answer is obtained from

L= éi("p'}'pw.n - 'I-’,u‘}’;ﬂp) - m@'/)s (16)

whence
v = iy, 17
HV = "%’70'/’, (18)

but it is still bothersome to have a factor } and to
again have the momenta as coordinates. The basic
formulation of a variational problem becomes un-
clear when we have equations of motion of first

1 N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory
of Quantized Fields (Interscience Publishers, Inc., New York, 1959),
Chap. 1, p. 64.

3 A star indicates complex conjugation; a tilde, the transpose; a
dagger, the conjugate transpose for classical fields and the Hermitian
conjugate for quantized fields.

3 We omit the spinor indices whenever the meaning is clear.
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order, since the generalized coordinates are to be
held fixed at arbitrary values both for the initial and
the final times.* Other lines of inquiry® have also led
to the consideration of both Eqs. (10) where the
double sign is attached to the mass and the corre-
spondence to particles and antiparticles is made.
Therefore, there seems to be ample justification for a
closer examination of the solutions of the Kliein-
Gordon equation.
We can use the projection operators

P, = (£id + m)]2m (19)

[operating on the vector space of solutions of Eq.
(2)] to separate any solution into two parts

vy=9¢+7 (20
¢ = Py, (21
1 =Py, (22)
so that @ and y obey
(—id + mp =0, (23)
(i0 + m)y = 0. (24)

A Lagrangian density that is a Lorentz scalar and
gives the equations of motion (2) is®

£= Tp,pynva.v - mz'ﬁ'/)' (25)
The canonical momenta are now
Y = P,u¥uVo> (26)
IT? = yerv¥.vs @27
which become, by Egs. (20), (23), and (24),
¥ = im(¢ — )ve., (28)
II° = — imy(9 — ), (29)

and the Hamiltonian density is

¥ = ey + Pavivoll® + IIYI1° + mPpy. (30)
Noether’s theorem” gives us the usual tensors that
obey differential conservation laws. They are

Tuv = "T),y?’u?;ﬂ/’,l + ﬁ.AYAyn'p,v - s:"‘suv’ (31)

M, =xT,,~ x,T,

[ dal 44

+ %i('p.ly,l'yuo'vp’p - V_WVPVWA'P,A), (32)
Ju = 1Pyyap.a — Pava7u¥)s (33)

4 This question was first brought to my attention by E. A. Power.

5 1. Saavedra, Nucl. Phys. 77, 673 (1966).

¢ The more immediate choice £ = 9,9, — m*Py was rejected
because it does not give the same electromagnetic interaction as the
Dirac equation by the usual gauge-invariant substitution.

? E. Noether, Nachr. Ges. Gottingen, Math.-Phys. KL, p. 235
(1918); see also Ref. 1, p. 19, Eq. (11), and other books on field
theory.
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where
UVp = '—él(yv‘yp - ypyv)' (34)
The energy momentum tensor 7, is not sym-
metric; the symmetrized form®® is

O = P27y + Pavavu¥s + P u07a¥a
+ P VuVa¥a — PV — P aVa¥u¥
= PV — PYuVa¥.an)

= 3im(@y,@.p + PVuPv — PuVvP — G VuP
= IV — XV T Lo + Lovu).  (36)

In the latter form, it can be recognized as (2m times)
the difference of the symmetrized energy-momentum
tensors of two Dirac fields ¢ and y; this is strongly
reminjscent of the way the vector and the scalar
fields are combined to form a Lorentz vector field,
where the scalar field also comes in with the “wrong”
sign.1! Similarly,

(35)

Ju = 2m(@y,. 9 — v 0)- (37
Another form of the conserved current is
Ju =Py, — Pu9); (3%)

they are equivalent, since the difference can be
expressed in the form £, , ., with

Jou = POy (39)

The asymmetry of T,, casts serious doubts on the
usual separation of the angular momentum density
tensor into orbital and spin parts,!? since then

Ly = %1, — x,T,,, (40)
S;wp = %i(qj,l}’l‘yuaww - ‘povpynyl'p.l) (41)

are not even conserved. We find that this question is
best discussed in terms of momentum-space ex-

& G. Wentzel, Quantum Theory of Fields (Interscience Publishers,
Inc., New York, 1949), Appendix I, p. 217.

? J. Rzewuski, Field Theory (PWN—Polish Scientific Publishers,
Warsaw, 1964), Part 1, Chap. 2, p. 105,

10 I, Goldberg and E. Marx, Nuovo Cimento (to be published).

11 This is certainly not a new problem; it is present in the electro-
magnetic field, and it has also been discussed for vector fields by T.
D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962). Negative
energies appear also in other contexts; see, for instance, A. Pais
and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950); R. E. Norton,
J. Math. Phys. 6, 981 (1965). In the theory of quantized fields, the
same ‘‘wrong” sign affects commutators or anticommutators, and
an indefinite metric is usually introduced in the Hilbert space of
state vectors to avoid certain inconsistencies due to this sign change.
Nevertheless, this does not solve the problem of negative values for
the expectation of the energy (defined in the usual manner, but
in the space with the indefinite metric); it becomes positive only after
the subsidiary conditions in the corresponding theory are introduced.

13 See, for instance, J. M. Jauch and F. Rohrlich, The Theory of
Photons and Electrons (Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1955), Chap. 1, p. 20; Ref. 1, pp. 25 and
80. A different approach to this question is given by J. Hilgevoord
and E. A. DeKesf, Physica 31, 1002 (1965).
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pansions; they are
P =3 f d*p2ry }2E)Hu(p, Hb(p, e **

+ o(p, &) d*(p, e, (42)
EED) f dp2my Y 2EY H[o(p, D) f(p, e =

+ u(p, g*(p, ™71, (43)

where the index A ranges over the two helicity states,
the spinors u and v satisfy

(B —mu=0, “449
B+ myp =0, 45)
u=—j=1, (46)
and we always set
E = py = +(p* + m?)}. Cy))

The charge and the energy-momentum vector become
Q=3 [pbh+dd* 1 — a7, (4B)
A

P,=3 f #pp,(b*b — dd* — f*f + gg*), (49)

where the only unusual feature is the additional
minus sign for the terms coming from y. After a
lengthy calculation, we also find the angular momen-
tum tensor M,,, which we split into the separately
conserved parts L,, and S|, according to

— mi .ﬁ’ _a_ fre _E_?_ t *
L,= mt; f E {p,,[apv (u'b¥)ub + o (v'dyd
0 0
55O = (u*g)ug*] —(p v)},

(50)
m3 f Pp(Ey(—u'o,ub*b — v'o,pdd*

A
5,
I

+ olouf *f + u'o,uge®), (51)

Sog = mi [ €292 o)™ ') %, u(~DH*HB(~D
+0'@) B, o~ 1B (—1) — T D) T, (- )
X (=) — u'}) T, u(—%)g(%)g*(—%)]
+ h.c., (52)

where derivatives with respect to p, are to be set

equal to zero (as a matter of notation), and in Eq.
(52),

(53)

L, = —tenoy,

(1)

ie.,

(54)
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This separation of the total angular momenta into
orbital and spin parts is different from the usual ones.!?
It is a natural separation insofar as L,, is an extension
of the angular momentum for a scalar particle and
S;; has the form which would be expected for the spin
vector; on the other hand, Sy, contains only terms with
mixed helicities, although the contributions from ¢
and yx are still separate, as throughout. It is also
worth noticing that, in going over to L,, and §,,, not
only the time-dependent parts of L., and S,, cancel
each other, but that some time independent cross
terms do likewise. A similar separation is also possible
in the case of Lorentz vector fields.®

The question whether a reasonable relativistic
quantum mechanics for a single spin } particle
exists might not be really significant. Feshbach and
Villars'® make a very convincing case for the inter-
pretation of a scalar field that obeys the Klein—-
Gordon equation: they replace the (positive definite)
probability density of nonrelativistic quantum me-
chanics by a (no longer positive) “charge” density
in the relativistic theory; the problem of negative
energy states is then solved by the introduction of an
indefinite metric in a certain ‘“‘charge” space (not in
the Hilbert space of the quantized field theory). In
their equally relativistic spin } theory, they go back
to a positive definite probability and the problem of
negative energies remains unsolved until the fields
become anticommuting operators by a second
quantization; then the probability density becomes
the (indefinite) charge density, and the energy be-
comes positive. An infinite sea of electrons with
negative energies is not a very satisfactory assumption
for a single particle theory either. Our charge density
Jo» given by Eq. (37), is indefinite, but Eqs. (48) and
(49) show that there is no correlation between the
signs of the charge and energy, so that an interpreta-
tion similar to that given in Ref. 13 for a scalar
particle is apparently not possible. The basic difference
between anticommuting field operators and com-
muting classical fields suggests that maybe the
interpretation of relativistic quantum mechanics for
spin % particles should not be pursued too far.

3. QUANTIZATION OF THE FREE FIELD

We can use the canonical quantization procedure
and set

{yu(x, O, IIY(X’, N} = i0,50%(x — x"), (55)
{Pulx, 0, TIH(x', )} = —id,,0%x — x), (56)
where the spinor indices « and 8 go from 1 to 4 and

13 H, Feshbach and F, Villars, Rev. Mod. Phys. 30, 24 (1958).
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d,s is the ordinary Kronecker delta, and we set all
other equal-time anticommutators equal to zero.
The minus sign in Eq. (56) is necessary to avoid
getting only mixed anticommutators of ¢ and yx
different from zero, and it also makes Eq. (56) the
Hermitian conjugate of Eq. (55). We obtain from
them the nonzero anticommutators

{pulx, 1), (X', 0} = (1/2m)(y0)up8*(x — X),
(0%, D,75(X', O} = —(1/2m)(6)p8*(x — x), (58)

and but for the minus sign in Eq. (58) and the
normalization factor 1/(2m), they are the usual ones for
Dirac spinor fields.

These anticommutation relations imply

(57

{@a(x), §p(x)} = —iSp(x — x)2m,  (59)
{£2(x), Zp(x)} = —iSgp(x — x")[2m,  (60)
{9a(x), Pp(x)} = i0,5A(x — x), (61)
where
Ax) = —i2m)™ f dpe(p)d(P* — MY (62)
S(x) = (i + mA®X), (63)
5(x) = —(—id + mA(x). (64)
We can also derive from them
{b(p, ), b'(p’, 1)}
= {d(p, 1), d'@’, ')} = 6,..0°( — P), (65)
{f® 2,10, 1)}
= {g®, 1), g'@’, )} = —6,,:0°( — p). (66)

Going over to the discrete language of box normal-
ization, we are faced by anticommutation relations
such as

{a,a"} = —1, (67

which are clearly in contradiction with the usual
definition of Hermitian conjugate. The problem is
similar to the one presented by the time component
of the electromagnetic potential,’* and can be solved
in the same manner by introducing an indefinite
metric in Hilbert space.’®* We can use (a direct product
of) state vectors with only two components,'® with a

14 Reference 1, Chap. 2, p. 130ff.

15 S. N. Gupta, Proc. Phys. Soc. (London) A63, 681 (1950); K.
Bleuler, Helv. Phys. Acta 23, 567 (1950); L. K. Pandit, Suppl.
Nuovo Cimento 11, 159 (1959); K. L. Nagy, Suppl. Nuovo Cimento
17, 92 (1960).

16 J, D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill Book Company, Inc., New York, 1965), Chap. 13,
p. 471
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metric
. _1 -1 0 9)
n=n=y= o 1/
The adjoint of the annihilation operator
(0 0 )
a=
10
is then
* t 0 -1 (70)
a* = na'n = ,
nan 0o 0
so that
{a,a*} = —1. 1)

We consequently have to change the definition of
p to
1/-) = ‘P*)’o ’ (72)
and replace f* and g' by f* and g*; naturally we have
b* = b, d* = d".
The vacuum expectation value of Wick’s chrono-
logical product of ,(x) and §4(x’) is calculated to be

O] T(p(x)Ps(x)) 10) = $0,5Ap(x — x),  (73)
where

Aplx) = 22y f dip(p* — m® + il e, (74)

We are now faced with the problem of the physical
interpretation of states with negative norm, such as
those containing one particle created by f* or g*; it
is always possible to restrict the physical states to
those (with positive norm) - containing particles
created by b' and d. The physical state vectors then
satisfy

(—iy, ¥ + myp*) ) =0, (75)
(P57, + mp) |y =0, (76)

or
AP =0, F¥])=0, an

where the positive frequency parts ‘), $+), ¥ and
#) contain the annihilation operators.

4. ELECTROMAGNETIC INTERACTIONS

By addition of a Lagrangian density for the free
electromagnetic field and the usual gauge-invariant
substitution

0,— D, =0, — ied,,
the Lagrangian density (25) becomes

£= (D:'I-’)')’u‘}’va'P - mzfﬁ’P - iFquuv’ (79)
where the fields F,, are defined in terms of the
potentials 4, by

F,=A4,,—A4

(78)

(80)

v
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The equations of motion for the spinor field become
(D* + m?)yp = 0, @80

(D* + m*)y + eF 0,y =0, (82)

where the so-called magnetic moment term® }eF,,c,,p
is the same distinctive spin } term obtained by oper-
ating with D on the Dirac equation

(—iD + myyp = 0.

or

(83)

It is still possible to define the gauge, covariant
fields

¢4 = (iD + m)y[2m, (34)

_ x4 = (—=iD + m)yp[2m, (85)
since

Pi = (+ib + m)2m (86)

are again projection operators in the space of solutions
of Eq. (81).
The action integral

I= f E[w(x), A(x)] d'x

is obviously invariant under proper Lorentz trans-
formations, since the spinor ¢ and the vector A4
transform in the usual way. So it is under space
reflection T, time reversal G, and charge conjugation
C, characterized by

(87

P(x) = ¢'(x) = Fp(x)F™" = pop(—x', 1), (88)
A(x) > A, (x) =FA ()T =6,,4,(~x,t) (89)
(no summation over u),
P(x) = 9'(x") = BP()B! = iy1yp*(x’, —1"), (90)
A, (x) > Ay(x") = BA ()G = 4,,4,x", —t"), (91)
and
P(x) = 9"(x") = Cp(x)C™' = —ipp*(x"), (92)
A (x) > A (x") = CA(X)C = —A4,(x"). (93)

Then the new vy fields obey the same Eq. (81) with
the new potentials.

The action is also invariant under the chirality
transformation

P(x) = psp(x)-

It should be noted that, contrary to &, G, and C,
the Dirac equation is not invariant under a chirality
transformation ; moreover, if ¢4 is a solution of Eq.
(83), ys;¢4 belongs to the subspace of the y4.

The interaction Lagrangian density is defined to be

%4

£, = ie(PAy,p., — P..27:49) + 4%y, (95
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which introduces both gradient coupling and vertices
with two photon lines. Nevertheless, we have calcu-
lated the amplitude for the Compton effect in lowest
order with the above interaction, using!?

S = T[exp (i f £,(%) d‘x)]

and omitting ‘“singular expressions arising when
differentiating singular functions,” 2* and the result
is precisely the same one that is obtained from the
usual theory.?® It should then be of interest to compute
radiative corrections and see whether there is a
difference that might be tested experimentally.

By examining the vertices and propagators,?® we
come to the conclusion that the theory is still re-
normalizable.

(%96)

5. MASSLESS FERMIONS

The theory set forth in Secs. 2 and 3 runs into quite
predictable problems when the mass m is allowed to
be zero. The normalization conditions for u and v
have to be changed if their components are to remain
finite; we can take, for instance,?!

Cy)
(98)

Moreover, the u and v used before become essentially
equal, i.e., the solutions of

wu=1iv=290,

ulu = v’y = 2E.

99)

with p, = E > 0. Consequently, the spinors ¢ and x
become essentially the same, say ¢'®, and we have to
find the other solutions of

Oyp=0 (100)

by a limiting process or otherwise. They correspond
to E < 0 and can be expressed in terms of the spinors
Yo that complete the set of orthogonal spinors with
the u. Completeness now reads

3 [u(e, Au'(p, 2) + you(p, Hu'(p, Ayel = 2E x 1,
(101)

pu=0

17 Ref. 1, Chap. 3, p. 226.

188, S. Schweber, An Introduction to the Relativistic Quantum
Field Theory (Row, Peterson and Company, Evanston, Illinois,
1961), Chap. 14, p. 482; see also Ref. 1, Chap. 3, p. 230ff.

19 A similar result is obtained by L. M. Brown, Phys. Rev. 111,
957 (1958), for the electromagnetic interactions of a two-component
spinor that also obeys the Klein-Gordon equation. As far as these
theories reformulate ordinary quantum electrodynamics, they
should be equivalent.

10 Ref. 1, Chap. 4, p. 340f.

21 J, D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill Book Company, Inc., New York, 1964), Chap. 10,
p- 249. It should be noted that their “projection operators’* do not
satisfy any of the usual relations P, + P,=1, P§=P,, P =P,.
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where the 1 in the right-hand side is the 4 X 4 unit
matrix. We can separate the general solution of Eq.
(100) into two parts

p =@ + 2, (102)

where ¢ and 4 satisfy
ipd® = 0, (103)
iv6070x® = 0. (104)

Their momentum-space expansions are of the form

¢ (x) = ; f Pp2m)yCE)y Hu(p, Db, e
+ u(p, A) d*(p, He™ 7], (105)
X(O)(x) = ; J‘ds P(ZW)_*(ZE)‘*[‘you(p’ D f(p, l)e—im-z

+ vou(p, )g*(p, e’ 7. (106)
The projection operators now become integral
operators, and we use the matrix

F(x) = iQ2n) f dpQEY* 3 u(p, D@, e
(107)
= i(2m)"® | &*p(2E) 2py,e """
to express
PO (x) = f Ex{[F(x — x) + F'(x — x)]op(x")
— Og[F(x — x") + Fl(x — x)lp(x)}, (109)
£0(x) = f A olF(x = x') + F'(x = x)ygdsp(x)

— Yool F(x — %) + F'(x — x)lyop(x)}. (110)
We can check that expressions (109) and (110) are
independent of ¢ for functions ¥ that satisfy Eq.
(100) and vanish sufficiently rapidly at infinity.
If we now try to follow a procedure similar to that
used for massive fermions, starting from the Lagran-
gian density

(108)

L= ¢.7¥. (111)
we are led to unreasonable expressions such as
II¥ = § 7,7 (112)
= —i ; fdap(.?#)_g(ZE)*(qu *eive _ ytggiva)
(113)

Po=3 [dpQEROY + dg* + %+ gd%). (14

The canonical quantization procedure also has to be
abandoned for this field. The reason an expression
such as (114) occurs is clear: The original fields ¢ and
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% become equal, but they contributed terms with
opposite signs to the conserved quantities; hence,
these now vanish unless the new solutions are intro-
duced. These problems do not appear when only one
field @ is considered, with a Lagrangian density such
as

L= %i((ﬁylaq).u - (f’.uyufp)’ (115)

which gives Eq. (103) for ¢.

This peculiar behavior for massless particles is
certainly not limited to the spin 4 case. In the much
better known spin 1 case, the scalar part of the Lorentz
vector field and the longitudinal component of the
vector part become equal, while their contributions to
conserved quantities also have the opposite sign.1?

6. WEAK INTERACTIONS

These interactions occur between four fermion
fields. Since the range of this interaction is very short,
it has been customary to assume a point interaction
of the form??

=3 CHAV0 P FP0p"™ + he., (116)

where the operators O, can be 1, y,, 6,,, Y5V, OF V5.
Alternatively, the suggestion has been made that the
interaction is mediated by a vector boson. The theory
with a point interaction has led to difficulties because
it is nonrenormalizable, while the vector boson has
not been observed (and it is not clear whether its
electromagnetic interactions are renormalizable).

On the other hand, if we use the fermion fields
described above, the point interaction becomes
renormalizable.?? The most objectionable feature
would be the consideration of the neutrino as a
massless particle; it could be given a small mass and
then the results should be taken in the limit m, — 0.

Feynman and Gell-Mann? have proposed a theory
that is a special case of Eq. (116); it is

£; = CPWy,a, 9 P5®y,a, 9@, (117)

where
a, = (1 x iyp). (118)
It is introduced by the replacement of the fields
v by a,p". In our theory, the operators a, are
projection operators that separate the solutions of the
Klein-Gordon equation into two subspaces. But
a,y is not a solution of the Dirac equation (with either

22 Ref. 18, Chap. 10, p. 295.

# R, P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958). The same proposal was made by E. C. G. Sudarshan and
R. E. Marshak, Proceedings of the Padua—Venice International
Conference on Mesons and Recently Discovered Particles, 1957
Societd (Italiana di Fisica, Padova, 1958); Phys. Rev. 109, 1860
(1958); and J. J. Sakurai, Nuovo Cimento 7, 649 (1958).
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sign) when y is, so that the subspaces defined by P,
become intermixed by relations of the form

ap=9¢ + . (119)

The only case in which this does not happen is that of
the field corresponding to massless fermions, as is
well known.

The equations of motion obtained from the Lagran-
gian density (117) in our theory are easily seen not
to be invariant under parity transformation or charge
conjugation separately, but they are invariant under
their product.

7. STRONG INTERACTIONS

The usual interaction Lagrangian density for
nucleons and pions is of the form

L1 = gPrsvé, (120)

where y is an ordinary Dirac field and ¢ a pseudo-
scalar field, so that the equation of motion for p is

(—id +m — gyedyy = 0. (121)

Operating on this equation with (i5 + m + gysd) we
obtain
(O + m* — g*y =0, (122)

where the pseudoscalar nature of the field ¢ is ex-
pressed by the minus sign of the third term and the
absence of a first degree term in ¢ brought in by a
scalar coupling. The obvious choice for an interaction
Lagrangian density that would give Eq. (122) is
£r = g*$"py;
it would give vertex diagrams with two meson lines,
which should give essentially the same results as the
original theory.

There is a second possibility, which is to keep £;
for our v fields; this should give interesting variations
on calculations of transition amplitudes.

In general, we can say that the old equations of
interacting fields can be ‘““squared” to bring them into
a form similar to the Klein-Gordon equation, but the
modified propagator for the fermion fields allows a

number of new interactions which are also renor-
malizable.

(123)

8. OPEN QUESTIONS

What we have done so far is to sketch a new
approach to spinor fields. We have not gone far
enough to come to any conclusions, so instead we
briefly point out several considerations that indicate
possible areas of further research.

4 See, for instance, Ref. 18, Chap. 10, p. 283.
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A completely satisfactory interpretation of the
quantum mechanics of spin % particles has not been
achieved, and there are indications that this might
not be possible. For the same reasons, the possible
usefulness of the theory of a classical spinor field as an
approximation to the quantized theory (in the sense
the classical electromagnetic field and even the meson
field®® are useful) is not apparent.

The general problem of the separation of the total
angular momentum of a field into orbital and spin
parts has also not received a satisfactory treatment in
the literature, in our opinion. The interpretation of
the space-time components of the tensor should also
be examined in greater detail.

We have seen that, both in the present theory and
in that of Lorentz vector fieldsi® (or the electro-
magnetic field), a part of the field appears in conserved
quantities and commutation relations with the “wrong”
sign, leading to difficulties such as an indefinite
expression for the total energy or inconsistencies that
are solved by an indefinite metric in Hilbert space.

28 D. Iwanenko and A. Sokolow, Klassische Feldtheorie (Akade-
mie-Verlag, Berlin, 1953).

EGON MARX

The origin of these problems can be traced back to the
requirement that the Lagrangian density be a Lorentz
scalar, and the indefinite nature of the Lorentz metric.

As far as quantum electrodynamics is concerned,
either a general proof of equivalence of this theory
with the usual one should be found, or transition
amplitudes for the different processes and divergent
diagrams should be recalculated to find possible
changes in the results.

The peculiarities of the limit m — 0 require further
attention, and a search for a better formulation is
clearly necessary. If this problem is satisfactorily
solved, it becomes possible to calculate higher order
corrections to the transition amplitudes in weak
interactions.

It is also possible to write down a number of new
interaction terms for strongly interacting particles,
and the corresponding Feynman diagrams can be
evaluated.

In general terms, we can say that a further study of
the ramifications of this theory is required to reach a
better understanding of the significance of the new
features it presents.
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converge too rapidly to zero unless the first moment of the potential vanishes. Finally we analyze the
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which is found as a by-product.

I. INTRODUCTION

HE “inverse scattering problem at fixed energy’
is the problem of finding the local potentials which,
when inserted in the Schrodinger equation, lead to a
prescribed set of phase shifts of all angular momenta.
A solution to this problem was given five years ago.!

b

* Supported in part by the National Science Foundation and by
the U.S. Army Research Office—Durham.
! R. G. Newton, J. Math. Phys. 3, 75 (1962).

In a recent series of papers? Sabatier considerably
expanded this method and found a very much larger
class of solutions. The following remarks are con-
cerned with this general set of scattering-equivalent
potentials and the connection of the results with the
theory of complex angular momenta. Of particular
interest in this connection is an “‘angular momentum

% P. C. Sabatier, J. Math. Phys. 7, 1515 and 2079 (1966); 8,905
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dispersion relation™ obeyed by the Jost function. It
is discussed in Sec. IV.

IL. INVERSION AND THE MELLIN
TRANSFORM OF THE POTENTIAL

If we define®

fx x) = ; cn(X)uy(x"), ®

where u,(x) = (3mx)¥,(x), A=1+} and letting

K(x, x), ¥’ < x, for fixed x, be the unique solution
of the integral equation

@z
K(x, x) = f(x, x") -—f dx"x"2K(x, x")f(x",x"), (2)
[1}
then the functions

(%) = () — f Tax'x K ) (3)
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are the regular solutions of the Schrodinger equations

l(l+1)
|: dx? et

with the potential

+ V(x)] o) = 9 (@)

V(x) = —2x7(d|dx)[x*K(x, x)], )
which leads to the expression
—hx f drxV(E) = Sap(u®.  (©)

Furthermore, the Jost functions satisfy the following
set of equations®:

f=14 3 ST .
=i+ 2( D' +1+1) ewfee (D

Since f; = |f;| e*, where §, is the phase shift of
angular momentum /, the imaginary part of (7)
multiplied by e reads

sin §; = 2 Fz(zl')cz' [l ®
with ’
o _ sin® {mr(I' — l) cos (8; — 68;) + % sin #(I’ — D) sin (8, — §, )
W =Dl +1+1)
and the real part
[fil = cos &; + z Fu' cr | fol ©®
with
e _ sin® 3#(l' — 1) sin (8, — 8;) — }sin w(}’ — I) cos (6, — &;) .

=Dl +1+1)

In Ref. 1 we allowed / everywhere to assume integral
values only. For given phase shifts d,, the infinite set of
equations (8) was then to be solved for the products
¢, | fy]; these were to be inserted in (9), which then
gave us the | f;|, and therefore the ¢, .

It was pointed out by Sabatier? that allowing / to
take on integral values only is an unnecessary restric-
tion on the potential. Allowing other values of / leads
to a very much larger class of potentials for the same
set of phase shifts. This is because for nonintegral /
values we may choose the ¢, arbitrarily, and still solve
Egs. (8) and (9) for the ¢, (/ integer) and the phase
shifts 8, (/ noninteger). This arbitrariness has impor-
tant implications for the “interpolation problem” of
the physical phase shifts by analytic functions.

3 Since the energy is fixed in the following, it is convenient to use
the variable x = kr.

41 am using here the same definition of the Jost function as in
R. G. Newton, Scattering Theory of Waves and Particles (McGraw-
Hill Book Company, Inc., New York, 1966). For real k and /it is the
complex conjugate of the more customary definition, so that its
phase is the negative of the phase shift. Equation (7) corrects an

error in Eq. (20.62a) on p. 628 of the above-mentioned work.
5 Sabatier, Ref. 2, has shown that a sufficient condition for this

procedure to lead to convergent results is that ¢, = O(lé) as [— 0.

The fact is that within the framework of local
potentials, we can choose the interpolation of the
physical phase shifts largely arbitrarily, except for
the restriction that®?

dé,fdl < 4. (10)

We may choose a discrete set of points /; of arbitrary
density, and choose arbitrary values of 4, there,
keeping the ¢, at integral / fixed, except that we must
have

61, 0, < in(l; — 1) (102)
if , <l <---. Equations (8) and (9) can then be
solved for the ¢; and the local potential that produces
these phase shifts can be constructed. What is more,
we may even choose the phase shifts J, as an arbitrary
smooth curve satisfying (10) with prescribed values
at the integral /. Then the summations in (8)—(9) all
become integrals, but we can still find local potentials
that produce this phase shift curve. Therefore, as long

8 T. Regge, Nuovo Cimento 14, 951 (1959); see also Ref. 7,
Appendix B.

7R. G. Newton, The Complex j-Plane (W. A. Benjamin, Inc., New
York, 1964).
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as we only demand existence of a local potential, the
physical phase shifts can be interpolated quite arbitrar-
ily, except for smoothness and (10).%

The question naturally arises: What is the signifi-
cance of the particular / values that enter in the

summation (1)? In other words, how can we deter-
mine the set A such that

_%xf mdx’x'V(x') = 2 Vagap(u_3(x), (6a)
0 A

where y, = ¢; ;7 (If A contains a continuum then
the sum becomes at least partly an integral.) The
answer is contained in (7), which reads, with f(1) =

fl—i,

S =1+ 33y,

AeA

ir(A’'—A)

(7a)

if the potential has the expansion (6a). If the f;._,
are solutions of (7), then (7a) defines an analytic func-
tion f(4) whose values, when 4 assumes values in A,
are just the numbers f;._, that appear on the right.
What is more, this analytic interpolation of f is the
“right” one. That is because, for any 4 with Re 4 > 0,
Eq. (3) defines the regular solution of (4) with the
potential (5), and (7a) is obtained from its asymptotic
behavior. Therefore the interpolation defined by (7a)
is the same as that defined by the “dynamical”
interpolation of (4).°

Now (7a) tells us that f(4) has singularities exactly
when —A4 takes on values in A, except at positive
integers, if they occur in A.1° Equation (7a) shows
that at the integers

J=n)lf) =1+ (=2n)y,, n=1,2,---. (11)
The set A is identical with the set of points where
S(—2) is singular, augmented by the positive integers.
Without loss of generality we may assume that A
contains all the positive integers. In specific instances,
of course, some, or all, of the y,. at integral A’ may
vanish.

8 It should be added that, except for Sabatier’s general results on
the asymptotic behavior of the potentials constructed via (1)—(5),
we have no guaranty that any particular one is *“well behaved” in
any sense of the term. That situation is quite analogous to the one
in the inverse scattering problem at fixed angular momentum.

? If the potential is well enough behaved, then we know that this
“‘dynamical” interpolation is the unique one in the sense of Carlson’s
theorem (see, for example, Ref. 7, Chap. 15). If it is not, then the
‘“‘dynamical” interpolation may not satisfy the hypotheses of
Carlson’s theorem. In that case there is the possibility that another
interpolation exists which does, and which is therefore the “right”
one. (No such cases are actually known.) So all we can assert is that
the interpolation of the Jost function given by (7a) is identical with
the “dynamical” one. This is sufficient for the purpose of identi-
fying A.

10 f(1) can be made singular at A = —n by letting two terms on
the right of (7a) coincide while their coefficients approach infinity.
In that case (1) and (6) will contain derivatives of the #; and g, with
respect to /.

NEWTON

Now the set of singularities of f(1) has been ex-
plicitly connected by Froissart!* to the set of singu-
larities of the Mellin transform of the potential. That

- situation is as follows.

Define

(o) =J:dxx"‘1 V(x) (12)

as an analytic function of ¢ and continue it to the
region Re ¢ < 0. Let 8 be the set of singular points
of v(0). Then f(A) can have singularities only at the
points

A=1—n+ tmS —2), (13)

if the symbol m(S§ — 2) denotes the set o, + o, + - - -
+ o,, — 2m, where oy, - -+, o, are any m points of 8§
(not necessarily all different); except that in general
f(A) will not have poles at the negative integral values
of A.12 The set A therefore consists of the negatives of
the numbers described in and below (13), plus the
positive integers.!® Note that A may contain complex
numbers. But, according to (12), the reality of the
potential implies that if A is in A, then so is A*.
Furthermore, (6) shows that, because for a real
potential ¢,. = ¢, we must have

mn=1,2--

(14)

The coefficients y,, corresponding to real points in A,
must be real.

Let us return now to the interpolation problem. If we
are given a set of physical phase shifts, we must in
general assume that A contains the half-integral values
of A (integral /). Otherwise we have no way of guaran-
teeing that the phase of f(1) at A =/ 4 } (integral
[) has the prescribed value. 4 In the course of solving for
the constants ¢, it may then turn out that some (or all)
of them, for integral /, are zero, so that, in effect some,
or all, of the half-integral A values are not in A. But

Lk . .
Cr=C, L1LE, Yi* =Y

11 M. Froissart, J. Math, Phys. 3, 922 (1962).

12 This point was not mentioned in Ref. 11, but it follows from
the presence of the gamma function in the denominator of the
Bessel function [Eq. (16) of Ref. 11]. The function () has a singu-
larity at a negative integer only if that value of 4 in (13) comes from
a point in 8 that is not a simple pole of (12).

13 Strictly speaking, A is a subser of the set A’ that consists of the
negatives of the numbers given in (13), plus the positive integers.
But the members of A’ that are not in A may be thought of as
absent “‘accidentally.” We may handle that situation most con-
veniently by making A equal to A’ and then setting ¥, = 0 at those
values of A that are *“‘accidentally’” missing.

14 Sabatier showed in Ref. 2 that if the physical phase shifts are
sufficiently small, then there exists a potential for which A contains
only integers. (This potential is an even function of r.) The Jost
function f then contains no singularities in the A plane. However, it
is not known what *‘sufficiently small”’ means. [One may conjecture
that it has something to do with the violation of (10a) by the phase
shifts for half-integral I] Hence for a prescribed set of physical
phase shifts, one cannot assume the existence of an associated even
potential.
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that cannot be anticipated. However, the remaining
members of A are at our disposal. This means that,
even though the physical phase shifts are given, we
are free to prescribe arbitrarily the mnonintegral
singularities of the Mellin transform (12) of the
potential. [According to (13), the singularities of (12)
at negative integers give rise to singularities of f(4)
at integral and half-integral values of —A.] The free-
dom to choose singularity points of (12) means
freedom to choose the exact way the potential behaves
at r — 0. For example, a term r* produces a simple pole
of v(¢) at ¢ = —a. Such a question is independent of
bounds on the potential or of whether a term of that
nature dominates at small distances. Specifically, a
given set of physical phase shifts may always be
fitted by a potential that is analytic in a neighborhood
of the origin. Such a potential produces simple poles
in the Mellin transform (12) at negative integral o,
and no other singularities. Hence A then contains
integral and half-integral 4 only. A special class among
these potentials are those for which ¢, = 0 for all
half-integral / values (integral 1). They are the ones
discussed in Ref. 1. But the class of analytic potentials
that produce a given set of physical phase shifts is
enormously much larger. Since all the phase shifts
for integral A are free, this class contains a denumer-
able infinity of parameters.®

IIi. SLOW DECREASE OF THE ¢,

We cannot in general assume that the coefficients
¢, vanish rapidly as / — co. Such an assumption puts
a more severe restriction on the potential than is
usually physically acceptable. That can be seen as
follows.

Multiply the Schrodinger equation (4) by uy(x),
subtract the same equation with V' =0 for u(x)
multiplied by @,(x), and integrate from zero to infinity.
The result is

L ® dx (N V(x) = Im f;. (15)

Now multiply (15) by ¢, and sum over /. Use of (5)
then shows that

© 2
I:f dxxV(x):l = —4Y ¢, Imf;.
] 1
But multiplying (8) by ¢, | ;| and summing shows that
~Yealmfy=3 2 I cer | fifyl. a7
i 12

(16)

If the ¢, vanish so rapidly as / — oo that inversion of
the order of summation is allowed in (17), then the

18 This was already pointed out by P. C. Sabatier, Ref. 2.
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right-hand side must be zero because I';. is anti-
symmetric under the interchange of / and /". Con-
sequently (16) says that

(18)

The same conclusion follows from (6) if we assume
that as / — oo the ¢, vanish sufficiently fast that the
asymptotic value of the right-hand side of (6) is given
by

J:odxxV(x) = 0.

; c; | fil sin(x — 3#d) sin (x — nl — 6)

and this is bounded. Then (6) also implies (18).

We must therefore conclude that if the potential
does not satisfy (18) (for example, if it has everywhere
the same sign), then ¢, can at best vanish rather slowly
as /— co. It cannot even be absolutely summable:

;lczl= 0

follows from a violation of (18).

IV. ANGULAR MOMENTUM DISPERSION
RELATION
Finally we want to discuss Eq. (7a), which can be
considered an angular momentum dispersion relation
satisfied by the Jost function. If A contains discrete
points only, (7a) is equivalent to a Mittag-Leffler
expansion with a remainder.’® In order to see how
much information it contains, we may try to derive it
without any of the machinery contained in Eqgs. (1)~
(5). That can be done as follows.
The most essential ingredient to be used is the
symmetry of the Jost function,'”

FAFH(=2%)e™ — f(— D) f*(A*)e " = 2i sin =k,
(19
which holds whenever the potential is local and real

and well-enough behaved to permit the definition of f.
Let us define two functions

£2:(4®) = (1 — icot mA)f(A) + 3(1 + icot md)f(—2),

g4 = H[f(A) — f(—D)/sin 7, 20)
so that
FQ) = &l + e g2, (21)
Insertion in (19) then leads to
H(Ma (@) — 6a@) =1, (22

16 | am indebted to Dr. Sabatier for correspondence on this point.
17 See, for example, Ref. 7, p. 32, Eq. (5-11). However, note
Ref. 4.
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which means particularly on the real and imaginary
axes,

g.l* — gal® = 1. (22a)

The other fact to be used is the behavior of the
Jost function?®

23

As v — + o0, e'"4f(4) is bounded by an inverse power
of ».38 These statements are most reasonably inter-
preted by demanding

&) —1
£:(4%) —0
Of course, they do not imply (24). But let us now

make the additional assumption that g,.and g, possess
Mittag-Leffler expansions of the form!?

fAH—1 as y=Imi—> —co.

} as ¥y — o0, 24

a;
s =142

i) =3 =%

e 112_2’2’

(25)

which incorporate (24).2° This is the only additional
assumption we are going to make. Of course, it does
not follow from (21) and (23), nor at present are any
sufficient conditions on the potential known which
would allow us to prove (25) directly. We therefore
assume these equations.

Now, according to (21), the singularities of g, and
g3 are singularities of f, except that if
iTA’

bl' = —a,e (26)

18 See, for example, Ref. 7, Chap. 6,

19 There is no loss in generality in summing both over the same
set A. A is the union of the sets of singularities of g, and g,. Some
of the coefficients a’ or b’ may, a priori, be zero.

20 Provided that A does not extend to infinity in the imaginary
directions.
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then f(4) bas no pole at A = A’. Therefore, if we
demand that f(2) have no poles in the right half-plane,
as we must for well-behaved potentials,® then (26)
must hold for all A’ in A. Furthermore, if A’ is in
A, then so must be A’*. That follows from (19) (or
from the reality of the potential). Now let us insert
(26) and (25) in (22). Then we find, after a bit of
algebra, that

a; = —4iy, f(X),

where the constants y,. must have the property (14).
This means that we have derived (7a).

The reasoning may, of course, be easily inverted.
The result is that the “dispersion relation” (7a) is
equivalent to the symmetry (19), together with the
absence of singularities in f in the right half-plane,
and the expansions (25). The extent to which the latter
incorporate (23) or other statements about the
asymptotic behavior of f(4) depends on the distribu-~
tion of singularities of f(4), i.., of g, and g,. And that,
in turn, depends on the detailed behavior of the
potential near r = 0, as expressed in the singularities
of (12). For example, we cannot conclude from (7a)
that f(1) -1 as Re A — —oo, with Im A » 0 fixed,
unless we know that the singularities of f do not
extend infinitely far away from the real axis.

The integers in A again require a brief separate
discussion. If g; and g, have simple poles at an integral
value of A, then f is analytic there. Equations (20) show
that these poles come from the sin #4 in the denomi-
nators. In fact, unless f(n) = f(—n), g, and g, must
have poles at +n. According to (11), the exceptional
case f(n) = f(—n) does imply y, = 0.22

21 See, for example, Ref. 7, Chap. 5.

%2 In view of the fact that (7a) implies the existence of a real local
potential, it must imply another important property of f(A): It can
have no zeros in the fourth quadrant (see, for example, Ref. 7,
?7 5;1). However, I have been unable to prove this fact directly from

a).
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In this paper we realize the algebra of the group U(5, 6) as an algebra of differential operators acting
in the Hilbert space of functions defined on a 23-dimensional pseudosphere. We then calculate the matrix
elements of the generators of this algebra between certain harmonic function states.

1. INTRODUCTION

N a complex n-dimensional differentiable manifold
C", the harmonic functions are defined as the eigen-
vectors of the so-called Laplace-Beltrami operator!

1 0, _ 44 0

AChy = —— L (ghie <
(€ ) ax,.(lgl) Ly

g=det(g,); g¥=(g"y-

The metric is defined by the line element

(L.1)
(1.2)

ds? = g, dx*dx?; xeC"

(1.3)

If a group of transformations $ acts transitively on
the manifold C*, i.e., is such that every two ordinary
points of C" are transformable into one another by
one or more transformations of the group, then the
harmonic functions defined on C" form a basis for the
irreducible representation of the group §. Bég and
Ruegg? have used this idea to construct the harmonic
functions for the group SU(3). Raczka® and Raczka
and Fischer* have generalized the method of Bég and
Ruegg to an arbitrary noncompact group, U(p,q),
and have derived the harmonic functions for this chain
of groups on homogeneous spaces of unit rank.

In this paper, we particularize the results of Raczka
and Fischer* to the U(6, 6) group, which is of interest
in elementary particle physics, and we study the
special features of these particular results. We then
realize the algebra of U(6, 6) as an algebra of differ-
ential operators, diagonalized with respect to a subset
of the set of compact generators. From the set of
functions that provide a basis for an irreducible
representation of the U(6, 6) algebra, we pick out

* On leave of absence from Department of Physics, University of
Nigeria, Nsukka, Nigeria. Address after 1 October 1967: Depart-
ment of Physics, University of Ghana, Legon, Ghana.

1S. Helgason, Differential Geometry and Symmetric Spaces
(Academic Press Inc., New York, 1962), p. 387.

2 M. A. B. Bég and H. Ruegg, J. Math. Phys. 6, 677 (1965).

® R. Raczka, ICTP, Trieste, Preprint IC/65/80.

4R, Rgczka. and J. Fischer, Commun. Math, Phys. 3, 233 (1966).

what are in effect extreme vectors.> We then calculate
the matrix elements of the generators between any
two such vectors.

In order to meet the particular needs of this paper,
we have found it necessary to introduce some minor
phase changes in some relations in Ref. 4.

2. HARMONIC FUNCTIONS FOR U(6, 6)

The homogeneous (carrier) space is the 23-pseudo-

sphere Z%,
pp=y'py=1, @1

embedded in the 12-dimensional complex space C'?,
of which y are vectors, or in the 24-dimensional flat
Minkowski space M1212,

Here the matrix f§ is given by

/3 = (ﬁij) = (61'1) fOl' 19] = 1’ 29 ttt 36

= _(6”) fOI‘ i,j = 7, 8, trty, 12. (2.2)

Z% is homeomorphic to the coset spaces
U, 6)/U(S, 6), U6, 6)/U(6, 5),

on which U(6, 6) acts transitively.
We parametrize the pseudosphere Z2 as follows.
We first construct two identical 1l-spheres with
bases

E={&, 8, ", &) (2.3)
n={n, %2 e} (2.4)
respectively, such that
6
& =% T]sinb,cos6,; i=1---,6, (2.5
k=i+1
A 8
n; = e [[sinb,cosb,; i=1,--,6, (2.6

k=i+1
where

61=01EO§ 06, 653%77', i#1;
0< ¢y $:i<2m (27)

5 E. B. Dynkin, Am. Math. Soc. Transl. Ser. 2, 6, 327 (1960).
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We denote the set {6, ¢,} by w and the set (0., $‘}
by &. We note that

[62 = [n* = 1. (2.8)
Basis vectors of Z23 are then realized as
p, = &coshb, i=1,---,6, 2.9)
y;=n,sinh 0, /=7,8,---,12,
j = j(mod 6), (2.10)
0<6< . 2.11)

It is convenient to denote the set {w, @, 6} by Q.
From Eq. (2.8) and (1.3), which now becomes

ds* = 3 ldy[* ~ 3 ldvl,

we obtain the determinant of the metric g,;:

(2.12)

8
gt = (cosh 8 sinh 9)"* T sin®-* 9,
=2
8
x cos 6, T] sin®*~*6; cos 6;.
i=2

This provides us with an invariant measure in Z23,
namely,

6
dQ = gtdg, dd, 1] do, db, d,dP,. (2.13)
=2
The Laplace-Beltrami operator reduces to
1 d 0
A(Z*¥®) = ——————— —(cosh™ 0 sinh™ §
%) -cosh! 6 sinh 6 90 (cos sin 60)
1
—2 A ) (2.14
+ gt ), (2.14)

where A(£!) is the Laplace-Beltrami operator for the
11-dimensional sphere on which the compact group
U(6) acts transitively. A(n'?) is interpreted similarly.
The eigenvalue equation

(AZ®) — DYH Q) =0 (2.15)
is completely separable.
If we write
YHQ) = PHO)D(w)D(d) (2.16)

and demand that Y*(Q) also be an eigenvector of the
operator

M=3 3?15 +Z azs (2.17)
i=1 i=1 i

belonging to the center of the algebra, then we find
that the eigensolution (2.16), regular at 8 =0, is

AWELE MADUEMEZIA

given by*
tanh} s g
(Nl)* cosh®
X oF1(3(Js — Jo + « — 10),
3, + Jo + )3 J, + 6; tanh? 6), (2.18)

v'(0) =

6

O(w) = &2)—* TI ™ ;[:[ sin**0, d ;.(20,),

1=1
(2.19)
and
ds) = o 1T e—i""tf’lg sin®* ), dft 5,(26,),

(2.20)

where m,, 1, are zero or integers, —J(Jy, + 2k— 2)
(Jx=0,1,2, ) are the eigenvalues of the Laplace-
Beltrami operator, A(§%*-1), on a (2k — 1)-sphere,
and J;, replaces J, in 7 space. We also have

=&(Jk+k_2)’ k=2’39”"6’ J1=m1’
(2.21)
o = ¥m + Sy + k —2) = 0m + my), (2.22)
Be=tm—Jy —k + 2) = §(m, — my), (2.23)
1
(]

No = (2m) ;E-;J,,+k—1

A DT —mMm8m8M

No = @m) Hf + k-— 1’
a=11+ (121 — )t > 0. (2.24)

N, is a normalization coefficient for (#), and the
angles 6, 6;, 0,, ¢,, $, have the ranges given by Eqs.
(2.7) and (2.11). oFy(«, 8; 7; 0) is a hypergeometric
function. The d functions are defined in Edmonds® in
terms of Jacobi polynomials. For a square integrable
solution regular at § — co, we must have

3T —Jg+ o — 10) = —n, (2.25)

where n is an arbitrary nonnegative integer. This in
effect makes the hypergeometric function a Jacobi
polynomial.

We then obtain a discrete spectrum for A:

A=A, =121 =(Jy = Jo+ 2n + 12 (226

The normalization coefficient for u(8), with respect

to the measure
cosh? 0 sinh!! 6 d6,

% A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957), p. 57.

.27
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is readily shown to be given by*
N T'Q + n)T%J, + 60 (s — J; — n)
A e =y~ 2m = DU+ 5— T, +6—n)
(2.28)

Let us write —J; + Jg = A, say. If we assume that
Js and J, are free to assume any positive integer values,
then an examination of the structure of the coefficient
N, [Eq. (2.28)] shows that a restriction is imposed
on the possible values of n, by the following relations:

A—-n#0, (2.29)
A=2n—-1>0, (2.30)
Jo+5—n#0, 2.31)

but
A—=2n—1<0 at |tanh?8| =1, (2.32)

if n is nonintegral. The relation (2.32) is necessary for
the absolute convergence of the series for ,F; when n
is nonintegral. It therefore does not strictly apply here .

The irreducible representations given by the har-
monic functions are characterized by the numbers 1
and M:

[] []
M=Sm+Sm, (2.33)
i=1 =1
Suppose we consider the case J; = J; = J, say. This
is forbidden by (2.30) for any n > 0. The case A = 1

is also forbidden. For A = 2, we have

n<#t,

There is therefore, in this case, only one member of
the discrete series labeled by 4,,, and this corresponds
to n = 0. We then have

N, =12(J + 4),
2. = lo = 120,
=12,

9*(6) = [2(J + 4)1*(tanh’ 2 6/cosh™ ). (2.34)

In this paper we study only this case, reserving the
more general case for subsequent papers.

We turn now to the functions ®(w), ®(&) defined
by Egs. (2.19) and (2.20). We notice that since the d
functions are polynomials, we must have

ie., n=0.

o < Jis (2.35)

ie.,
mkSJk_Jk—l; k=29"°,6~’ (2'36)
m=J,20, .37

and

[}
M, E.Eim" < Js.
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We must also have

Br 2 — s (2.38)
which gives
My > —Js.
Hence
(M| < Js. (2.39)
Similarly
(M| < Js. (2.40)

Now, since the operators

d d
AR Y ag? i"=1323"',6
o3, o "’
mutually commute, any 11 linearly independent
combinations of them form a basis for the Cartan
subalgebra of U(6, 6). We can then choose the linear
combinations so that the numbers

me=Jby—Jp1, k=2,-++,6, (2.41)
1y, = jk - jk—l’ (2.42)

and
m=J; m=Jd (2.43)

correspond to the highest weight of the representation.”
The corresponding eigenfunction is an extreme
vector.®

We are interested in the matrix elements of the
generators of the algebra between any two such
extreme vectors. This restriction is justified from the
following analogy with the three-dimensional rotation
group O,. For, suppose

ljm), —j<m<j

are the usual basis vectors for an irreducible repre-
sentation of Oy in spin space. Let O be any operator-

valued function of the operators of O;. The following
equation is true:

(m’| 0 |jm) = (il T ™0™ |jj), (244)

where J,, J_ are operators that raise and lower
weights, respectively. By commuting the J,’s and J_’s
successively with O, eventually making use of the
relations

0= (jlJl_, J.ljp=0, (2.45)

we reduce the matrix element between the states
|jm’), | jm) to one between highest weight states ] jj).
Our argument then is that the harmonic function
states for which
m=Jy — S

would be highest weight states for a proper choice

7 The existence of such a highest weight does not imply that the
representation is finite-dimensional. This is because the m’s are
given by differences of arbitrary numbers.
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of basis in the Cartan subalgebra. With this simplifi-
cation, we now have

D(w) =

H et H Ni(cos )™ (sin 6,)™ +2-F,
(2.46)

(2 =
where
Ny = 20(my, + m + 2)[T(m,, + DIy + 1).
(2.47)
3. LIE ALGEBRA
We may write the generators 4;; of U(6, 6) as

Aij A'j f,i=12,"',6,
{Au,}=( ) ’
Aij Aij i,j'-: 7,8,“',12,

in which the elements A4,;, generate the compact
subgroup U(6), as also do the elements Ay. The
elements A;;, 4;; generate the noncompact completion
to the group U(6, 6).

The generators by definition satisfy the Hermiticity
condition®

3.1

{AIB} = ﬂ{Aﬁa}ﬁ5 (32)
where f is given by Eq. (2.2) for the space C2 Hence

AWELE MADUEMEZIA

1 0 d * 0

H;=Af5~m3§j=w5@;~w; 'a'{o‘;“"’ (3.6)
Amn = 9,0[09, — pn0[0vn, (X))

Ana = va9/0ys — vadloys, (3.8)

Ay = p0oyy + yiojov!, (3.9)

Aqy = p@[By; + v; doy: . (3.10)

The relations (3.3) are satisfied because the operators
o[dy
satisfy the Hermiticity condition
(0)oy)t = —a[dyp*. (€R3))
This follows from the invariance under /0y of the
scalar product (f, g) of two functions defined on Z*:
Hence

(0/9y)(f. 8) = 0.
a a _ a '
In order to express the operators in terms of 0, 6,,

é;,0,,and $,, we use the following inversions of Eqs.
(2.5), (2.6), (2.9), and (2.10):

1
Agf = A, Al =4, (3.3) tan® 0, ——kzl "”"“’ (3.12)
A,-j = -—Aﬁ, Ay = —Ay. 'Pi"l’;
The generators 4,; also satisfy the commutation tan® 0, = z ‘/’W (3.13)
relations ] wjv,uj
[eps> Ayl = By Aoy — Brud g (3.4 cosh? 6 = 3y, (3.14)
We choose the operators A4y diagonal, with eigen- g Sk
values m, and m;, respectively. In terms of differential sinh® 6 = ; Yi¥s5» (3.15)
operators, 4
P L a s 5 & = pily], (3.16)
H=A4,,=——— =y — — g — 3.5 —2idi __ *
i i Y ; Vs Y, % 3 ( . ) € = Yj)j/‘tpj . (3.17)
(=) 24, o Oys We thus obtain®
m—1 6 n—1 & .
> TI sin®8, cos® 8, sin 6, cos 0, Y TI sin® 8, cos® 8, sin 6, cos 0,
k=1 t=k+1 k=1 i=ft+1 F:)
A — ei(cﬁm—-tﬁ”) F=n+1 A j=m+l e
mn s 30 i a0
2sin 8,, T] sin®6; " 2sin 6, T sin® 6, "
f=m+1 i=n+1
6
"II sin 6;sin 6, sin 6, cos 8, cos 6, cos 6,
A =2 2
+ —_ =1 v e
(i=§+l J=m+1) . LA 26,
2sin 6; T] sin®6
ra=j+1
[ 6
11 sin 6, cos 6, Kl I1I sin 6;cos 6, 5
+ i 7. 4 =il e (3.18)
2i H sin 6, cos 0, ‘}S“ 2i ] sin6;cos 8, $m
F=ntl t=m+1

8 We adopt the following convention with respect to subscripts: (a) Greek subscripts take the values 1, 2, -
6. (c) Latin subscripts with a caret take values 7, 8, -+

without a caret take values 1, 2,- -,
without further mention.

® We note that for any functions A, za_z

Az =0 for y < x,while [ J?

» 12. (b) Latin subscripts
. 12. This conventlon is assumed forthwith

a~aaA°‘ =1fory <x,
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We obtain a similar expression for 4,,,, with the following replacements:
0,0, ¢—3, ebn>ebn m=12-6. (3.19)
Furthermore,
[
sin 8, sin 8, sin 8, cos 8, cos §, cos®,,
R 6 sttt P
A,y = eonton ]’L sin ; cos 8, sin 6, cos 0,, ) z+l“'”+1 - 30
) - 2sinf, IT sin® 0, d
r=j+1
T sin 0, sin 6, sin § 6, cos 6 s
r=IJ+1s1n , sin 6, sin U, cos 6, cos 0, cos 0, S TI sin® 6, sin §, cos? 6, cos 6,
8 s=j+1 a k=1 i=k-+1 a
+ z t=nil 2 j=ntl —
F=m+1 . Al 8 aﬂ, . L .3 ao
2sin 0, T] sin® 6, 2sin @, TT sin® 6, m
=441 f=m+1
T 20 2 6 6
in® §, si 6,, .
,?;1 ,J,;[l sin” , sin 0, cos™ G, cos 3 I sin 6, cos 6,, P I sin 6, cos 8, 3
i=m+1 i i= m+1 i-n+1
e ‘%0, T YA 2%
2sin 8, I sin® 9§, 2i H sin 6;cos 8, “P* 2i H sin 6,cos 8, '™
t=n+1 f=n4l f=m+1
(3.20)

We obtain 4, from Eq. (3.20) simply by putting
carets where there were no carets, and removing them
where there were, i.e., by the interchanges

0,0, Pni>dm m=1,-++,6. (3.21)
4. MATRIX ELEMENTS OF THE

GENERATORS OF U(6, 6) ALGEBRA

The problem we have to solve is the evaluation of
the integrals

D(«, f) =

AoJM

mm m,m

(Aaﬂ)a
= f AV (Q)* A, YR (©Q) (@4.1)

fora, f =1, 2, -+, 12, where dQ is given by Eq.

(2.13) and
J=Ji=Ji+2=T,=J;+2,
my=Jy—Jp1; k=2,3,-2-,6, 4.2
m, = J]_,
@4.3)

M=3m,+ 3.
r i

It is convenient at this point to introduce the notation

*
+mi ’)
*,
g .

+

*

m;

L%
4

— I
m=m;+my,

7
A
V.

We proceed now to evaluate D(m,n), D(w,#),
D(mii), and D(r,n) in that order. The matrices
D(m, m), D(rh, m) are trivially given by
MuSyars Mmdnrngs 4.5

respectively.

For D(m, n), we substitute Eq. (3.18) in (4.1) and
carry out the differentiations, making use of the
relations

20 H (cos 0,)™(sin 6,)™ ek

0, =2

= (—m, tan 0,' + Jj—l COt 6,)

[
x TT (cos 6,)™(sin 6, )™**%, (4.6)
Fo==2

m—1

lzl 5111s1n2 6,cos® 0, =(1 — 8,,1) H sin® 6,
6, =0, 4.7)
Q.= N,N.

=[ T(my, + my + D(my + my’ + 2) ]&
T(m, + DI(m, + DI(my; + DI(my’ + 1)]°

(4.8)
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We then obtain:

Form > n,
L]

8 w2 6
D(m, n) = 6Mn+1,mm'6m,r* RN H e 6mx,m:’ H 6"&,3&'f ].-I Qk dek(COS 6k)"‘+1(5in ok)vk—l-l
$ml 0 k=2

% {%sin 8, cos 0,(J,,_, cot 8,, — m,, tan 0,.)(1 — &,,,) ] sin 6; + % cos 6,, cos &,
f=n+1

X (Jn ﬁ sin™ 8, — J,, T] sin 9,,) _1 smf,,_____@_s_@,_,, (J,1cot0, —m,tan 8,1 — &,

t=n+1 _—i1 2 B sino,
{1 )
m, cos f,, mmiﬂdsm 0, cos 9,
+— + Py ,
2 I sin 6;cos 8, cos Uy, (4.9)
f=n41

8
where JT]™" indicates that the terms k = m, n are omitted from the product. This product of 12 delta
k=1

functions occurs often in this work, and so we denote it by a new symbol. We define
- 6 6
’;fgf' = 6%%.%’5%—1 7y’ ;!.—.[lmma'nxamk’ 1_-[1 5;;,“,9“, . (4.10)
=] 1=

Form <n,

_ w2
D(m, n) = gﬁf 1T Q. dby(cos 6,y*(sin 6,)"***
0 k=2

sin (:m cos 0 (J 1 co0s 8, — m,, tan 8,)1 — 0,,,) — }sin 8, cos 8,(J,_, cot 6, — m,tan 0,)
2 11 sin6;
i=m+1 .
n m,, TI sin 6,cos 0,
x (1 =8,y TT sinf, + —== 4 —Mm0s b,
i=m+1 2 cos 6,,

2 T] sin 6, cos b,

i=m+l

=+l

+ $cos §,, cos e,,(J,, TI sin 6, — J,, IT sin™ e)} @.11)
remyl

In carrying out the @ integrations in Eq. (4.10), we notice that the integrals for k < n and for k > m
give unity, since the @ functions are properly normalized with respect to the measure

6
H sin*2 0, d6,.

For the same reasons, the § integrals in (4.11) give unity for k > nand fork < m
We finally obtain:
@) Form>n>1,

mo( Dm4m+20mi+m +2) V-
D " = 7 6’” B
(m, n) = 2;13,. (I‘(mf + DI(mF + DO(m, + DO(m* + 1)) MM

{ Q,0, Pu. + NTEEL + TG, + ITEE, + 1))
2P, + o + NTQ @, + v + 6)
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= o DG+ 2)TGe + 1) = n+1
Q — . 2 .
x ILe LQGu, + 7+ 3) (J"(‘“”’ Tt = Julm + DL e+ v+ 3)

L(m, + DU(mn + PG + NTGE. + 2) 77 T + DITE: + 3)
T(mp + 30 + DITCm, + 30, +4)  w=iin D@ + % + 5)

+ Ju(my + 1)

b mm v, — Joy + 2) 0  DOOTGE, + 2)TGOw + D) Ty TGE: + D)0, + 1))},

F(mn + (v, + 4))P(mm + 3(vm + 5)) l=nt1 P(%(;u: + %+ 3))

4.12
(b) Forn>m> 1, @12

105 T4 mi +90mi +ml" +2) b .-
D(m, n) = = o n,
(m, n) 2.-1;1 (P(m,. + DIm} + DO + DO + 1)) MM

" { 00 T + NG + DITGE, + DTG, + 3))
- 220G + v + SITQ e, + v, +6))

w1 TG, + DTG, + 1) L I
XJLQ' LG, + 7.+ 3) (J"(”” * Dra-l;IH He+ v+ 3 Talta t2a t 4))

L(m, + )(my + DGO + TEE, + D) 77 TG + 2ITEE: + 1)
F(mm + %(vm + 6))F(mn + %(i’” + 3)) f==m+1 F(%(/‘: + ¥ + 3))

+ (M + 1)

(b — T 43y DTG0, + GG+ 2) T T + )G + 3))}‘

F(rnm + %('vm + 6))F (mn + %(9'» + 5)) f=m+il F(%(}‘: + ¥y + 5))

(4.13)
The numbers g, » are defined by Eqs. (4.4) and the symbol d,,,. by Eq. (4.10).

(¢) Form>n=1,

R T(m, + m! + 20(m, + m’' +2) b o
. 1 o - £3 3 6m ,
Dim, 1) 2,-11 (F(m,. + DI(m} + DT(m] + HOm’ + 1)) MM

D(my, + DTQEn + 3077 DG + ITGE: + 3)
P(mp+ 30 +7) =2 TG+ v+ 5)

x {J,,,(mm +1)

+ m, D + AT + 1) T TG + DTG0+ )
YTy + M +5) =2 TG+ %+ 3)
T(em + PGE + 1)
T((tim + ¥m + 6))

+ Q,

mt T, + TG, + D) _ =%+l
x Lo et (m,(,u,,. vy ) — J v+ 1) ,1.1#, i 3)} (4.14)
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(d Forn>m=1,

1 Pmtmf + 0+ m +2) oo (0 TG+ TG + 1)
pa.m=31 (r(m,. + DT(m + DT(m; + DI(m?’ + 1)) 6‘”’{3" T(i(un + 7o + 6))
= TG + DTG0, + 1) =yt
0 —_—r
i B e aa G el A

T(m TG, + 3) = T + 2)TGE, + 3)
T(m, + 3o, + 5)is T + % + 5)

L(m, + DUGE + D) 7 TG + ITEE: + 1)
+ m I(m, + 37, +3) = TG+ +3) } (4.15)

In order to find the matrix elements of 4,,,, we substitute Eq. (3.20) in Eq. (4.1) and make use of Egs.
(4.6), (4.7), and (4.8).

+ (mﬂ + Vy — Jﬂ—l + 3)mn

Noting that
'—m:, + Jj—l COt2 61 = —Jj + (J,-__I/Sinz 9,), (4.16)
so that
8 E m [
> (—m; + J, ycot?8,) T[] sin® 6, = J,, T] sin® 6, — J I sin® 6, 4.17)
—m+1 p=2 i= =
and i—m+ i 2 2
§ H n 8
> (= + Jiycot?8) I sin®8; = J, TT sin®6; — (J — 2) ] sin® 4, (4.18)
Je=ni-+1 i=2 = =g

and carrying out the 0 integrations we finally obtain:

(@) Form,n > 1,

6 [
P m n
D (m’ n) - 6mm+1»mm'6£‘n"ls{’"‘ﬁ' Ilr_-! 6mbm§=' H 6;?&1:‘??31‘

(1 {_ U+ 4 2o TAG+ ITGE+ D) 2 () TG + TGO, +3)
207+ D@+t © TQG+%+6)  mma | TCus + v, + 6)

PGen + INTGEEL + 2))”ﬁ1 g, PG, + )G, + 2) 1—“[ o TG + ITGE, + 1)

I y
* { " PQun + vm +5) 52 TG + % +4) w1+ TG+ %+ 3)

_ 7o, DGEn + TGO +2) £1 o TG+ DGO + 3))} 11 0, TG + 3TGG: + 3)
m k % A A
FQGWn + v+ 9)  e=mi PG+ v+ 5)  J=nn P4 + % + 6))

+ { 7,0, TG + GG + D) 7 o DG+ 2I0GE; +2) 1 o PGC + 2LGE; + D)
T TG, + P+ ) e TG+ 5+ 9) e - TG+ f + 3)

TG(n + TGG. +2) o & o DG + 220G + 3)
O, T }

- -2 —— ”
I'Gd, + 7, + 5) k=ntl P + %, + 5)

« [ 000w +DIGE:+3) _ ;o TCE, + DTG, +2)
w=mi1 - TG+ v+ 6) " PG+ Y + 5)
= g, DG + DTG0: + 2) & o TG + DITEE; + 1)

Q, ’
A G+ m+ ) ™ TG+ 7+ )
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o, TG + MNTGEE, +2) £+ o TGE; + D)TGE, + 3)
" TG+ P4+ 5) st | DG+ 6+ )

_ 1.0, 0GG. + NTUC. + D 7 o TG + PG + ) 11 o TG+ 2)PGE, + 1)
YO TQGE A5+ et - TQU A+ 9) e DO+ 5+ 3)

TG + ¥m+95) =it TGu; + v, + 9)
(b) Forn> 1,

6 6
— n
D(l, ﬁ) = 6m1+1,m1'6'fn»—1.fnn' II2 6"'1:.7"1:':!-]; 67%1?11'
. k= =

(1 { —MU 8 & o TOG+ TAG+I) 1] o TG + DTG0, +3)
2@+ DQJ + Nimwrr © DG+ 5+ 6) i3 ' T+ 7, + 6)

% o DGUL + NTAC; +3) (1 o TGE; + ITGE, + 1)
- Q, . o) i
RN TG + 9, + 6)) ( 11 PQG, +7+3)

+J fI o DO; + D)PGr; + 3))) _ (_ 7 0. DQGn + NTGE, + 2)
w2 TG, + v+ 5) "t TG, + P, + 5)
N ’ﬁl o TQG; + IPGE; + ) & o TOE: + DITEE + D)

)

j2 TG + %, + ) =i DG+ 5 + 3)

1
i=

+ (7 — 20, PO+ GG +2) 2 o) TG + TG, + 3))) t o DO +3)TGE, +3)

- Qi
PGln + 72 +9)  r=nna PG + 9 + ) 1 TG + v + 6)

LG + TGO + 2) 17 DO + PG+ D) 5 o DA + 2)TGE, + 3)

4

TG, 47, +9) k2 © D@+ % +3)  =an PGg + 5, + 5)

_ g 'ﬁ o, DO, + ITCE +2) o TG + TGE, + 2)
"oz ¢ D + 7 + 4) " TQ, + 5, + 5)

- m1Qn

s I3 + DITEE + D) & I'Gu; + 2)TE; + 3)

Q, Q. . 4.20
Xz-=InI+1 TG+ f+ 3) a'=1111 T Dus + v+ 5) } @20
(c) Form > 1,

D(m, 1) = 8, s1,my Srs o f["‘ L J— ﬁ Oy iy
1{ —44(J + 4 15[ o TGG: + INTGE: +3) 7 o TGR, + DTG, +3))
20+ DI+ 9z - TG+ +6)  s=mn - TG + v, +6)
_ (_ 7 q. [GEn + NGO +2) ”ﬁ o LG, + DITGE; + 2)) i o, TG + ITEE; + 1)
T TGm v + 5 =2 TG+ v+ ) e - DG+ v+ 3)

+JQ,

LGm + 3DTGOR +2) & o TG + DTG0 + 3))) ﬁ 0. DG + 3ITGE: + 3)
PGUm + ¥+ 9)  b=mnt - D@+ % +9) =2 TG+ %+ 6)

n f'[ o TG + TG + 3»))(",1112I 0, DG+ DTG + D)

=mi1 D@+ v+ 6) k=2 PG+ v+ 3))




g, TG&; + IUQE; + 3) fI 0, PQ¢: + DTG0 + 1)

PQG + % + 3)

k=2
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ot o TG, + 2DITGE; +3)
- e )
_ aq. TG + TGO +2) o
T DQm + vm +5)  s=mir - TGy + 7,4+ 5)
TGm + TGO + 2) ™ o DG + D)TE: + 2)
—-—J.0 Q
T2 r (’}(,“m + v, + 5)) X kl*_=I2 * P(‘}(I‘k + v, + 4))
s~ TG, + IPQE; +3)
0 : Q,
% ;l;li. ! I‘(W; + ’r’j +5)) xi=H1 P(%(/"’z + Y + 3))

(d) Finally
8 8
D, 1) = 6m1+1,m1’6fn1—1,m1’ H 6mkmk' H 61';;;1%;'
k=2 1=2

o, TG + TGO, + 3)

2 + TN+ 9) iz

1 —44(]-[—4)2 6
X { L G+ 5.+ )

=2

PG + DIPGE; + 1))}_ 4.21)

{1 o, DG + DTGE, + 3)

TG, + 7; + 6))

23 ' TQG+ % +6) =3

+ 1 0,060 + GG+ D, Iio, P(égé x DG, + )]
H i

— J 1T 0, TG + DILGE: + 3))) + li q, TG+ TG0, +3)

F'du, + v + 5))

k=2

PGE; + DITGE; + 1) .

TG+ %+ 6))

L T + 2IPGG + 3)
—(J - Q
(A sy~ 2% T TG+ )
_ Ty 0, GG + DITGG + 3»12I o TG + )G + 1)
=R ¢TI Y = T(3(u: + v + 3))
o 17 . DO + DA + 3) & o TGE; + DITGE; + D) 47
i 11 T(Gu + % + 5) e, TG, + 7, + 3) } “-22)

The matrices D(#, n) are obtained from Eqgs. (4.19)-
(4.22) by interchanging symbols with carets with
symbols without carets, at the same time inter-
changing the factors J and J — 2 that appear in these

formulas.
5. CONCLUSION

We have derived and explicitly displayed the matrices
of the generators of the algebra of U(6, 6) between
harmonic function states which may, under certain
circumstances, be considered highest weight states.

It is now in principle possible to calculate the matrix
elements of any element of the U(6, 6) algebra between
these states.

If we proceed in a similar manner to find the matrix
efements of the generators between any two harmonic
function states, then it is again in principle possible to
find the matrix elements of the finite transformations of
the groups generated by the algebra. Itis clear, however,
from the complicated structure of the results obtained

above that such a task would be prohibitively com-
plicated, at least within the framework of the
formalism used here. We should, nevertheless, like to
find compact expressions that describe the matrices
for finite transformations—expressions that are
analogous to the Wigner 4 functions for the rotation
group. This would require the decomposition of
U(6, 6) into an ordered product of a finite number
of its one-parameter subgroups. This problem is being
studied.
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In an earlier paper the Ginzburg-Landau free energy functional was used to calculate the effect of
thermodynamic fluctuations on the off-diagonal correlation function and we found no off-diagonal
long-range order in one- and two-dimensional systems. It has been pointed out that, for a charged system,
the use of the Ginzburg-Landau free energy functional is in error for arbitrary nonequilibrium values of
the order parameter since the electrostatic energy of the charge fluctuations associated with an arbitrary
order parameter is not included in the free energy functional. We have not succeeded in a direct general-
ization of the free energy functional so we are forced to proceed by inference from the generalized
random phase approximation (RPA). We find that, for uncharged systems, the RPA gives a linearization
of the results obtained earlier using the Ginzburg-Landau theory. For charged systems we find in the
RPA results similar to those obtained for uncharged systems, From this we conclude that it is very likely
that, as in uncharged systems, there will be no ODLRO in charged infinite one- and two-dimensional

systems.

I. INTRODUCTION

THERE has been considerable interest recently in
the possibility of superconductivity in one- and
two-dimensional systems. The original impetus for
this work came from a suggestion by Little! that
certain organic macromolecules might be supercon-
ductors with very high transition temperatures. Little!
used as a criterion for superconductivity that the
Bardeen-Cooper—Schrieffer equations have a solution.
Ferrell? examined the effects of low-lying collective
modes on a one-dimensional superconductor and
found that the expectation value of the gap function
was zero and therefore no superconductivity. Recently
Bychkov, Gorkov, and Dyaloshinski® have argued that
the macromolecules proposed by Little! would not
have low-lying collective modes because of the
Coulomb interaction and that such macromolecules
could be superconductors. In a previous paper* (here-
after referred to as I) we examined the effects of
thermodynamic fluctuations on the existence of off-
diagonal long-range order (ODLRO) in one- and two-
dimensional systems. The concept of ODLRO was
first introduced by Penrose and Onsager® for bosons in
the superfluid state. Yang® has shown that ODLRO
in Fermi systems implies flux quantization. In I we
calculated the off-diagonal correlation function by
first assuming the existence of an order parameter

* Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey.

1 W. A. Little, Phys. Rev. 134, A1416 (1964).

2 R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964).

3 Yu. A. Bychkov, L. P. Gorkov, and I. E. Dyaloshinski, JETP
Pismav Redaktsiyu 2, 146 (1965) [English transl.: Soviet Phys.—
JETP Letters 2, 92 (1965)].

4 T. M. Rice, Phys. Rev. 140, A1889 (1965).

5 O. Penrose, Phil. Mag. 42, 1373 (1951); O. Penrose and L.
Onsager, Phys. Rev. 104, 576 (1956).

¢ C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

and then averaging over all possible choices of the
order parameter weighting each according to its
thermodynamic probability in the Ginzburg-Landau
theory.” We found that, whereas in three dimensions
the resulting correlation function exhibited ODLRO,
in one and two dimensions this was not so.

At first sight it would seem that it is possible to
apply the arguments given in I to charged or un-
charged superconductors since they depend only on
the Ginzburg-Landau theory which is known to work
well for real conductors. Kohn® has pointed out that
the use of the Ginzburg-Landau free energy func-
tional for arbitrary values of the Ginzburg-Landau
order parameter W(x) is highly suspect for charged
systems. An arbitrary W'(x) has a current associated
with it J~ P*VY — (V¥*)¥. Further, since in
general divJ % 0, an arbitrary ¥(x) will have a
charge fiuctuation associated with it. Charge fluctua-
tions require an electrostatic energy which is positive
and this tends to inhibit them, but this fact is not
contained in the Ginzburg-Landau theory. This
criticism does not apply to the equilibrium values of
W(x), which satisfy the Ginzburg-Landau equations,
(since divJ = 0 for all such values). The criticism
only applies to the use of the Ginzburg-Landau free
energy functional to describe an arbitrary nonequi-
librium value of ¥'(x) in a charged system.

We have not succeeded in generalizing the Ginzburg-
Landau free energy functional to include these effects
and thus we cannot give a direct generalization of the
results in I to a charged system. Thus we are forced
to proceed by inference from the generalized random

? V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.

20, 1064 (1950).
8 W. Kohn (private communication).
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phase approximation (RPA). We calculate the off-
diagonal correlation function in the RPA for both the
uncharged and the charged systems. We find that, in
an uncharged system, the form of the off-diagonal
correlation function obtained from the RPA is a
linearization of that obtained in I using the Ginzburg-
Landau theory. We then calculate the off-diagonal
correlation function in the RPA for a charged system
and we find a form similar to that obtained for the
uncharged system. From this we infer that it is very
likely that a more correct calculation would give results
similar to that obtained in I—namely, that there could
be no ODLRO in an infinite one- or two-dimensional
system. This is rather remarkable since the question of
ODLRO is closely related to the long-wavelength
collective modes of the system. These modes are
strongly influenced by the Coulomb interaction.

We use the functional integral formulation of the
theory of superconductivity developed by Hubbard®
and Langer'® since it facilitates the comparison of the
Ginzburg-Landau theory and the RPA. These two
approaches appear in this formulation as two dif-
ferent approximations to the full functional integral.
In Appendix A we show how Werthamer’s*! general-
ization of the Ginzburz-Landau functional to all
temperatures can be derived readily from this formu-
lation.

II. FUNCTIONAL INTEGRATION TECHNIQUE

We start by discussing the functional integral
formulation of the theory of superconductivity. As
we are interested in the effects of the Coulomb inter-
action on the off-diagonal correlation function, we use
a Hamiltonian which contains a short-range attractive
force and a Coulomb repulsion. The functional
integration technique has been applied to supercon-
ductivity by Hubbard,® Muhlschlegel,’? and Langer.1°
Hubbard and Langer use just a short-range attrac-
tive force while Muhlschlegel considers only the trun-
cated BCS Hamiltonian. We wish to extend the
Hubbard formulation to include the Coulomb repul-
sion. The Hamiltonian of the system is given by

H — uN = 3 8p)a) ., ,
) Y-

T T
-3 z 80%+0,60—p,—c%—p', %' +Q,0
p:p’,Q
o

t 1
+ % z U(Q)an+0'.dap,ﬂap’—o,a'ap’,a" (1)
o0, Q
[ X1
® J. Hubbard, Phys. Rev. Letters 3, 77 (1959).
10 J. Langer, Phys. Rev. 134, A553 (1964).
11 N. R. Werthamer, Phys. Rev. 132, 663 (1963); L. Tewordt, ibid.
132, 595 (1963).

12 B, Mubhlschlegel, J. Math. Phys. 3, 522 (1962).
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Here the @,, and 4}, are the annihilation and
creation operators for Fermions of momentum p and
spin ¢ and &(p) in the energy measured from the
chemical potential u. The momentum dependence
of the attractive interaction is a purely formal device
which, as we see, enables us to calculate easily the
off-diagonal correlation function. We always set
gq = g at the end of our calculations. The Coulomb
interaction is given by ¥(Q) = 4me?/ Q2.

Let Z denote the grand partition function

Z = Trexp {—f(H — pN)}, @

where § is the inverse temperature. Following Hubbard
we introduce a Feynman?'? ordering label s and write

Z=Tr exp {_ }%[ Z a(p)al,u,aap,a,s - Qz ng(-I;,st,a

D,0,8
43 o0 Qpbpas])s @
where we have introduced the operators
t t t
bQ,s = 2 ap+0,a',sa—p,—u,s
p

and
T t
PQ,s = Z ap+0,a,sab,a',s‘

G

The sum over s runs from 1 to N. With the introduc-
tion of the ordering label, the quantities now can be
treated as ¢ numbers with an error which goes to zero
as N — oo. Using the identity

2 1 [+®
exp {lal*} = = f dx, dx,

x exp {—|x|* + ax + a*x*}}

where x = x;, + ix,, we can express the partition
function as a double functional integral

7 = fjw I {—ﬂ— dXg.q: d)’o,s,-'}

o Qs N
x oxp [ = &5 (0. + ouelross yad (@
The functional £ is given by

f’[xo,u yQ,s] =Tr €xp {— 'g'l: z g(p)aI,a,sap,d,s
D

50,8

+3 (2)4(x§,.b,, + hoc))

+ 3 (~ 1@ 08 rh, + h-c-)]}- ®)

£ is the partition function of noninteracting elec-
trons moving in an arbitrary “scattering” potential

13 R. P. Feynman, Phys. Rev. 84, 108 (1951).
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and an arbitrary “pairing” potential. It can be evalu-
ated by the usual procedures of many-body perturba-
tion theory. If now we replace the sum by an integral,
ie., (BIN)Y,~— J& ds, and expand all quantities de-
pending on s in a Fourier series as is usually done in
finite temperature many-body theory, we get that

Z= f I;[ (:—T dx, ; dya,i)

X exp {—E(Ixalz + Iyalz)}ﬁlx,, vl (6

where a = (Q, m) and m runs over all integers and
B
£lx,, v.] = Tr exp {— f ds 3 6@)al. .ty
0 Do
B
_ g f ds 3 (g0)¥(cbY, , exp 2mims/B) + h.c)
0 a
1 4 1
ays f ds 3 (~1(Q)

x (y*ph., exp Qmims/B) + h.c.)}. 10

The calculation of £ reduces to the calculation of
the “partition” function of noninteracting particles
moving in arbitrary “scattering” and “‘pairing”
potentials. An expansion of £ in powers of the
“pairing” potentials {x} and “scattering” potential
{y} is generated by perturbation theory. The “parti-
tion” function then is given by the exponential of the
sum of all connected electronlike graphs. The con-
tribution from each graph may be written down
using the following rules:

(1) For each solid electron line, a factor

[B(&(p) — mil/B)]I .

Label each interaction line with a momentum and
frequency which must be conserved at all vertices.

(2) For each ingoing “pairing” interaction, denoted
by a wavy line, a factor (gof)2x*; for each outgoing
“pairing” interaction, denoted by a wavy line, a
factor —(goB)ix,.

(3) Foreachingoing ““scattering” interaction, denoted
by a broken line, a factor (—}v(Q)B)ty*; for each
outgoing “scattering” interaction, denoted by a
broken line, a factor (—3uv(Q)p)Yy, .

(4) (—1)/w for each closed loop where w is the
rotational symmetry of the loop, and a factor (3) for
each closed loop involving a “pairing” interaction
for overcounting the spin sum.

(5) Sum over p, ¢ and / odd.

With these rules we can evaluate formally the
functional £[x,,y,] and can write the ratio of the
partition functions of the interacting and noninter-
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acting systems Z’ as

2 = [ T1 (; druidya) exp (=Vlxe, 01}, ®)

where

Y[xa’ ya] = '—<S(/3)>linked + z('xalz + |ya|2)’
and :

8
SO =Tow (= [ Huds). O
Hy,(s) is the interaction Hamiltonian Eq. (7) in the
interaction representation.

In the next section we discuss the evaluation of ¥
for the uncharged system in various approximations
and the calculation of the off-diagonal correlation
function.

III. UNCHARGED SYSTEM

We begin by considering the uncharged system,
i.e., no Coulomb interactions between the particles
v(Q) = 0. The Hamiltonian is now the same as that
used by Langer.’® Hubbard® and Langer'® showed
that the superconducting transition manifests itself
in a shift of the minimum of ¥[x,] away from the
origin. The position of the minimum is at|x,|% = s,,
where s, is given by the BCS equation

| _ 8o tanh (BA(80)° + gosolBI'}
A COR G

There are two alternative approximations we can
now make,

(1) We can expand Y[x,] in powers of x, about the
origin, i.e., x, =0, all «. If we drop the *time”-
dependent terms—ignore the s dependence of the
variables {xq ,—then we need only include o =
{Q, 0} terms and, expanding the coefficients in powers
of Q, we get the Ginzburg-Landau functional. This
procedure is valid only near the transition temperature
but it can be extended to obtain the Werthamer!!
function, which is valid for all temperatures, as
indicated in Appendix A.

(2) Alternatively, we can expand Y[x,] about the
new minimum xg,=s,; X, =0, « # (0,0). This
expansion, which is a generalized RPA, has been
carried out by Langer.1® We calculate the off-diagonal
correlation function in both approximations and show
how the results are related.

(10)

Ginzburg-Landau Approximation

We begin by discussing the first approach. We
neglect all ‘“‘time”-dependent graphs and consider
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just the two lowest-order graphs shown in Fig. 1; then
we have

Yixol = 3 (1 + K§)xlxo
Q

(2) * _*
+ z KOl.Os.an01x02x03x01+0n—03’ (11)
Q10Q:Q3

where

w_ 1

T. M. RICE

Q.0 Q3.0 Qi+Q-Qs,0
p+Qi1 -pl
9 ’ [} QI ’ 0
FiG. 1. The graphs included in the Ginzburg-Landau
approximation.
£o (12)

o 51—3»,% (8(p + Q) — il/B)E®) + 7il/B)’

(golgoagosgoﬂ-or_os)i

1
(@ -
%0n0s = 353 % (6(p + Q) — ~ilIBXE® + Qu — Qo) + HAER + Qs — Q) — 7ilP)

Expanding in powers of Q and setting g, = g, we
write

K(1)=K0+K1Q2+...; Kg:,03,03=K2+”"

The evaluation of the coefficients X,, K, and K, has
been given by Gorkov.1* Writing Y[x,] as a functional
in position space, we get

Y[AR)] = fa’ f IARR) dR + 36b’ f IAR)[* dR

+ pe j IVAR)P dR, (14)
where

A(R) = (g/B) 3 %o exp (iQ * R).

A(R) is Gorkov gap function and is proportional to
the Ginzburg-Landau order parameter ¥'(R):

W(R) = (TL3)N/8=*TAIA(R). (15)

pp,0

0
5 InZ[g,]

Tr :*ﬂ 2 aLQaain.—aa—n’,—van%Q,a exp (—pB(H — ,uN))}

1

_ ., (13
Xemtam W

The coefficients a’, b’, ¢’ are given by
a =4+ Ky)fg; b =2pK,)/g? ' =—K/gt

If we write the functional Y in Eq. (14) as a functional
of ¥'(R) rather than A(R), then we see at once that it
has the same functional form as the Ginzburg-
Landau free energy functional. Comparing coefficients,
we find, as shown in detail in Appendix A, that
Y = BF where F is the Ginzburg-Landau free energy
functional. In I we calculated the off-diagonal cor-
relation function by averaging over all possible choices
of the order parameter and using the Ginzburg-
Landau free energy functional to weight each choice.

The Generalized Random Phase Approximation

In this section we calculate the off-diagonal cor-
relation function in the generalized RPA. The off-
diagonal correlation function can be obtained by
differentiating the grand partition function,

= 6°°(Q),

8q=8

ago

and we have used the cyclic property of the trace to
write the derivative in this form.

The grand partition function is obtained in the
RPA by expanding the functional about its minimum
and evaluating the functional integral by using
a saddle-point approximation. As Langer!? has shown,
the saddle-point approximation is at best a physical
one, which is mathematically unjustified. We follow
Langer’s analysis, extending it to a momentum-

1L, I. Gorkov, Zh. Eksperim i Teor. Fiz. 36, 1918 (1959)
English transl.: Soviet Phys.—JETP 9, 1364 (1959)].

Tr {exp (—pf(H — uN))}

(16)

dependent pairing interaction and we find

, 1

Zlgol =TI (- [dv.s) exp(~Yigo, x,
i=¢1,2 ‘”

where Z’ is ratio of partition functions of the inter-

acting and noninteracting systems, and

Y[gQ s xa]
= Y(go, So(20)) + 2Y"(go> so(go))(lxol2 - Sg(go))
+ 2 ){(1 - Va(go’ go))x:xa

a# (0,0

+ 30.(gq, (X2 x2, + c.c)}. an
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The first term is

o 0l h [(38)(E(p) 184
e cos P)® + g%
S =2 ? In ( cosh 385(p) ) {18

where the minimum value of ¥(jx, o|) occurs at

[xo,0l® = 55,

ie., 9Y/os|,_, =0.

The coefficients y,, 4, can be calculated by summing
all diagrams which may be obtained by inserting all
possible numbers of a« = (0,0) vertices between
two « 3 (0, 0) vertices. It is straightforward to show
that all such diagrams are included when one replaces
the bare propagator by the Gorkov propagator.1

1 &p) + =illp
BUD + A7 + P
1 A

58( )2 +A2 + ,”212/ﬁ2
with A? = g,50(g,)/p. Note F! = —F because of rule
(2).

Using these propagators, the coefficients can be
expressed by the diagrams in Fig. 2, and we have

Ve = gOﬁ 2; G(p + Q’ I+ m)G(""p’ _l)s
s
5 = (808-0)'f 3 F@ + Q. 1 + mF(—p, =D,
|13
Integrating over the {x,} we obtain

- 3
Z'[go] = exp(—Y(go, 50)) (;—é—»s—))
03 Y0

x TI (1 — 7)1 —y_) — &8 (1)

a#(0,0)

G, ) =
(19)

F(p, ) =

(20)

We can now compute the off-diagonal correlation
function by diﬁ'erentiating with respect to gq:

692Q) = 1 2 {1n Zlgqliegs 22)
8 g0
-1 "7’«(1 - y—a) - 62
=— ; 0.
B 2yl —y )0 %
23)

The behavior of the off-diagonal correlation func-
tion for large separation in position space is deter-
mined by the character of GP(Q) at small Q. Using
particle-hole symmetry, we find that y, is real and
further y_, = y,. If we expand for small Q and m,
we get

1—y.— 96, =c0Q2+c1m2+"'

OD(O)) — 2
G(Q) 5 ﬁg(coQ +em? +

e

AND TWO DIMENSIONS. I1 1585
o
P+Q l+m ~p,-1
“(a)
2*g 2+,
+m A 1+m B'l
{c) (d)
p+Q, P
2rE -p=1 S
1+m £ 2

(e) (f)

Fic. 2. The graphs included in the generalized RPA. A wavy
line denotes a ““pairing” interaction and a broken line a “scattering”
interaction.

As we stressed above, we are only interested in the
dominant term of small Q. Thus we may keep only
the m = 0 since, for finite temperatures, the sum on m
is over discrete points. Thus we find

GOP(Q) = 1/28¢,g0% Q =0, (25)
where
__£ 7
“ ey M A

Turning now to the calculation of the Q = 0 term,
we see that differentiating Eq. (21) with respect to
8o gives two contributions, one from differentiating
the exponential and one from differentiating the
product, since the coefficients y,, 8, are functions of
A. Taking the latter first we use the result that

d d
{dgo +k*o dgk}

xtn TT [0~ 7)1 = 7.0 = &t
2 =8,~8
_ _ _ s21-%
dg{ I 10—yt =) — & gﬁﬁg}.
@1

Now the right-hand side of Eq. (27) is easily evaluated,
and by Eq. (24) gives
Ect;Qz +cim® + -
TP+ emi -

(28)
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where
g = dey/dg, cf = dc,[dg.

Thus, using Eqs. (25) and (22), we get

d
“ (1 t =y )1 —y_)— ot
dgo(nH[( 1~ y_o) ]‘)

a#(0,0)
—~2£ gk?

where F(k) is regular as k — 0. The contribution from
differentiating the exponential in Eq. (21) is easily
calculated and combining the results we get

6°?(Q) =—-%§[(1 -3

g
¥ 2Bc, AKE

Bo=8,~¢

+ F(k)}, 29)

Joas+ o)

Thus in position space at large separation

(30
1—cosk-X
GOP(x =—~[1-— g ] 3
) g 2Bc, A? g K* S
In I we found that the functional integral over the
phase which controls the nature of the long-range
correlation gave

2 — .
GOD(X) = é:; exp [d_ 1 21 cosk x}' 32)
g

2BcWE % K?

Thus, comparing coefficients for T~ T, using Eqgs.
(A8) and (A9), we see at once that the RPA result, Eq.
(31), is just a linearization of the more exact result
found in L

IV. CHARGED SUPERCONDUCTORS

Wenow consider the effects of including the Coulomb
repulsion between the particies. As we stressed in the
Introduction, it would appear at first sight that
the treatment in I is sufficiently general to cover the
charged case since it depends only on the Ginzburg-
Landau theory which is known to work well for
real superconductors. However, as shown in the
Introduction, if we examine the free energy functional
more carefully, then we see that it does not include
the energy due to charge fluctuations which must,
by the conservation laws, accompany an arbitrary
¥(x).® The generalized RPA as developed by
Anderson?® and Thouless'® does not suffer from this
defect since the charge conservation condition is
built into this approximation explicitly. We now
develop the generalized RPA in our formulation. The
approximations made are entirely equivalent to those
of Anderson and Thouless, although formally they
seem different.

18 P, W. Anderson, Phys. Rev. 112, 1900 (1958).
18 D. 1. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960).
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The generalized RPA for a charged superconductor
is generated by expanding the functional Y[x,,y,]
about its minimum position. For temperatures below
the transition temperature, the minimum is at

[xool* = 505 X, =0, «3(0,0); Va=0; (33)
and we write
Y{xdi ya}

= Y(go, So) + $Y" (g0 So)(I%s, of? — 5o)?
+ 2 {(1 - y‘u)x Xq + %Qz(x x—u + x, x—a)

«#(0,0)

+ (1 + M)yeye + 30, (dy2, + yey_o)
+ O (¥ + V) F X F YD} (39

The functions y,, d,, I1,, and @, can be written down
from Fig. 2 using the rules given above and are most
simply expressed using the Gorkov G and F functions.
The functions y,, d,, and ¥(g,, s,) are the same as
before [see Eq. (20)]. We obtain from Fig. 2(c) and (d)

I, = —pAQ) 3 {60 + Q.1 + mG(p, D
"+ F'p+ Q1+ mF@®, D}, (35
and from Fig. 2(e) and (f)
D, = —(—}2ou(Q)*B {6+ Q.1+ mF@.D
+ F@p+ Q1+ mG@, D). (36)

The functional integrals over the {x.}, {y,} can be
done readily, and we obtain

2
Zlge] = exp (—¥(g, so»(-T-—f’——) I 43
Y"(8o, So)/ a#i000
(37
where A, is the determinant
1— Ya 6« (Da (Dzz
5« 1 - V—a (D—-a (I)——a
A, = (38)
D, o, 141, II,
D, D_, i, 1+11,

Using Eq. (22) we find for the off-diagonal correlation
function

G°P(Q) = Z {(————-——-——-—a/ ag")A“[gQ]}g 5 Q0. (39)
Q_g

ﬁ m Aa
Evaluating the determinant gives
A = {(1 - Vaz)(l - y—a) 62}(1 + zna)
- 2®2a(1 - ya) - 2(1)2(1 - ywa) + 46
Substituting in Eq. (39) gives, for Q 0,
G°?(Q)
—1
= e 2 A=yl ~ 831 + 211,)

-+ zyaq)ia - Z(Dz(l - 7—~a) + 45u®aq)~a}' (41)

D} (40)

7"——«:) -
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It remains to calculate the quantities, ¥,, 6., ®,,
and II,. These quantities are in fact the same as those
evaluated by Thouless and Tilley'” and we obtain with

z = wim|f
n= =83 [ e + 1+ 5)

+ (. 2XE' ~ E)(l ~ %E)’

g + ' 2.
5, = 4§{t ®, 2XE +E)

~ (p, 2)E' — E) ——}

@ pooan @
—4— % {t“L(P, z)(E' + E)(l - —_EE—)
_ . &6 — A?
+ 1(p, 2(E E)(l $ )}
0, = —0_, = - (- Q!
x3 {t+(p, z)(é—, + %) + @ z)(Ei, - %)}
where we have written
Fp, 2) = tanh (3$E’) £ tanh (3$E) @3)

(E/ :I: E)2 - Z2
and

E® = E(p+ QF = &p + Q° + A%

Substituting into Eq. (41) gives us G°P(Q). We
discuss the evaluation of GOP(Q) separately for each
number of dimensions.

Three-Dimensional System

The sum over m in Eq. (41) can be transformed in
the usual manner to a contour integral. This con-
tour integral picks up contributions from the zeros of
A, . The zeros of A, give the position of the collective
modes. In the uncharged system it was not necessary
to do this transformation since there are low-lying
collective modes for small @ and m

A¢~00Q2+Clm2+"‘

The m = 0 term dominates the sum as Q — 0 since
it alone diverges in this limit. All m 3 0 terms were
finite as @ — 0. Thus the behavior of G°P(Q) for
the uncharged system can be connected directly to
the presence of low-lying modes. However, for the three-

17 D, J. Thouless and D. R. Tilley, Proc. Phys. Soc. (London) 77,
1175 (1961); 80, 320 (1962).
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dimensional charged superconductor, Anderson!s-18
has shown that there are no low-lying modes at T = 0.
We assume that this is so at finite temperatures and it
can be shown that temperature dependence of the
plasmon mode that Anderson found is negligible. In
this case the behavior of 4, for small Q and m is now
drastically changed and it is necessary to evaluate the
contour integral. The dominant contribution at small
Q comes from the zero-point motion of the plasmon
mode. There is also a contribution from the collective
modes due to oscillations of the magnitude of gap, but
this is finite as Q — 0. Evaluating the residue of the
plasmon modes, we find the dominant contribution
at small Q comes from the 2d2 term in the numerator
of Eq. (41) and, neglecting terms of O(wp/wp) and
O((Pwp)™), we get

6o%(Q) == [(1 -3 8”‘;2

8me’
wpQ

where the first term is calculated in a similar manner
to Egs. (27)~(30). wp is the plasma frequency.

Comparing this form for G°P(Q) with that found
for the uncharged system in the RPA Eq. (26), we see
that it has the same behavior at small Q. There we
found that the RPA linearized the more correct
answer found from Ginzburg-Landau. Thus we
expect a more correct theory to give

8_1I£2°<§"1—cosQ-X}

)50 ot 2], 44)

2
6oy =& exp {—
g

wWp Q o?
(45)
~Ag—2 exp [—(Quef2m — X264 w3
X - o0, (46)

where Q,, is an upper cut-off whose magnitude is
determined by the terms omitted in the expansion in
Eq. (44). This form for G°P(X) of course exhibits
ODLRO. The behavior of G9P(Q) for small Q in
the charged system is similar to that in the uncharged
system, although we have no low-lying modes. The
divergence at small Q for the charged system comes
from the residue of the plasmon mode rather than the
modes’ dispersion relation.

In order to understand physically what is going on,
it is instructive to ask how the phase of the gap param-
eter varies in a superconductor in the presence of
a charge fluctuation. Consider a localized charge

18 Note added in proof. Quite recently P. C. Hohenberg [Phys.
Rev. 158, 383 (1967)] has given a very elegant and general proof of
the absence of ODLRO in one- and two-dimensional systems at
finite temperatures. This proof is applicable to both charged and
uncharged superconductors.
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oscillation at the origin which we represent by an
electromagnetic potential

¢ext(ki w) = (47"32/ k?) &(w — wu)- (C))

Then the Fourier transform of the phase of the order
parameter W(k, w) is given by [see Ambegaokar and
Kadanoff,!? Eq. (4.9)]

W(k, w) = 4me’wd(o — wy)/k¥(wh — »]). (48)
Thus the phase difference is
_ 4mefwy(l — cosk - X)

W(X) — W(0) = kz Kok — of) (49)
P — %o
32w0 kmax _ __1_
N_w}—wg(%r X)' (50)

Thus we see that, whereas in an uncharged system
a localized density fluctuation gives rise only to a
localized phase fluctuation, in a charged system the
phase fluctuation falls off slowly. We attribute the
behavior of G°P(Q) for small Q in the charged system
to the zero-point motion of the plasmon modes. We
see that the presence of a long-range force does not
alter the character of GOP(X) at large X because, al-
though such an interaction forces the density modes
up to the plasmon frequency, it also causes localized
density fluctuations to have a long-range effect on the
phase.

One- and Two-Dimensional Charged Systems

We begin by defining more exactly what we mean
by a one- or two-dimensional charged system. For an
uncharged system it sufficed to define the dimensional-
ity of the system purely in terms of the dimensionality
of the sum over Q; but this prescription breaks down
for a charged system since the one-dimensional
Fourier transform of the Coulomb potential is not
well defined. It is necessary to take a specific model,
and we take as our model in one dimension a system
of electrons constrained to move inside a long, very
thin cylinder, and for a two-dimensional system a very
thin film. Thus, in one dimension, consider the elec-
trons as moving in a potential

Vix, y, z) = imow?(x® + y?). (51

The energy eigenvalues of a system of noninteracting
electrons moving in such a potential are given by

8.k, = (k2m) + (n + Heo. (52)

We assume that w is very large, so large in fact that
we need never consider the higher transverse states,
i.e., we keep only the n = 0 term in all sums over the

19 Y. Ambegaokar and L. P. Kadanoff, Nuovo Cimento 22, 914
(1961).
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transverse wavefunctions. The wavefunctions associ-
ated with this system are

¥, (r) = golx, )LH exp (ik,2), (53)
where L is the length of the system and g, is lowest
oscillator function

@o(x, y) = (v/m) exp {—1*(x* + y)}
with » = mo.

We now switch on two different interactions be-
tween the electrons, an attractive d function interaction
and a repulsive Coulomb interaction. Migdal*® has
extended the Gorkov theory to nonuniform systems.
In this case, the extension is particularly easy since
we have only one transverse level. The derivation of
the functional integral in this case is straightforward
and the rules for evaluating the graphs are the same,
except that the three-dimensional momentum vector
p is replaced by the one-dimensional vector p,, the
transverse label n = 0 being understood throughout.
The interaction matrix elements g, and v(Q) are
replaced by the matrix elements gq_, v'(Q,), where we
again introduce a momentum dependence to the
coupling constant g to facilitate the calculation of the
off-diagonal correlation function. The new matrix
clements are given by

g =g f dx dyg(x, )

(54

(%)

and

(2.

fd"r Er'¥ o ()0 g, 1,0)

2
x Ir _e_ r| 11J‘Ov7€.+(?,,("’)]'Ij'o,k,,'(l'), (56)

= —(¢/mL) log (229 + -, (57

where we keep the dominant term for small Q,.
Below the “transition” temperature we again intro-
duce the Gorkov G and F functions,

B &i(k.) + Ag + 7

Golk,, 1) = (58)

and
1 8,
B &ik,) + A2 + =B’
where &(k,) = & — u and A, is determined by
the equation
" <, tanh [$E(k,
A0=_g_z 0 [3BE( )]
2% Ey(k,)
We now examine the collective modes of the system.

In the normal phase it is shown in Appendix B that
this system has low-lying modes. The dispersion

Folk,, ) = (59

(60)

30 A. B. Migdal, Nucl. Phys. 13, 655 (1959).
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relation in the limit as k, — 0 is
Ne ¢
or, = T £ [~log (2] +

These modes are similar to those discussed by Ferrell.2
Below the “transition” temperature the zeros of A,
determine the modes and we show in Appendix B
that these modes persist. To calculate the off-diagonal
correlation function we need to evaluate the sum
over m in Eq. (41). Because of the low-lying modes
the dominant term at small @, in the sum for T % 0
will, as in the uncharged case, be the m = 0 term.
But @4 .., = 0 from Eq. (42), so that in the one-
dimensional system

GOD . 4 (Qz ’ 0)(1 i (Qz » 0)) . 6,2(Qz (0)
(Q ) ﬂ ( 4 (Qz * 0))2 - 6'2(Qz H 0)

(61)

s

(62)

and all effects of the Coulomb interaction have
canceled out in this approximation. The result is
identical to that which we found in the RPA for the
uncharged system. The RPA as we discussed above
gives a linearization of the more exact results found
in I. Thus we argue that, in view of the equivalence
of the results found in the RPA for the charged and
uncharged system, a more correct theory of the
charged system would give the results found in L

The two-dimensional charged system is similar.
There are low-lying collective modes which persist
below the “transition” temperature. Because of these,
the terms which couple in the Coulomb interaction
again do not contribute to the dominant term at small
Q, and the result for G®P(Q,) in the RPA is identical
to the uncharged system.
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APPENDIX A

In this Appendix we show how the procedure used
in the text to obtain the Ginzburg-Landau functional

1589

for temperatures near the transition temperature can
be generalized to all temperatures to obtain the
Werthamer! functional. The functional Y[xq,] is
written first as a functional in position space. The
“time”-independent approximation is made and all
terms with m s 0 are discarded. Then a gradient ex-
pansion is carried out. We confine our attention to the
field-free case, although our results can be generalized
to include a static external vector potential. In order
to demonstrate that the resulting functional is the
Werthamer functional, it is sufficient to consider
just the nearly uniform situation. Werthamer’s func-
tional for the free energy for the ficld-free case can be
written as

FIAR)] = f d*RN(O)[w(lA(R)l*)
W(IAR))

G[H

+
+—ff( :A(R)P)w"’(fA(R)l’))], (A1)

where N(0) is the density of states at the Fermi
surface, and

+© ] 1+ cosh f(e® + x??
= — 21
w(x) le de[ﬁ n

1 + cosh ffe
— tanh %ﬁce]. (A2)
2¢

We could now proceed to check that the functional
obtained by a gradient expansion of Y[A(R)] is
identical to BF; but, in fact, it is not necessary to
calculate this expansion directly since Langer’s'® ex-
pansion of Y in momentum space about the minimum
value can be used to derive the coefficients. Langer
[Eq. (4.14)] has shown that

YIA] = Y(IA) + (f) pACERRNIINS

+ 30,83, + c.c)/IA®}, (A3)

where we have written

A, = (g/B)}, exp (ip,)

and the coefficients are given by

@) — 7illB)Ep + @ + 7illf) "
g I = 3 3 o TR T 1M XEe £ O & =R AP A9

an
5.1 = 8120 > : (A3)

28 550 (8() + PB4 18NUE @ + Q) + w T + 1A,
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This can be rewritten as

>: {1 = (180D = (1 Bel)DA,

Y[A] = Y(1&D + =

T. M. RICE

+ B0, (ANALAAL, + 2 A A3 + ATPAA_D/IA}.  (A6)

Expanding the coefficient in powers of q, we write

@ + Q) — &)

1= 7 (18) — 818} =
= ¢(|ADg* +

3,(1841) = 34(18,) + S1ADG® + - - -

Transforming to position space, we obtain
a 2
@) = ¥4+ etidad | 5 2 aw)[ar

ﬁaoaAoa) "
oy sr®

+ 2|AF[AR) + AFPAY(R)) dR

B 35180 *
+2g 1A* {A (dRA (R))
) 4 A9
+ 2180 | A®) }dR. (A9)

Comparing with the free energy functional 5, we see
that Y has the same form as fF in the nearly uniform
case, i.e., one writes A(R) = A, + A’(R) and expands
in A'(R). It remains to show that the coefficients are
the same. After some algebra we find

Y(iA = £ Ci
cosh [(B/2)(6(p)" + |AgDY]
— 2 }
=13w( Ao,
B v-@?
g wlld = z 5 (8(0) + BB° + 1A|D?
= %ﬁv%w"(moﬁ),
BoIAD _ 1 5 1
28 1A Aol (6(0)° + BB + 1A
= 1w (1A,
Bo(0) 1 (v D BEH(p) — LB — |AD)
2810 dume  (E0F + LB + AP

= Bugw"(|84")/36. (A10)

Thus we have shown that the two functionals are
equivalent and that a gradient expansion of Y[A(R)]
yields Werthamer’s generalization of the Ginzburg-
Landau free energy functional.

4/3 bLo (8(1))2 + 17212/192 + 1A)(E(p + Q) + 7B + |Al[)

(AT
(A8)

APPENDIX B. COLLECTIVE MODES OF
THE ONE- AND TWO-DIMENSIONAL
CHARGED SYSTEM

In this Appendix we calculate the collective density
modes of one- and two-dimensional model systems.
Consider first the normal phase of the one-dimen-
sional system. Then, in the RPA, the dispersion
relation is determined by the eigenvalue equation

1= (vl(kz) + g’)sﬁ(kz’ w)y (BI)

where

so(kz , W) = z . Go(k +q,,¢+ w)GO(qza E)

and Gy(g,, ¢) is the single-particle Green’s function.
At small k, the dominant contribution is from the
logarithmic term in ¢'(k,). Thus, using Eq. (57), we get

__E [k ol + d5) = no(g,)
1= -——1log
aL \/2 V/ ag0 OO = ge(kz + qz) -+ go(qz)
(B2)
2 k ka2
= % tog () e B3
°8 (\/2 v)cu — vhk: B3

where vy is the Fermi velocity. Solving for w, we get
o® = v} kH(e* mvp)—log (k,//2 »)] + 1}. (B4)

Thus at small %k, the first term dominates, and we
obtain

o = k{(N/L)(em)[— log (k,/N2 ) + - - -

Next we consider the two-dimensional charged
system. In this system we again consider only one
transverse energy level, and it is straightforward to
generalize the treatment given above for the one-
dimensional system. The new matrix elements are
g” and v"(ky) where g” differs from g only by a constant
and

(B5)

o"(ky) = 2me*( L7k, . (B6)

Then we find, on solving the eigenvalue Eq. (B1) for
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the normal two-dimensional system, that
w(ky) = INJL(ek/m)lE + - - | (B7)
We now turn to the calculation of the dispersion
relation below the “transition” temperature. The
dispersion relation is determined by the zeros of
the determinant 4,. We consider only T = 0 since the
additional terms in Eq. (40) which enter at nonzero
temperature are nonanalytic and cannot be expanded
about w = 0, k) = 0. At T = 0 we have to solve for
the zeros of Eq. (40), namely,

Ay = (1= 7z + {1 — yi — 6)(1 + 2[ o) — 407},

(B3)
where the prime denotes that we have replaced the
interaction g and ©(Q) by the appropriate primed
matrix elements given in Egs. (55), (57), and (B6). The
zeros of 1 — y, + 8, correspond to oscillations in
the magnitude of the gap and these oscillations all
start at a finite frequency, namely, at twice the gap.
Using Eq. (42), we get, in one-dimension with & =
mim|,

1591

7.2 1
1 — y'(w, k) — 8w, k) = — 823 —
V(w, k) — 8w, k) 2 %Ei,

g' (g(pz+kz)_80(pz))2+_.

+ —_—
8 £ ES,

: ) (B9)
14+ 2[T(w, k) =1+ B’ (k) 3 —5 + s
Dy Dy
4(D2(6(), kz) —_ OﬁA_:U:Q{Ag_:(E .i.)z +
8 » Ej,
Solving for the dispersion relation, we get
of = oK + Kb (N (S ) + o
»; Ep,
Using Eq. (58) for v/(k,), we see that the second term
dominates at small k,, but nevertheless there are low-
lying collective modes. We have not been able to
demonstrate explicitly the existence of these modes
for temperatures 0 < T < T, but it is reasonable to
assume that they are present at these temperatures.
Similarly, one finds low-lying modes for the two-di-
mensional system below the “transition” temperature.

(B10)
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Description of Extended Bodies by Multipole Moments

considered, and it is shown that such a body may be completely specified by a certain set of multipole
moments of the energy-momentum tensor 78 and the charge-current vector J*, These moments include
the momentum vector, spin tensor, and total charge of the body, and they completely determine 7%/
and J=. It is shown that the only relations between the moments due to the *“generalized conservation
equations” 9sT*f = —F*AJp and 0.J% = 0 are the constancy of the total charge and equations of motion
for the momentum vector and spin tensor, in contrast to previous descriptions by moments, such as
that of Mathisson, which have an infinite number of such relations. The equations of motion are given
exactly, as infinite series in the moments, without assuming the applied electromagnetic field to be
analytic, and an approximation procedure is developed, based on the smallness of the body compared

with a typical length scale for the external field.

1. INTRODUCTION
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in Special Relativity*
W. G. Dixont
Department of Physics and Astronomy, University of Maryland, College Park, Maryland
(Received 23 September 1966)
The description of an extended charged body in a given electromagnetic field in flat space-time is
and
VJ*=0. (1.2)

N both the special and the general theories of
relativity, the basic description of charged matter
moving in an electromagnetic field F*# is given by an
energy-momentum tensor 7% and a charge-current
vector J* satisfying

V,T* = —F*J, (1.1)

* Work supported by the National Aeronautical and Space
Administration under Contract NsG-436,
T Present address: Churchill College, Cambridge, England.

But, for describing the motion of a body, it is more
convenient to use a set of multipole moments of 7%
and J* rather than these tensors themselves. In the
present paper we first discuss various definitions that
have been proposed for such moments of extended
bodies, and then for the case of flat space-time we
define a new set of multipole moments that avoids
some of the defects of the earlier definitions. A
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8 £ ES,

: ) (B9)
14+ 2[T(w, k) =1+ B’ (k) 3 —5 + s
Dy Dy
4(D2(6(), kz) —_ OﬁA_:U:Q{Ag_:(E .i.)z +
8 » Ej,
Solving for the dispersion relation, we get
of = oK + Kb (N (S ) + o
»; Ep,
Using Eq. (58) for v/(k,), we see that the second term
dominates at small k,, but nevertheless there are low-
lying collective modes. We have not been able to
demonstrate explicitly the existence of these modes
for temperatures 0 < T < T, but it is reasonable to
assume that they are present at these temperatures.
Similarly, one finds low-lying modes for the two-di-
mensional system below the “transition” temperature.

(B10)

JOURNAL OF MATHEMATICAL PHYSICS

Description of Extended Bodies by Multipole Moments

considered, and it is shown that such a body may be completely specified by a certain set of multipole
moments of the energy-momentum tensor 78 and the charge-current vector J*, These moments include
the momentum vector, spin tensor, and total charge of the body, and they completely determine 7%/
and J=. It is shown that the only relations between the moments due to the *“generalized conservation
equations” 9sT*f = —F*AJp and 0.J% = 0 are the constancy of the total charge and equations of motion
for the momentum vector and spin tensor, in contrast to previous descriptions by moments, such as
that of Mathisson, which have an infinite number of such relations. The equations of motion are given
exactly, as infinite series in the moments, without assuming the applied electromagnetic field to be
analytic, and an approximation procedure is developed, based on the smallness of the body compared

with a typical length scale for the external field.

1. INTRODUCTION

VOLUME 8, NUMBER 8 AUGUST 1967

in Special Relativity*
W. G. Dixont
Department of Physics and Astronomy, University of Maryland, College Park, Maryland
(Received 23 September 1966)
The description of an extended charged body in a given electromagnetic field in flat space-time is
and
VJ*=0. (1.2)

N both the special and the general theories of
relativity, the basic description of charged matter
moving in an electromagnetic field F*# is given by an
energy-momentum tensor 7% and a charge-current
vector J* satisfying

V,T* = —F*J, (1.1)

* Work supported by the National Aeronautical and Space
Administration under Contract NsG-436,
T Present address: Churchill College, Cambridge, England.

But, for describing the motion of a body, it is more
convenient to use a set of multipole moments of 7%
and J* rather than these tensors themselves. In the
present paper we first discuss various definitions that
have been proposed for such moments of extended
bodies, and then for the case of flat space-time we
define a new set of multipole moments that avoids
some of the defects of the earlier definitions. A



1592

summary of the notational conventions used in the
present section is given in Sec. 2.

Consider first an extended body in a curved
space-time with F*f = 0. Then T*f is a function of
class C* whose support, ie., the closure of the set of
points on which it is nonzero, is a world-tube W
whose intersection with every spacelike geodesic is
bounded. This property of W, for brevity, will be
called spacewise boundedness. Choose any timelike
world-line L lying in W and let its parametric equation
be x* = z%(s), where s is the proper time measured
along it. Let 2(s) be the hypersurface generated by all

geodesics through z%(s) orthogonal to v(s) & dze/ds.
Then, as was shown by Bielecki, Mathisson, and Weys-

senhoff,! there exist unique tensor fields ¢71* - *b(s)
defined along L for each n > 0 and satisfying
B gt vad(ap) (1.3)
and
v, I =0, 1.9
which are such that
f T“"p,,,(—g)* d
= Z )V, Paplan A5 (1.5)

~wn=o N!

for any C* tensor field p,; of compact support whose
Taylor series expansion about z*(s) is valid on
Z(s) N W. It will be shown in a later paper that the
coefficients #71* -~ m*#(s) are identical with the quantities
having the same notation which were defined by
Dixon? as explicit integrals of T*# over X(s). In the
present section we call these the multipole moments
of the body, but in subsequent sections we reserve this
name for other quantities defined later. They can be
shown to determine 7*f completely, as we see for the
case of flat space-time in Sec. 5. This is contrary to a
statement made in Ref. 2, and I am indebted to
Dr. J. Ehlers for this correction.
As F*# = 0, we have
V,T* = 0. (1.6)

So, given any vector field k, satisfying the same
conditions as imposed on p,,, if we choose

Pap = Voky + Vik,, (L7
then the left-hand side of (1.5) vanishes identically.
We thus have the identity

fz —'t" vnaﬁ(s)[vyl._
n=0N.

“1A. Bie A. Bielecki, M. Mathisson, and J. W. Weyssenhoff, Bull.
Intern. Acad. Polon. Sci. Lett., Cl. Sci. Math, Nat. Sér. A: Sci.
Math. p. 22 (1939).

2 W. G. Dixon, Nuovo Cimento 34, 317 (1964).

- yuakplae ds = 0, (1.8)
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due to Mathisson,3* who calls it the wvariational
equation of dynamics. It is equivalent to an infinite
system of ordinary differential equations relating the
moments, which is usually treated by the following
process of approximation. We suppose that the
diameter 4 of the body is small compared with a
characteristic length scale R of the external gravi-
tational (i.e., metric) field. If we assume that the
2"-pole moment ¢?1-""*f interacts only with n-fold
and higher derivatives of the field, this interaction
should be of order (d/R)", and thus negligible for
large n. It then should be a good approximation to
treat all but a finite number of the moments as zero,
and thus to terminate (1.8) at, say, n = N. This gives
a system of (N + 1) equations relating the (N + 1)
nonvanishing moments, which may be obtained by
the method of Mathisson.? It is there applied to the
cases N == 1 and N = 2, but with restrictions on the
form of the moments in both cases.

Tulczyjew® simplified Mathisson’s procedure by
noting that the truncated variational equation is
equivalent to requiring the tensor distribution

Taﬁ()defz( 1) V

n=0

f " 2(5)5(z(s), x) ds
(1.9
(1.10)

to satisfy
V*T* = 0.

He treats the pole-dipole approximation (N = 1)
with no additional restrictions, and, from the form of
the resulting equations, identifies certain quantities
constructed from ¢*# and ¢*#* with the momentum
vector p* and internal angular momentum (spin)
tensor S*# of the body, showing that they agree with
the usual definitions in the case of flat space-time.
Such an identification is open to ambiguity, especially
when higher approximations are considered, and this
procedure makes p* and S*# depend on the order of
approximation used. This is unsatisfactory if p* and
S are used in defining the center of mass of the body,
as is further discussed below. This difficulty is avoided
by the author’s treatment in Ref. 2 by using the
equivalent integral expressions for the moments,
and separately defining p* and S** as integrals of T
which can be expressed in terms of the moments to any
required degree of approximation. This is not so in
the earlier theories that use explicit integral expressions
for the moments, due to Papapetrou,® to Urich and

3 M. Mathisson, Acta Phys. Polon. 6, 163 (1937).
4 M. Mathisson, Proc. Cambridge Phil. Soc. 36, 331 (1940).
5 W. Tulczyjew, Acta Phys. Polon. 18, 393 (1959).
( % A. Papapetrou, Proc. Roy. Soc. (London) A209,
1951).
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Papapetrou,’ and to Tulczyjew and Tulczyjew.® The
treatment in Ref. 2 also allows for the presence of an
electromagnetic field (as also does Ref. 7) and
defines moments of J* as well as of 7/, The total
charge ¢, which is the electromagnetic analog of p*
and S*4, is similarly separately defined.

A feature common to all the above-mentioned
theories is that (1.1) and (1.2), where applicable, imply
an infinite number of relations between the moments.
This suggests that these relations could be used to
extract a subset of the moments that is still sufficient
to determine T*# and J* completely, but upon which
(1.1) and (1.2) impose only a finite number of
restrictions. We might expect p* and S*# to be sufficient
to describe the monopole and dipole structure of T+
instead of needing the full *# and #*#7, respectively,
and similarly the charge g to suffice for the description
of the monopole structure of J=. (1.1) should then be
expected to impose laws of motion on p* and S*¢
of the form

8p*lds = F* and 6S*/ds = G*, (L.11)
where 8/ds & 1°V, and F2, G*¢ are, respectively, a
force and a couple constructed from the curvature
and electromagnetic field tensors and the moments of
T*# and J*, while (1.2) should require charge con-
servation

dgjds = 0. (1.12)

We might hope that, with suitable definitions for the
higher moments, (1.11) and (1.12) would be all of the
consequences of (1.1) and (1.2), so that the variation
of the other moments with time would be determined
entirely by the equations of state of the body. Our
main result in this paper is to show that, in the case
of flat space-time, a set of moments of T*# and J*can
be defined—as explicitintegrals of these tensors—which
has all these properties. F* and G*# are given explicitly
as infinite series in the moments. The case of curved
space-time will be treated in a later paper.

Here we should also mention theories of point
particles. Although in many respects theories of point
particles and of extended bodies overlap, there are
important differences between them. If no restrictions
other than (1.3) and (1.4) are placed on the moments,
then (1.1) and (1.2) impose no restrictions on the
world-line L. Thus, to obtain equations of motion,
additional conditions must be used. For an extended
body we take L to be the world line of a suitably
defined center of mass of the body. The problem of

¥ W, Urich and A. Papapetrou, Z. Naturforsch. 10a, 109 (1955).
8 B. Tulczyjew and W. Tulczyjew, in Recent Developments in
General Relativity (Pergamon Press, Inc., New York, 1962), p. 465.
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defining such a mass center has been discussed by
Tulczyjew® and by Dixon,? who conjecture without
proof that, imposing

PpS* =0, (1.13)

L is suitably and uniquely determined. A more
rigorous discussion has been given by Beiglbock,? who
proves this uniqueness under very general conditions,
using the definitions of p* and S*# given in Ref. 2, and
who also suggests an alternative definition of the center
of mass. In the case of point particles, however, we are
not free to define a center of mass, since the position
of the particle is well defined; any additional
conditions we impose are physical restrictions on the
particle. This has been discussed in more detail by
Dixon.® Another difference is that the energy-
momentum tensor of a point particle has exactly the
form (1.9) and satisfies (1.10), so that no approxi-
mation is involved in limiting oneself to only a finite
number of nonvanishing moments. This is not as
trivial as it might seem at first, for we later have cause
to question the validity of the muitipole approxi-
mation procedure in the form in which it is explained
above. Multipole theories of point particles have been
given by Mathisson,® by Lubafski,’* by Hénl and
Papapetrou,'?® and by Taub.14:15

2. NOTATION AND CONVENTIONS

Space-time is treated as a pseudo-Riemannian
manifold A with metric tensor g,; and signature
4+ — — —, tensor indices running from 0 to 3 and the
summation convention being used throughout. We

write g & et &,p - Partial and covariant differentiation
with respect to x* is denoted by 9, and V,, respec-
tively, with the kernel @ or V being written only once
in repeated differentiations, thus V,; = V,V,. We
say that a function on M is of class C if it has
continuous derivatives of all orders <r, and of
class C if it has continuous derivatives of all orders.

Following Lichnerowicz,’® we treat the Dirac
o function as a biscalar distribution on A defined by

[fesm =gt ax =100 @
for any C* scalar function f of compact support. If

9 W. D. Beiglbéck, Commun. Math. Phys. 5, 106 (1967).

10 W, G. Dixon, Nuovo Cimento 38, 1616 (1965).

11 §. Lubanski, Acta Phys. Polon. 6, 356 (1937).

12 H. H6nl and A. Papapetrou, Z. Physik 112, 512 (1939).

13 H. Honl and A. Papapetrou, Z. Physik 114, 478 (1939).

14 A. H. Taub, J. Math. Phys. 5, 112 (1964).

15 A, H. Taub, Proc. Galileo IV Centario Conference, Florence
(1964), p. 77.

18 A. Lichnerowicz, in Relativity, Groups and Topology, C. M.
DeWitt and B. S. DeWitt, Eds. (Gordon and Breach, Science
Publishers, Inc., New York, 1964), p. 821.
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Te1- % js a C™ tensor field of compact support, then
we also write

f T a(x)d(x, YN —g)t dix = T o(y), (2.2)

although then d(x, y) is acting strictly as a bitensor
distribution.

We follow Schouten'” in denoting the symmetriz-
ation and antisymmetrization of any number of
tensor indices by ( ) and [ ], respectively, e.g.,

A[aﬂy] = %(Aaﬂr + Apyg + Ayop — Auyp — Apay — Ayﬂa)’
2.3)
and in writing for four indices

def
Aratpyion = HAapys — Aypas — Ausyg + Aysap). (2.4)

Indices enclosed in vertical lines are excluded from
these operations, e.g.,

A(amy[a) = %(Aapya + Aaﬂya)- (2'5)

When considering flat space-time &, we use
Minkowskian coordinates with metric tensor

(2.6)

and denote the scalar product of vectors a*, b* by
a-b¥ a’b,. The sign of the electromagnetic field

tensor F* is such that

ELF"F® F®) and HEF® FLFY (27
are the electric and magnetic 3-vectors, respectively, in
the 3-space x° = const.

Following Gel’fand and Shilov,'® we denote by K
the set of all C* complex-valued scalar functions on &
of compact support, and by Z the set of slowly
increasing entire analytic functions on &. Specifically,
this means that feZ if, in any Minkowskian co-
ordinate system, (1) it may be extended to all complex
values of its arguments so as to be everywhere
analytic in each variable, and (2) for this extension,
there exist positive constants C_ .. . for all positive

gaﬁ = dlag (1, —1’ '_1’ _"1)1

integers ¢,, and positive constants a,, - - -, a3, such
that
i 2§ (20,0 2

< Cﬂo"‘as €xp (aO I.Vol + - +a |y3|) (28)

for all complex z,, where 2, = x, + iy, with x, and y,
real. Then, if fe K or Z, its Fourier transform f,
defined by

Sy = f f(x)e** d'x, (2.9)

173, A. Schouten, Ricci Calculus. An Introduction to Tensor
Analysis and its Geometrical Applications (Springer-Verlag, Berlin,
1954), 2nd ed.

18], M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic Press Inc., New York, 1964), Vol. 1.
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is an element of Z or K, respectively. The inverse of
2.9) is

1
(2m)*

3. STRUCTURE OF THE CHARGE-
CURRENT VECTOR

In the subsequent sections we consider an extended
charged body in a flat space-time & and use Minkow-
skian coordinates throughout. The charge-current
vector J* is then a C* vector field satisfying

9,J* =0, (3.1)

whose support W is a spacewise bounded world tube.
Choose any C?* timelike world-line L, with parametric
equation x* = z*(s), where s is the proper time
measured along it, and let 2(s) be the hyperplane
through z*(s) orthogonal to

v'(s) &' dz*/ds. (3.2)

Our exposition is worded as if L lies in W, but no real
restriction is involved in this. On 2(s) define

Fx) = f e dtk,  (2.10)

r(x) & x* — 2%s) (3.3)
and
wi(x) & ()1 — F($)ry(0)), (3.9
where 9% v*/ds. Then
v ()r*(x) = 0, for x e X(s). 3.5)

And if f is any C? function on & of bounded support,

f F) dix = f ds f FowedE,  (3.6)

(s

and )
4 saz, = f 3. fwh ds,, 3.7

ds Jzis) (a)

as is shown in Refs. 4 and 2.
We need the following integrals of J*:
jourab ) E | e pmplyrgs (3.8)
Z(s)

and

g o) &y gt 4R, for n>0. (3.9)
(s)

Using (3.5), we see that they satisfy
jal.. “anf — j(ll"“'n)ﬁ‘, q“l"’an = q(al"'ﬂn) (3'10)

and
(3.11)

sxy e ayB Ay dn
Ual.ll =10, Uulql "= 0.

Let d(s) be the diameter of the compact section
2(s) N W. Then, since J# is continuous, each of its
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components is bounded on X(s) N W, and so there

exist continuous positive scalar functions A(s) and

B(s) such that

|j2r " e(s)] < A(s)d™ and |q* " %(s)| < B(s)d"
(3.12)

for all n, these inequalities holding for each component
separately.
Now let f € KX, and write

g nHe f J()f(x) d*x.
With (3.6) and (2.10) this gives

(3.13)

(3 B 4 o —zkm
=5 f ds f wh dz, f PRF(T(x)e
(3.14)
But f€ Z, so that | f(k,, - -, ka)] < C lkq, " - -, kg| ™2

for some constant C > 0, and hence the k-space
integration is uniformly convergent for x e 2(s).
Thus, since X(s) N W is compact, the order of
integration over X(s) and k space may be interchanged.
Doing this and expanding the exponential in a
power series about z(s) gives

3 — t 4 B o ~ik-z(s)
Je, = o f ds f d*k f wP dZ, f(k)J*(x)e
x Z(

From now on, we will not give the details of the
arguments involving uniform convergence which
justify our operations with infinite series and integrals,
unless some special point is involved, since they are all
very simple. So, on integrating the series in (3.15) term
by term over X(s) and using (3.8), we get

0= J ds j dkf ()0

xz( ') kg » <" kgj

n=0

(k »*. (3.15)

B1o- Bus(s). (3.16)

This shows that the j"' s determine (J°, f) for every
f€ K, and hence they completely specify J= itself.

In particular, this shows that the j* " ’s determine
the ¢ * * " ’s. This can also be seen directly from (3.8)
and (3.9), for, as X(s) is orthogonal to v*(s), we have

Jﬁdztg = Jﬂvpvy dzy .
Putting this into (3.9) and using (3.4), we see that

q“l"'“n . ﬁyqal e anB =ja1-..a..ﬂvp for n>0.
This may be iterated to give

o0
qﬂl"‘an = vyzjal..-a,.ﬂl..-p,rﬁh "l}ﬁ,’ for n >0,

0=0
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which, by (3.12), is convergent for sufficiently small 3, .
However, for larger o, we cannot give an explicit
expression of this sort, and we would have to resort to
(3.16) to determine the ¢ * * " ’s from the j """ ’s. We
need the integral expression (3.9) for the ¢ ** " ’s in our
development of the theory given below.

If we could perform the k-space integration in (3.16)
term by term, we would get

IS = fdséo ij”‘ " Pn()(0p, - p S latwys (3AT)

or equivalently

J¥(x) =§o(:nl!l‘ O, .. .,"fj”‘ " Bar()0(z(s), X) ds.
(3.18)

(3.17) is the analog in flat space-time for J* of (1.5)
for T*#, and is only valid if fis analytic on Z(s) N W
for each s. It clearly cannot be true for a general fe K
since the derivatives of f'along L which appear on the
right-hand side do not determine f throughout W, and
hence cannot be sufficient to determine the left-hand
side. This failure is refiected in the form of the right-
hand side of (3.18), since this, which formally appears
to be a distribution of support L, does not exist
within the framework of the theory of distributions
unless the series terminates. This can be seen from
(3.17), which would be its value at fe K, since in
general the right-hand side of (3.17) need not be
convergent. The structure of a general distribution
whose support is a C* submanifold has been deter-
mined by Schwartz,!® whose result is applicable to our
case if L is of class C*,

Nevertheless, any finite number of terms of (3.16)
can be integrated term by term, giving

¥y, )
e f) = f sy E RO\ N 3 TR

f ds f dUef (ke
(="

n=N+1 n!

(2 )*

g

. "n¢‘

X

ky, " (3.19)

From this we get the unexpected result that, if the
moments j " are known for all n > N, they com-
pletely determine J* and thus all the lower moments!
For, by (3.19), the moments for n > N determine
(Je f> for any f € K which vanishes in some neighbor-
hood of L, and thus they determine J* at all points not

19 1. Schwartz, Théorie des distributions. (Hermann et Cie., Paris,
1957), Vol. I, Chap. III, Théoréme XXXVII.
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on L. By continuity this determines J* everywhere, as
stated. We discuss this result further in Sec. 8.

We now use (3.1) to obtain a new and more
convenient set of moments that also determines J%.
Using (3.7) and remembering that r* also depends
explicitly on s, we get from (3.9) that

dqlds = 0 (3.20)

and

(dfds)g* " »

cedg) __ nv(alqag- ha

n>1. (3.21)

This is a system of differential equations determining
the dependence of the 4" " " ’s on s in terms of the
completely symmetric part of the j " ’s. Since, as we
saw above, the j ' * " ’s determine the ¢~ " " s, this is
equivalent to an infinite system of differential relations
between the j " ’s as a consequence of the con-
servation equation (3.1).
Let us put

an nj(a1

for

gL anf def],l — j(ﬂl

With (3.21) this gives

e for n > 1. (3.22)

J* = qv® + dq°/ds,

caycccanf o %10 agf (a1 ag,p)
J a +4 v (3.23)
41 4 gt for n>1,
n+1ds
from which

—ﬂczz( l) kﬁl k" P11 Bna

n=0 n!

= e_ik'z[qva + zg.-__l‘)_ kﬂl cee kp”mﬂl' . 'ﬂna]

+ = d l: —zkzi (—l) kﬂl . kﬂ»qﬂl"'ﬁ,.a],

ds n=0 (n + 1)!
(3.24)
where
mbr " Bna Q_g‘aﬂl'-'ﬂna + q(B Bag®) (ﬂ'1qﬂz *Bala
for n>1. (3.23)

(3.25), (3.22), and (3.12) show that there exists a
continuous positive function C(s) such that

[mPro Bao(s)| < C(s)d™(s) forall n>1, (3.26)
and from (3.25) and (3.23) we get
mﬁl ct Bz = jpl e Bux v(ﬂlqpﬂ ©r e Bpla
1 d .8
- L { >1. (3.27
it ids? or n2l. (327

(3.12) and (3.26) may be used to verify the convergence
of the series in (3.24), and in particular (3.12) has been
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used above to justify the term-by-term differentiation
of the second series on the right-hand side of (3.24).
This series may be summed explicitly on using (3.9)
for

v (="
ngﬂ (n + 1) ko

= f m[ éofnL:)ﬁ (k- r)"] rJ? dz,

n=0
- f ds, f durJ? exp [—iuk - 1. (3.28)
(s) (1]

So, on substituting (3.24) into (3.16), the contribution
from the last term of (3.24) is

f ds f A o) < i 4

xf durJ® exp [—ik - (z(s) + ur)]

..ﬂ”a

e kp"qﬂl'

@m)*

1
=fds if dZﬂf dur®J?f(z(s) + ur), (3.29)
ds Jzis )

where the k-space integration has been brought
through the d/ds and two other integrations and
performed first with the help of (2.10). Since f has
bounded support, we see that (3.29) vanishes, so that
only the first term on the right-hand side of (3.24)
contributes to (3.16). We thus have

JE ) = ds | d*kf(k)Q%(k, s), (3.30
) (lesf F(Q(K, 5), (3.30)
where

Q(k s)def —1kz[ qv° +z _l)n kﬁl .kﬂ”mﬁl"'ﬂna]’

(3.31)

which shows that J* is completely determined by ¢ and
the set of m """ ’s.

Consequently, ¢ and the m """ ’s must completely
determine the j """ ’s. For small 9* we can, from (3.23)
and (3.27), demonstrate this explicitly. For on
multiplying (3.27) by v, and using (3.11), we get

1
afy---Bn — 2 b1 Bn }) affy-cc Ba
v.m = — + v
¢ nl n+1 «d
for n>1. (3.32)
By iteration, this yields
q? P = _m,azol-,h...,;hmm"-v,,ﬁx-- [
P
for n>1,

which by (3.26) converges for sufficiently small 5=
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This then gives the g*"""*» for n > 1 in terms of the
m ' ’s, and ¢ itself is assumed given. (3.27) together
with the first of equations (3.23) then give all the
j 7 ’s. However, just as in the general case we must
resort to (3.16) to evaluate theq " "’swhenthej " "’s
are known, so also for larger 9* we must use (3.30) with
(3.31) to determine the j " "’s given g.and the m ™" "’s.

We thus see that g and the m™ " ’s describe the
arbitrariness in the j *’s left after the conservation
equation (3.1), or equivalently the system (3.20) and
(3.21) of differential relations between them has been
taken into account. For later use, we also note here
that (3.32) and (3.10) imply

vamaﬂl...ﬂn = vama(ﬁl"'ﬁn) for n 2 1. (3.33)

Q¢(k, s) may also be given in an integral form that
gives a useful upper bound for it. By summing the
left-hand side of (3.24) [cf. the transition from (3.14)
to (3.16)] and using (3.31) and (3.28), we obtain

Q%(k, 5) =f Ji(x)e*owh 43,
Z(s)

_4 f dzﬂfldur“J”(x) exp [—ik - (z(s) + ur)].
I 0

(s)
(3.34)
On explicitly performing the differentiation of the
second term on the right-hand side, we easily see that
there exist continuous positive functions D(s) and E(s)
such that

1Q%(k, $)I < D(s) + E(s)(lko| + -
We need this result later.

From (3.25) and (3.22) we see that
(B1" By

"+ lksl). (3.35)

mﬂl"'ﬂ 'ﬂna)=0.

(3.36)

We now verify that as a consequence of these symmetry

conditions, the only condition imposed on g and the

"’s by (3.1) is the conservation of charge (3.20).
For if f€ K, we have

=m and m'r

@J% f) = =% 0.f) (3.37)
and ~
Ouf (k) = — ik, f(k) (3.38)

so that (3,J°,f) is obtained by replacing f(k) in (3.30)
by ik, f(k). Then in virtue of (3.36), only the contri-
bution from the first term in (3.31) survives, giving

——tk z

ds

p f ds = f dief (kye**

@J%f) =

(2 )t
by (3.20)

— —g f ds-;is ((s)) (3.39)
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by (2.10), which vanishes as f has bounded support.
This gives d,J* = 0 as a consequence of (3.20) when
J® is given by (3.30) with (3.31) and (3.36) satisfied, as
required.

The orthogonality conditions (3.11) also impose
conditions on the m " "’s, namely (3.33). These can be
put in a simpler form if we describe the body, not
by the m""'’s, but instead, by a new set of tensors
defined by

Qll“"luﬁ'l _ma

Using (3.36) we see that
Qul S By Q(al. .

Q‘zl s ran-1lanfyl — 0

wlfrl for n>0. (3.40)

*an)[B7] for

n>0,

s (4D

for
and

meanf = [2n/(n + 1)]Q(a1 cevag)p

for n> 1.

(3.42)
(3.40) and (3.42) together show that the m""’s and
the Q ""’s are equivalent for describing the body.
Moreover, from (3.41) and (3.42) we can deduce
(3.40) and (3.36), so that the symmetry conditions
(3.36) and (3.41) are equivalent. But from (3.40) and
(3.33) we get

0,0 =0 for n>1, (3.43)
which are the orthogonality conditions satisfied by
the Q" "’s and which are simpler than the equivalent
(3.33).

From (3.40), (3.25), and (3.22) we have

Qal. ccanBy — jal. < anylBy] + [ll(n + 1)]q11- .
for n>0, (3.44)

which, when expressed in terms of J* through (3.8)
and (3.9), is simpler than the corresponding expression
for the m" "’s. Together with the simplicity of the
symmetry and orthogonality conditions (3.41) and
(3.43), this makes the Q ""’s seem to be the most
satisfactory description of the multipole structure of
the charge distribution of the body. In virtue of (3.41)
and (3.43), Q%" ¥ has i(n + 3)(3n + 4) linearly
independent components, and we call it the 2"+1-pole
electromagnetic moment tensor of the body. Together
with ¢, the total charge of the body, which describes
the monopole structure, these moments completely
determine J* through (3.30), (3.31), and (3.42), whilst
the only condition on them due to (3.1) is the con-
servation of charge, (3.20).

° “n[ﬁv')']

4. LORENTZ FORCE
Our next task is to express the Lorentz force

¥ _FYj, (4.1)
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in terms of the moments of J* in a form similar to
(3.30) and (3.31) for J* itself. Because weé have only
proved (3.30) for functions of class C*, we need to
assume that F*# is also of class C®, but almost
certainly this can be weakened—possibly even to
taking F*# to be of class C.

Let f€ K have support S(f), and let *F*# bea C*
tensor field of cempact support that equals F*# on
S(f) N W. Then

(F0g,f) =
Also, we have

M)ﬁuuwwm
d4 d4l *Fa 1 ik—1)-x 43
(M f () (e 4.3)

on using (2.10), and since f€ Z and *F2f has compact
support, we may change the order of integration and
so perform the x-integration first using (2.9), obtaining

Fo%f (k)
Together with (4.1), (4.2), and (3.30) this gives

1
F* f) = — ds | d*k
D @fﬁf
fﬂmf“w—DQWS 4.5)

Remembering that feZ and *F“ €Z and using
(3.35), we see that we may invert the order of the k&
and / integrations. After doing so, we then change the
variables in the k integration from k, to u, & ky — 1,
and then we relabel /, as k, and u, as /, to give

o 1) = —[1)@2m] f ds f d'k
x f d1F(R) “EL DOk + 1,5). (4.6)

The infinite series for Q#(k + /, s) given by (3.31)
is seen, on using (3.26), to be absolutely convergent
when regarded as a double (or rather, octuple) series
in k, and /,. It may thus be rearranged in any order,
in particular as a series in k, in the form

Qa(k + l S) — —ﬂczz( ;:)" kﬁ1 e kﬂﬂwﬂl-..ﬂna(l’ s)’

(I, *FSf). 4.2)

FHDO*Fyk — 1. (44)

4.7
where
¥, 5) = Q%(L, 9),
given by (3.31), and
1Bl s) (4.8)
= e~ ( . corpBr Baa
= go p' oL, mn 1 (s)

for n> 1.
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We now want to substitute (4.7) into (4.6) and perform
the / integration term by term, but to justify doing so
we need to obtain an upper bound for |p#1° " 82|, This
involves explicitly summing the series in (4.8). We
first substitute for the m " ’s from (3.27), and then
we use (3.8) and (3.9). Proceeding in an analogous
manner to the derivation of (3.28), we then find that

nv(ﬁlHﬁn st Bpla

- (d/ds)H”""”"“ for n>1,

where we have defined for n > 0

?Pﬂl = Kb

4.9
KP Bl ) d=°ff e Tpbr. L pBnyayy ax, (4.10)
Z(s)

and
1
B (AR )dﬁrf dzyf duu™r® - - - PPt
Z(s) 0

X exp [—il - (z + ur)], (4.11)
while (3.34) and (4.8) give
v* = K* — (d/ds)H". 4.12)

On explicitly performing the differentiation in the last
terms of (4.9) and (4.12), we see that there exist
continuous positive functions F(s), G(s) such that

nr(ls,)] < dYSF(s) + (ol + - + |1DG(9)]
(4.13)

for all n, /, and 5. This enables us to put a uniform
bound on the partial sums of (4.7):

|y

z ( l) kpl . kﬂ”wﬂl...ﬂ"a(l, S)
n=0 n!
< [F + (fg| +--+ DGl exp [([kol + -~ + [|ks]) d],

(4.14)

from which we see that the / integration in (4.6), when
performed on the partial sums of N terms of (4.7)
instead of on Q¢ itself, converges uniformly in N, and
that the series (4.7) converges uniformly in any
bounded region of / space. Together, these two
uniformities of the convergence of (4.6) validate the
term-by-term integration referred to above, which
gives

F, = - ds | d*k k)e—%*
F) = = s [ s [ang0e
Xgo(_nl‘)n kpl - kﬂn¢ﬂ1-.-ﬁna(s)’ (415)
where
*Bna def 1 dAI *Fa I By l,
P = 2m)* f WDy B (1, )
for n>0. (4.16)
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The coefficients ¢ *are given in terms of the
moments m " "through (4.16) and (4.8), but we also
need the integral forms for them that follow from
(4.16) with (4.9). Using (2.10) with (4.10) and (4.11),
we find for n > 0 that

f d‘l*F“(l)K”‘ (], 5) = P Bar(s)  (4.17)

@2m!
and
o f AIFFLDHP (1, 5) = hb Bas(s), (4.18)
where
FPreeBar(s) def| b1, bn *ngjvwé dz, (4.19)
Z(s)
and
BBy & g3,
Z(s)
1
X J; duumrf - rPrr?J*FA(z + ur).  (4.20)

Equation (4.16) with Eqgs. (4.9) and (4.12) then gives

¢* = f* — dh®/ds,
and

¢ﬁ1-'-ﬂ,,a =fpl-~-ﬁ,,a _ nv(ﬂlhﬂz"'
— (d[ds)hP+ > P for n > 1,

Ba)a 4.21)

which are the required integral forms. We now use
(4.21) in the infinite series in (4.15) to give

——1k zz( l) kﬂl

n=0

. kﬂ ¢ﬁ1"'ﬁ'na
n

— ——zkzz( l) kﬂl

n=0

. kﬁ"fﬂl"'ﬁna

Pl ( ek hﬁx“‘ﬂn“}
ds[ nzo n' b

1
=f e texpe Jiw? dX, —-i dzyf dur®
Z(s)

I(s)
X *Fi(z 4+ ur)J¥(x) exp [—lk “(z 4+ ur)], (4.22)

which enables the k space integration in (4.15) to be
performed explicitly, giving

fdxlkf‘(k)e-zkzz( l) kﬂ: kﬂn(ﬁﬂl"'ﬂnn

@m*

_ f FOEYFLRI W dS, —% iz,

Z(s)
f duf(z + uPr?*Fi(z 4+ ur)J'(x). (4.23)

Since f has compact support, we sec that (4.23)
vanishes outside a finite range of s, say the interval
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[$1, 5], this interval depending on f but not on the
particular *F?%; used. This incidentally shows that, on
performing the final integration in (4.15) over s, the
contribution from the second term on the right-hand
side of (4.23) vanishes, while on using (3.6), the
contribution from the first term is seen to be (F?,f)
as required. However, it shows more than this; it
shows that the left-hand side of (4.23) vanishes for s
outside the interval {s, , 5.}, independently of the choice
of the tensor field *F?; used in (4.16) in defining the
¢ " ’s, provided only that it has class C*and compact
support. But let U be a bounded convex set containing
both S(f) and the segment of W lying between
Z(sy) and Z(s,), so that we may choose *F *, to be
equal to F?;, in U. Then (4.19)-(4.21) show
that for any s€l(s,, .}, the value of the ¢ " (s)’s
depends only on the value of *F?, in the neighborhood
of the convex hull of Z(s) N W, and the convex hull
of 2(s) N W has a neighborhood lying in U in which
*Fig=F *,. Hence, altogether, we see that (4.15)
remains valid if, for each s, the ¢ " (s)’s are evaluated
using (4.16) with any *F?, (of class C* and compact
support) that equals F?, in some neighborhood of the
convex hull of Z(s) N W. The ¢ ""’s thus obtained
are seen to be independent of this choice of *F%;, and
they are given by (4.21) when *F?; in (4.19) and (4.20)
is replaced by F?,. In the future, references to ¢,
/7, and b refer to these modified functions.

The modified definition of the coefficients ¢ " used
in (4.15) thus defines them uniquely and independently
of f. It is to achieve this independence from f that we
have gone through these final stages of the argument,
for with the previous definition by (4.16) as it stood,
the *F* used was independent of s but could not be
chosen independently of £, and thus it made the ¢ "’s
depend on f. We cannot use F?itself in (4.16) since in
general its Fourier transform will not exist. Our
final expression for the Lorentz force is thus (4.15)
with the modified definition of the ¢ '’s explained
above.

5. STRUCTURE OF THE ENERGY-
MOMENTUM TENSOR

The energy~momentum tensor 7% is a C? tensor
field satisfying
0,T* = —F*J,, (5.1)
whose support is a spacewise-bounded world-tube W’
We now analyze its structure following the procedure
developed in Sec. 3 for J#, but the details are rather
more complicated than for that case. We first define
for n > 0 the integrals

P O 'a,.M(s) = P
Z(s)

CPTP g3, (5.2)
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and
pal .. .anp(s) = z(“])ral PR r!,,Tﬂ')' dzy , (5,3)
which satisfy
(o1 by t(al v a")(ﬁy)’ pa;l ceragh o p(al . .an)ﬁ’
(5.4)
valtal...a””y — 0 al’ld valpﬂl---anp = 0, (5,5)

and also inequalities similar to (3.12). Then for f€ X,
as the analog of (3.16), we obtain

(T, f) = f Ak (k)

xz(_l) k,,

v kot
Tn
n=0 n! .

“rneh(s), (5.6)
showing that the integrals (5.2) completely determine
T (as stated in Sec. 1) and thus also the p*""’s. This
can be shown more explicitly for small 9%, as in Sec. 3.

Using (5.2) and (4.19), we now obtain from (5.3),
(3.7), and (5.1)

dpalds = __f¢ (57)
and
d a1 anf (@) a2 ag)p
el = _pplarpas n
ds P P
+ nt(dl"'ln)ﬂ __f‘l.'.a"ﬁ for n 2 1. (5-8)
Using (4.21) and setting
,Tﬂl"'“nﬁ défpﬂl"‘ﬂnﬁ + h¢1"‘¢nﬂ for n 2 0’ (59)
these may be written as
dn®lds = —¢°* (5.10)
and
(dfds)m®r" " i = —pplargss - amlb
+ nt(al"'ag)ﬂ — ¢¢1"'¢,‘ﬁ for n Z 1. (5.11)
Now define as the analog of (3.22)
por " and def ga e for p 21, (512
et anB 3 aranp e e gor >1
(5.13)
and
don by 8 m s aaby [ 4 1)n]
% [t(au ceeanBly + plon ﬂn?”’]
+ [(n + 2nJt= = for n>2,
(5.14)
so that
cal-”a,‘ﬂ — c(al ceag)p c(ll craaB) 0,
PR 2By - d(al e ang)(By) and d(¢1 ceeanfly 0’}
(5.15)
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and, for later convenience, put
S2P Lf 208 = 2 plefl, (5.16)

We use these with (5.11) to obtain the analogs of (3.23),
but the cases n =1 and n =2 of (5.11) must be
treated separately from the rest. For n = 1 we find

+ 3(d/ds)(S*® + 2b°F) + ¢, (5.17)

which we separate into its symmetric and antisym-
metric parts thus:

1% = vonf

1°f = 7P 4 (d/ds)b*P + $*P (5.18)
and
(d/ds)S™ = 271%f1 — 24=F), (5.19)
For n = 2, (5.11) gives
2t(¢ﬁ)7 — 2v(abﬁ)y + v(aSﬁ)y
+ (d]ds)(B*? + ¢*7) + ¢, (5.20)
which, with the identity
2P — laB)y + t(ay)ﬂ — t(ﬁy)a’ (521)
gives
1P = v°pFY + S*ByY) 4 (d[ds)(3b%FY — cPr7)
+ ¢ — 34P (5.22)

Finally, using (5.11) for n > 3 together with (5.14), we
get
t'l"‘“nﬂy = du"

anBy + plepas - an)By

anpn 4 2
n

o a,.(ﬁvv)

-a,.(ﬂy):|

agBy)

+ 20l

_‘_1_ 1 ay - - anfy _2_ @y’
+ ds [n +1 b + n ¢
n+2 ¢(a1
n(n + 1)
forn > 2. (5.23)
We now use (5.18), (5.22), and (5.23) to put the
infinite series in (5.6) in the form

—tk zz (

n=0 n'

2 oot _

* ¥n2b

-
ok,

= e“"‘"{v(“ﬂp) + ¢(aﬁ) + (_ik'y)

&, &, & (
X [S"‘ vﬂ) ¢v( p) __ %¢ M] +"§2 . .o 'kvn
2, ... n+2 ..
x | I ynotB + Zgn TnlaB) _ (7R 7,,¢ﬁ)]}
[ ¢ n(n+1) w1’
dl (=
= | g—tk2| pob ok
+ d [ [ +"§1 . )’1 Tn
by‘ v yaf + = c’l ven 7n(aﬂ))]], (5.24)
n
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where

Jor - anBy 96 qay-ccanfy

[2/(n — 1]

"B L (2fn)ctr (5.25)
for n > 2. The term in (5.24) involving a total
derivative with respect to s may be explicitly summed,

as before, and shown to give a zero contribution to the
right-hand side of (5.6). We thus have

X v(alca, .. . a,.(ﬂvy)

(T, f)
( )4 fdsfdtlkf(k) -—zk z{ (a,ﬂﬂ) + ¢(¢ﬁ) + (—iky)
X [S"e® 4 1’ — 14epv] 4 z(::). ky -k,
2., ... n+2
x | [ meb 4 X pvrc e vn(aB) (yp-* vnaﬂ):”
[ + n ¢ n(n+1) ¢

(5.26)

which shows that to determine 7*# we need, in addition
to the ¢ " “given by (4.16) and (4.8) in terms of the
electromagnetic moments, the quantities =%, S*# and
the I'""’s, which are seen to be defined as explicit
integrals over XZ(s) involving both 7% and J*. The
contributions from J* vanish when F*# = 0, and may
be interpreted as due to the potential energy of the
charge distribution in the electromagnetic field.

From (5.15) and (5.25), we see that the 1"’
the symmetry properties

s have

JE By — I(al s cag)(By) canfly — 0.

(5.27)

But as in the electromagnetic case, there are additional
restrictions on the I'""’s due to the orthogonality
conditions (5.5), and to find these it is more convenient
to use, instead of the I'""’s, new tensors defined by

anlBoV)l for n > 0. (5.28)
Using (5.25), (5.14), and (5.13) we find that

and I[‘%"

Jor e anByse 3 1oy

JorranByde — qaqc - aglBldylel [1/(n + 1)]
X [U[ﬁﬂ,v]al' " aglde] + plogp€las:- 'an[ﬂv]]’ (5.29)
and, as a result of (5.27), we see that the J* " "’s have the

symmetry properties

Joeu o anfyde o J(ar"a..)[ﬂv][de]’ Jo e aaflydel 0,
and
Jﬂl---a,._lllnﬂﬂ"‘ =0 for n 2 1’
(5.30)
and that

an—1{Blanly

Ial..«anpy —_ [4(" — 1)/(" + 1)]J(a!~-.
for n>2. (531)
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Moreover, (5.27) and (5.28) are consequences of
(5.30) and (5.31), so that the J*"*’s are equivalent to
the I"""’s in their information content. Incidentally,
(5.30) also implies that

Joaanbyde Jarcandehy, (5'32)
From (4.20) we see that
v,lh“""'"" =0 for n>1, (5.33)

which, with (5.9) and (5.5), shows that the = ""’s
satisfy

v, =0 for n>1. (5.34)

Together with (5.5) and (5.29), this shows that the
required orthogonality conditions for the J ' ’s are

0, J% B =0 for n > 1. (5.35)
In virtue of (5.30) and (5.35), J%1" " ~@#v% has (n + 4) X
(3n + 5) linearly independent components. We call
it the 2"+%-pole inertial moment tensor of the body.
Together with #* and S*#, the J° " "’s seem to be the
most convenient description of the multipole structure
of T*#, and with the electromagnetic moments they
completely determine 7 through (5.26) and (5.31).
#* describes the monopole structure and we identify
it with the momentum vector of the body, while S*#
describes the dipole structure and is identified with
the spin tensor of the body. Both depend on the
choice of L, and are thus fully determined only when
a center of mass has been chosen. These identifi-
cations are discussed further in Sec. 7.

We finally show that as a consequence of the
symmetry conditions (5.27), or equivalently (5.30),
the only relations between the moments imposed by
(5.1) are (5.10) and (5.19). For, on using (3.38) and the
analog of (3.37), we see that we may evaluate <a T, f)
by replacing f (k) in (5.26) by ik, f(k). The contrlbu—
tions from the 7°°"’s then vanish on account of (5. 27),
and the contributions from the ¢ "’s under the
summation sign are seen to be equal to the corre-
sponding terms of (4.15). We thus obtain

(0,T* +

] f ds f (e
( )
x likg“m? + begh,S™0" + ¢ + ikygtef].

F“ﬁJ,; ,f\

(5.36)

On using (5.10) and (5.19), the right-hand side of this
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simplifies to
f ds ‘—;1— f d*kf(k)e **[—n* + Lik,S™]
S

1
@)
- f ds;j’; [ () + 35", Tl (53T)

which vanishes as required, since f has bounded
support.

6. APPROXIMATION PROCEDURES

We now study what approximations can be made
when the body is small in comparison to a typical
length-scale of the external field, but, before so doing,
it is necessary to say more precisely what we mean by
such a length-scale. Suppose we are interested in the
electromagnetic field F*# in a bounded region ¥V of
space-time and in some particular Lorentz frame.
Let *F*# be any extension having compact support
and class C® of F*# in V to the whole of space-time
and let m be a positive integer. Suppose that there
exists an R > 0 such that if Q is the region of -space
given by

[ + -

+ Il > R, (6.1)

then
fn(uol 4o D" TR a4

« (ol + === + |ID™ [*FP*| d'L.
allzspace

Then, if there is not a much larger R also satisfying
this, R is a measure of the distances and times over
which *F*# and its derivatives up to order m vary
appreciably in that Lorentz frame, which we abbreviate
to “R is a typical mth-order length scale for *F=£>
As such variation may be due cither to its value in ¥,
the region of interest, or to the particular extension we
have made, we say that R is a typical mth-order
length scale for F*# in V if this is a length scale as
explained above for its “best possible” extension—
meaning “best possible” in the sense of maximizing
R. We note that we cannot just cut off F*# at the
boundary of ¥ and take it as zero outside, as in general
the Fourier transform of the resulting function
(which will be discontinuous on the boundary of V)
will tend to zero at infinity no faster than |f; - < Jy|™.

Now, we saw in Sec. 4 that the ¢ ""’s depend only
on F+# in the neighborhood of the convex hull of
2Z(s) N W. Let m > 1, R(s) be a typical mth-order
length scale for F*# in such a neighborhood, and
d(s) be, as before, the diameter of the section X(s) N W.
Then assuming d(s) < R(s), we investigate the
validity of using only a finite number of terms in
the series (4.8) for the v " ’s in (4.16). For this
purpose, the *F*# in (4.16) is to be chosen to have

(6.2)
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length scale R(s) also. On defining the partial sums

v, s)
—?
def —azliqv +21 l) . lhmh-'-ﬂga]
—
and
"pﬁl. . .ﬁna(l s)
def .~,l “ee .
z .0 ] m'yl YoB1 Bpa
zz:o p' e
for n>1,
(6.3)
(3.26) shows that
Iwﬂl...pna _ ‘lpg}l‘“ﬂﬂa-l
e 1
<C) 2 =l + -+ [ d™?
p=N+1 D!
" N+1
<L @Dy o S0 (64)
(N+D!'1 —-d/D

where

DO E (Il + -+ + 1) ©5)
Now for fixed s, let @ be the region of / space given by

ol + - - + |ls] < R7(s), (6.6)
i.e., D(I) > R(s). Then in virtue of (6.2) and (4.13),
we see that unless the ' ' "’s have an exceptional
behavior, e.g., being extremely small in w, the
contribution to the integral in (4.16) from the region
Q of I space will be very small compared with the
contribution from « and we may neglect it, taking
the integral only over w. But in @, D(/) > R(s), and
so the assumed smallness of d/R together with (6.4)
shows that if N is sufficiently large, to a good approxi-
mation we may use y,  instead of % in this
integral over w. Provided N < m, we may now use
(6.2) to extend the region of integration back from w
to the whole of / space. Since we now have only a
finite number of terms in our series, the integration
may be performed term by term, and since

el LR U
@' ”
1
= ——' [a.yl ceve -aﬁ]z(g) ’ (6'7)
to our approximation we have
95 — qvﬁFa + 2 Sult mﬁl ﬁ"y[aﬂl..-ng:‘y]z(a)
p=1 P
and
¢ﬁl ret Bpa (6‘8)
_Zo ;; mbrBarr e 79"[671 ves prfzJ]z(s)
for n> 1.
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We see that the approximation improves as N in-
creases, provided N < m, but that in general we
cannot take the limit N — oo, for as we go to higher
orders, R has to be a typical length scale for higher
derivatives of F*#, and thus R decreases and d/R
increases, worsening the stage in the approximation
procedure that uses (6.4). Only by making some
analyticity assumptions for F*f can we guarantee the
convergence of (6.8) as N — co. We note that if the
results of Sec. 4 are valid for an F2# of class C” rather
than of class C®, we cannot be led to a contradiction
by having m > r and thus allowing N > r in (6.8),

since ”3"”"(1) would only be of order |/, * - - [5|~¢+V) at
infinity, and the integrals in (6.2) would not converge
for m > r. Due to the crudeness of our limits, our
procedure would not even validate the case N =r,
although (6.8) is then meaningful.

We thus see that without any assumptions of
analyticity for F*#, we can justify the approximations
(6.8) provided that the size of the body is small
compared with a typical Nth-order length scale for
the external field, and by following the above pro-
cedure step by step in a particular case, one could
obtain an estimate for the error. But in general the
series in (6.8) will not converge as N — oo to the
exact expressions given in Sec. 4.

Using (6.8) in (5.10) and (5.19) and retaining terms
involving up to the 27th electromagnetic moment
gives what the earlier theories would call “equations
of motion in the 2"-pole approximation.” But in
contrast to these earlier theories, our neglect of the
higher moments has been made only in the interaction
terms, whereas they unjustifiably also neglect the
higher moments in terms not involving the external
fields. This is inevitable in any procedure that starts
from a truncated form of (1.8) or an equivalent
integral formalism, as the higher moments are
neglected from the very beginning, wherever they
should occur. This is conveniently illustrated from the
author’s treatment in Ref. 2. For a body in flat
space-time with F* =0, the equations of motion
obtained there reduce to

dp*ds =0 and dS*ds = 2pF),  (6.9)

the notation agreeing with that of Sec. 5 if the surfaces
Z(s) in Ref. 2. are taken to be hyperplanes orthogonal
to v%, as in the present treatment. As written, these
equations are exact, but we may also deduce, from
(6.22) of Ref. 2, that

S = 2=y | (6.10)

which is in general true only in the pole-dipole
approximation if L is taken as an arbitrary world line.
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If this is used in (6.9), they thus become only approxi-
mate equations of motion. However, if L is taken as
the world line of the center of mass of the body so
that ¢* = 0, then (6.10) is exact. This suggests that
the neglect of the higher moments throughout, as in
the earlier theories, may be justifiable when used in
conjunction with a suitable definition of the center
of mass, but this is by no means obvious and needs to
be more thoroughly investigated to validate these
methods.

The validity of the present procedure is independent
of any definition of the center of mass, but difficulties
occur if we try to use

mpS™ = 0, (6.11)

which is the most natural candidate, because of our
defining #* and S°f as integrals over a hyperplane
orthogonal to v®, rather than »* as in Ref. 2. This
makes it more difficult to see whether or not (6.11)
determines a unique world line. But we do not
discuss this point further here. (Note added in proof.
The present treatment can be modified to use hyper-
planes orthogonal to =%, and then this difficulty
disappears.)

7. INTERPRETATION OF THE MOMENTS
From (5.9), (5.3), and (4.20) we see that

7(s) = f (T** 4 A°J*) dZ,, (7.1)
Z(s)

where

1
A% f Fi(z + ur)r’ du. (7.2)
0
If the term in (7.1) involving J* were absent, #* would
be the usual definition of the momentum vector, e.g.,
as given by Aharoni.?® Let us look at this extra term
in the “local rest-frame,” i.e., in coordinates in which
v* = 8¢ at the point of interest, where 63 is the
Kronecker ¢ symbol. Then using (2.7),
T
A'x) = —f E - ds, (1.3
2%
where the integral is taken along the straight line
joining z(s) to x. This may be interpreted as the
“electrostatic potential” of x relative to z(s), and is
precisely this in the static case when the integral is
path-independent. The electromagnetic contribution
to =0 being

f ASJ® P, (1.4)

20 J, Aharoni, The Special Theory of Relativity (Oxford University
Press, New York, 1959), Chap. 4.
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it may thus be interpreted as the excess potential
energy of the charge distribution due to its being
spread out over what it would be if all the charge were
concentrated at z(s). Thus for #°, this extra term has a
simple interpretation that makes it seem very natural.
For the space components wt = (7!, 7%, #%), we do
not have as natural an interpretation, but for them
(7.1) is reminiscent of the relation

T = my + eA (1.5)

between the canonical momentum and velocity for a
charged particle, although our expression (7.1) is
gauge-invariant, whereas (7.5) is not.

We also have, from (5.16), (5.9), (5.3), and (4.20),
that

Seb =f [r“(T” + BﬁJV) — rﬂ(Tﬂ + BYJ)] dE, R
Z(8)

(7.6)
where
1

B = Uy + ury® du. (1.7)
If the terms in J* were absent, this would be the usual
definition of the spintensor, e.g., as given by Aharoni,?°
which supports our terminology, but this time the
electromagnetic contribution seems to have no simple
interpretation.

Before considering the other inertial moments, the
J "’s, we discuss the electromagnetic moments.
From (3.9) we see directly that

q =fJ“ dz,,

which agrees with the usual definition of the total
charge of the body. To interpret the Q "'’s, we
decompose them with respect to v%, setting

(7.8)

Fo e ane gt o '¢n+lﬂvp (7.9
and
Mo nBy Q& phynar - ande (7.10)
for n > 0, where
B: det 85 — v'v, (7.11)

is the operator projecting orthogonally to v* and we
write the kernel B only once in a repeated product of
projection operators. Then the E "'’s are totally
symmetric, the M " "’s have the symmetries (3.41) of
the Q" "'’s, and both are orthogonal to v* on all
indices. In the local rest frame, we find from (3.39),
(3.8), (3.9), and (3.4) that

E® " Ona1 — 1‘_ f[n + 2 —r: 13:|r“‘ ce ran+lJ°dax

2Jln+4+1
(7.12)
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and

Mo ande =fr“1 st — rep) dPx, (7.13)

where Latin indices run from 1 to 3. When our
reference line L is straight, i.e., o = 0, these agree,
respectively, apart from numerical factors, with the
electric and magnetic moment tensors defined by
Bloch,?! and so our Q " '’s are a natural relativistic
generalization of Bloch’s moments into a single
electromagnetic moment tensor. We may call (7.9)
and (7.10) the electric and magnetic parts of Q1 """ *#7,
and they have, respectively, ¥(» + 2)(n + 3) -and
(n + 1)(n + 3) linearly independent components.

Finally, the J"'’s may be interpreted by a de-
composition similar to that used for the Q' "’s, in
which we set

a1 an g 461 Jae Anlp+18%n 187 U0,
Y

e det “ee
‘u¢1 an+18y def Bﬂ_]‘h ¢n¢n+16ﬂ-vd ,

(7.14)

PN anByde def _Bﬂ}:kah' < ankipy
KAp .

The p™*"’s are totally symmetric, the x4 " ’s have the
symmetries (3.41) of the Q " "’s, the " "’s have the
symmetries (5.30) of the J*""’s, and again, they are all
orthogonal to v* on all indices. If J* = 0 and we choose
a world-line L with * = 0, they are given in the (now
global) rest frame by

P“l"'“"“ = lﬂi_s J‘rax PPN ran+:T00 dax’

4n+1
:u‘ul trtGprbe %n___:::? fral o oo ponalbpele dsx’
n

oo anbede f PO pinpoT el B (7.15)

and they have, respectively, 3(n + 3)(n + 4), (n + 2) x
(n+4), and $(n + 1)(n + 4) linearly independent
components. As 7%, 7%, and T9 are the mass,
momentum, and stress parts of 7%, we call p~*", u"*",
and ¢'"' the mass, momentum, and stress parts of
J'*", respectively. The electromagnetic contributions
that occur when J* 7 0 again seem to have no simple
interpretation, but from our considerations for =<,
they seem to be associated with the potential energy
of the body in the electromagnetic field.

8. SUMMARY AND DISCUSSION

We have shown that a charged body moving in an
electromagnetic field F*# in a flat space-time may be
completely described by (i) a set of inertial moments

7% S, and Ju e for p >0, (8.1)

31 F. Bloch, in Werner Heisenberg und die Physik unserer Zeit
(Vieweg und Sohn, Braunschweig, 1961), p. 93.
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where #* and S*# are the momentum vector and spin
tensor, respectively, and (ii) a set of electromagnetic
moments

q,and Q**""*#" for n >0, (8.2)

where q is the total charge, which satisfies the symmetry
and orthogonality conditions (5.30), (5.35), (3.41),
and (3.43). These moments are defined with respect to
an arbitrary world-line L, and they are given as
explicit integrals of the energy-momentum tensor 7*#
and the charge-current vector J* through (5.29), (5.9),
(5.3), (5.2), (4.20), and (3.4) for the inertial moments
and (3.44), (3.9), (3.8), and (3.4) for the electro-
magnetic moments. If L is chosen to be the world line
of a suitably defined center of mass of the body, the
moments become uniquely determined. We have
shown that 77 and J* are completely determined by
these moments, and that the only relations between
them imposed by the ‘generalized conservation
equations”

0,T* = —F**J, and 0,J°=0 (8.3)
are the conservation of charge
dglds =0 3.4

and the equations of motion
d'”alds = _¢a and dS“’/ds = 27lopfl — 2¢[¢ﬂ]’
(8.5)

where ¢* and 2¢L%#1 are, respectively, a force and a
couple given explicitly through (4.16) and (4.8) in terms
of the applied electromagnetic field F*# and the electro-
magnetic moments (8.2). When the body is small
compared with a typical length scale for the external
field, we have obtained the approximate expressions

LA |
¢ = q’Fyp + 3 —mh B0, g Pl (86)

p=1 P!
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and
o8 N1 ey ad B
¢ = z ——| m” Ve [a'h v TvF"’]‘(’) (8'7)
p=0 D!
for ¢* and ¢°#, where
mfy 0 = nf(n + DIQY A (8.8)

One important question, however, remains un-
answered: What conditions other than the symmetry
and orthogonality properties and the equations (8.4)
and (8.5) must be satisfied by a set of tensors for them
to be the moments of an extended body containing no
singularities ? We saw in Sec. 3 that for the moments
J " there defined, if all but a finite number of them
are known, the rest are uniquely determined, and
clearly the same argument can be applied to the more
complicated expressions for T*/ and J* in terms of the
moments (8.1) and (8.2). We have obtained en route
certain necessary conditions, e.g., that the sum of the
infinite series (3.31) must have an asymptotic form
given by (3.35), and there will be a similar condition
for the inertial moments, but it is probable that
stronger conditions than this are required for suffi-
ciency. We must leave this question open, but we close
with the conjecture that, given any finite set of tensors
with the necessary symmetry and orthogonality
properties, we can find a T/ and a J* that has these
among its moments.
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It is shown that if the spectrum of phésical particl

e rest masses contains neither accumulation points

nor the zero point, then the number of different positive-a Landau surfaces that enter any bounded portion
of the physical region of any multiple-particle scattering process is finite. This implies that if the
physical-region singularities of scattering functions are confined to the closure of the set of points lying
on positive-« Landau surfaces, then the scattering functions are analytic at almost all points of the
physical region. The proof is made by proving an equivalent property of systems of classical point

particles scattering via point interactions.

I. INTRODUCTION

HERE are a number of reasons for believing that

the physical-region singularities of scattering func-
tions are confined to the closure Mt of the set of
points lying on positive-a Landau surfaces. This
restriction holds for the terms of the perturbation
expansion in field theory.! It also follows directly from
a macroscopic causality condition on the mass-shell
S matrix.?2 And recent works have shown how, in
simple cases, the singularities on positive-a Landau
surfaces are precisely the ones that emerge from the
assumption that the only physical region singularities
of scattering functions are those generated by the
unitarity equations.?

The supposition that the physical-region singulari-
ties of scattering functions are confined to Mt does
not immediately ensure that the scattering functions
are anywhere analytic; the conceivable alternative is
that the positive-« Landau surfaces are everywhere
dense in the physical region.

For the simplest case of the scattering of two initial
particles into two final particles, each positive-«
Landau surface is a normal threshold manifold,
which is a manifold lying at a value of the total center-
of-mass energy E that equals the sum of the rest masses
of a set of the physical particles. If the spectrum of
the physical-particle rest masses does not include the
value zero and has no accumulation points, then the
number of these manifolds entering any bounded

* This work was done under the auspices of the U.S. Atomic
Energy Commission.

! L. D. Landau, Nucl. Phys. 13, 181 (1959).

2 C. Chandler and H. P. Stapp, *“S-Matrix Causality Conditions
and Physical-Region Analyticity Properties” (to be published).

3 P. V. Landshoff and D. L. Olive, J. Math. Phys. 7, 1464 (1966);
M. J. W. Bloxham, Nuovo Cimento 44, 794 (1966); P. V. Landshoff,
D. I Olive, and J. C. Polkinghorne, J. Math. Phys. 7, 1600 (1966).
J. Storrow, Nuovo Cimento 48A, 593 (1967): J. Coster and H. P.
Stapp, “‘Physical-Region Discontinuity Equations™ (submitted to
J. Math. Phys.).

portion of the physical region is finite. This ensures
that the set of points not lying on M+ is everywhere
dense; almost every physical-region point has a
neighborhood that contains no point lying on any
positive-a Landau surface.

The object of the present work is to show that this
result carries over to reactions of arbitrary numbers
of particles. It is shown that if the spectrum of
physical-particle rest masses contains neither the
value zero nor accumulation points, then the number
of different positive-« Landau surfaces entering any
bounded portion of the physical region is finite. Since
the complement of the closure of any single positive-o
Landau surface is everywhere dense in the physical
region,? the same is true of any finite sum of such
surfaces. Thus the assumption that the physical-region
singularities are confined to Gt entails that each
scattering function be analytic at almost every point
of the physical region.

The result just stated was used in a recent work of
the author on the crossing properties of the S matrix.*
It has also been a tacit assumption in many other
works in analytic S-matrix theory.

Coleman and Norton® have recently emphasized
that the set of physical-region points lying on the
positive-a Landau surface corresponding to a Landau
diagram D is precisely the set of points such that the
classical point-particle multiple-scattering process
pictured by D is dynamically possible. By definition,
each point on a positive-a Landau surface of a given
process is a point (in the space of the external energy-
momentum vectors of this process) such that the
Landau equations' associated with a corresponding
Landau diagram D are satisfied. But the Landau loop

* H. P. Stapp, ‘‘Crossing, Hermitian Analyticity and the Con-
nection Between Spin and Statistics,”” Lawrence Radiation Labor-
atory Report UCRL~16816 (1966).

5 S. Coleman and R. Norton, Nuovo Cimento 38, 438 (1965).
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equations are precisely the requirement that the
Landau diagram D can be converted into a space—
time diagram D of the same structure by simply
replacing each line L; of D by the “space-time” vector
«.q;, where ¢, and «, are the momentum-energy vector
and parameter « associated with line L,. The param-
eter «; is considered to be a proper time divided by
the mass of particle i, and the positive-x condition
corresponds to the requirement that the particles
move forward in time® The other two Landau
equations ensure that the energy-momentum con-
servation laws are satisfied at each vertex and that
each particle has the correct mass value. The space—
time locations of the classical particles are not re-
stricted, but those of the external particles are
in fact determined by the gradient to the Landau
surface.?

By virtue of this Coleman-Norton correspondence
the number of Landau surfaces that enters a given
portion of the physical region is the same as the
number of classical point-particle multiple-particle
scattering processes that are dynamically possible in
this portion of the physical region. However, it may
happen that several different multiple-scattering
processes give Landau surfaces that exactly coincide
with one another. Such Landau surfaces are, in our
terminology, not “different”” and need be counted only
once.

As an example, suppose the sum of the masses of a
set of physical particles Sy is equal to the sum of the
masses of a set of physical particles S,. If the particles
of the set S, are all relatively at rest, then this set can
convert into the set of particles S;, all relatively at
rest. An unlimited number of conversions back and
forth between these two sets of relatively-at-rest
particles can evidently take place without affecting the
kinematical situation. This permits an unlimited
number of different Landau diagrams to be compat-
ible with certain fixed points in momentum space.
However, the Landau surfaces corresponding to these
different diagrams all lie exactly on top of one another,
and hence are not different. Since it is the number of
different Landau surfaces that must be shown finite,
various Landau diagrams (or their corresponding
physical processes) that differ only by conversions of
this type can be considered equivalent, and collisions
effecting such conversions (called trivial collisions) can
be disregarded. This fact is used continually, without
explicit mention, in the following proofs.

The possibility of selection rules can be ignored, as
they would only decrease the number of possible
processes. Each particle can therefore be identified by
its mass alone; an interchange of the identities of
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particles of the same mass would not alter a Landau
surface.

II. PROOF FOR A ONE-DIMENSIONAL WORLD

A proof is given first for a world of one space and
one time dimension. Let the space and time coordi-
nates be called x and ¢ and consider a plot of the
particle trajectories on a two-dimensional x—¢ diagram.
The trajectory lying at the most positive value of x is
called the first trajectory and its slope is called the
velocity of the first particle. This trajectory will
generally have a number of straight line segments
joined at points called the collisions of the first
particle. The trajectory lying at the second highest
value of x is called the second trajectory, and its
slope is called the velocity of the second particle.
There may, of course, be several particles that trace
out a segment of the first trajectory. Their velocities
are all equal to the velocity called the “velocity of the
first particle,” etc.

At each collision of the first particle the velocity of
the first particle increases. This fact is obvious in the
collision center-of-mass frame, and is carried to the
general frame by a Lorentz transformation.

Let S(E) be the set of all multiple-scattering proc-
esses (of point particles with point interactions)
possible with a total center-of-mass energy less than
E, and let N(E) be the least upper bound on the num-
ber of collisions of the first particle for processes in
S(E). Our main problem is to show that N(E) is finite
for finite E; the remainder of the proof is then easy.

Let m > 0 be the mass of smallest-mass particle.
For 2m < E < 3m only two-particle processes are
contained in S(E). In this case we have N(E)=1;
a system consisting of just two particles can evidently
have at most one collision of the first particle. Let E,
be the least upper bound on the values of E such that
N(E) is finite. Then the requirement that N(E) be
finite for finite E is equivalent to the requirement that
E, be infinite.

Suppose E, is finite. Then for any positive integer
n there must be a reaction Ry at center-of-mass
energy E < E, + (m/n) with at least N = n? collisions
of the first particle. In this reaction the total change in
v;, the velocity of the first particle, cannot be more
than

AV = 2[(E, + m)* — 421}/(E, + m),

which is the change it would have if both an initial
and final energy of E, + m were divided between
two minimal mass particles. Pick out the n collisions
of the first particle of Ry that give the greatest change
in v;, or, more generally, such that the smallest change
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dv, in these n collisions is not smaller than the largest
change dv, in the remaining collisions. These
collisions divide the first trajectory of Ry into n + 1
segments at least one of which has at least n — 1
collisions. The change dv, at each collision of the
first particle occurring in the interior of any of these
n + 1 segments must be less than A¥/n, since other-
wise the total variation of v, would be more than AV,
Thus we have shown that for any positive integer
there is in S[E, + (m/n)] a reaction R,_, with n — 1
collisions of the first particle such that the dv, at each
of these collisions is less than A¥V/n.

Any given reaction may have a portion in which the
particles can be divided into groups such that the
particles in each group collide only with each other.
For any reaction in S(E, + m) the number of collisions
of the first particle in any such portion must be
bounded, since otherwise the least upper bound E;
could be lowered. Thus for sufficiently large n it is not
possible that the particles of the reaction R,_, just
constructed are divided into groups of particles that
interact only among themselves; all the particles of
R,_, are connected to one another by collisions, for
sufficiently large n.

By virtue of the above arguments, if E, is finite, there
must be, for every positive integer n, a reaction R,_,
at a center of mass energy E < E; + (m/n) having
n — 1 collisions of the first particle, and such that at
each of these n — 1 collisions the change v, of v, is
less than A¥V/n. In this reaction R, _,, let é; be the
maximum magnitude of the difference between the
velocity of the first particle and the velocity of the sec-
ond particle at the ith collision of the first particle.
And let d be the greatest of the d,. Because dv, is less
than AV/n it follows that 6 must be less than bAV/n,
where & is (E; + m)/m. This limit comes from the
optimal case in which the second particle has the least
possible mass m, and the first particle has mass E;,
which is an upper bound.

Between collisions with the first particle the velocity
of the second particle must increase monotonically.
It follows from this that the difference in velocities of
the first and second particles must always be less than
0, and hence also less than bAV/n.

In order that the velocity of the second particle
always differ by less than bA¥/n from the velocity of
the first particle, the maximum change of velocity of
the second particle in a collision with a third particle
must be less than 2bA¥V/n. This means, in turn, that
the velocity of the third particle can differ from that
of the second by at most 25A¥/n. (In the special case
where the third and second particles can simulta-
neously collide with the first particle, the condition on
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the velocity of the third particle is more stringent.)

Reapplication of the same arguments shows that
the difference between the velocities of the third and
fourth particles is always less than 4b*A¥/n, and so on.
Since the total number of particles in the reaction
must be less than b = (E; + m)/m, it follows that the
velocities of all the particles of R, ; must, in the
center of mass frame, be less than CAV/n, where
C = }(2b)* is a constant determined by E,/m. From
this limit on the center-of-mass velocities one obtains
as an upper bound on the center-of-mass kinetic
energy the value® 3(E, + m)(CAV/n)

According to the above result, the kinetic energy of
the particles of R,_, approaches zero as n approaches
infinity. This requires that E; be equal to the sum of
rest masses of some set of physical particles, and
that for r larger than some finite value L, the sum of
the rest masses of the particles of R, , be equal to
E,. The limit L is the greater of the two values L,
and L,, where L, is defined by [E, — E; — (m/L,)] =
0, E, being the smallest sum of rest masses that is
greater than E;, and L, is the least upper bound on
values of n that satisfy

E(n®) — E, < ¥(E, + m)(CAV]n),

where E, is the greatest sum of particle rest masses
that is less than E;, and E(N) is the least upper bound
on values of E’ such that N(E") is less than or equal to
N. That L, is finite is ensured by the fact that E(N) is
a nondecreasing function of N that approaches E;
as N becomes infinite. For nlarger than L, , the condi-
tion E < E; + m/n ensures that the sum of the rest
masses of particles of R,_, is not larger than E,. For
n larger than L,, the bound on the kinetic energy
ensures that the sum of the rest masses of particles of
R, _, is not less than E,. Thus for n larger than L, the
sum of the rest energies of particles of R,_, is precisely
E,.
Take n greater than L. Then the kinetic energy is
€ = E — E;. But then the total variation of the
velocity of the first particle in R,_, is bounded by the
value Av defined by® im(Av/2)? = e.

We now repeat the arguments given before, but
with R, ; = R, in place of Ry and with Av in place
of AV. In place of the earlier bound }(E, + m) X
(CAV[n)® on the kinetic energy, we now get
3(E, + m)(CAv/r)?. That is, we have, for n larger than

L;
CAVY® _ 4(E; + m)C
e<%<E1+m)( : )——————m(n_l) :

This gives n — 1 < (2b)®+!, which requires », and
hence N(E), to be finite for finite E.

% Relativistic formulas are used throughout.
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Since N(E) is finite, the finite number of collisions
of the first particle divides any reaction into a finite
number of subreactions. In each of these subreactions
the first trajectory is separated from the other trajec-
tories. Thus the previous argument can be applied to
the subreaction, but with the second trajectory in
place of the first, etc. One concludes, then, that the
number of collisions of the second particle is bounded
by [N(E) + 112

Proceeding in this way one concludes that the
total number of collisions is bounded, if the center-
of-mass energy E is bounded. Since also the number of
different types of particles that can enter into reactions
in a bounded center-of-mass energy region is bounded,
the total number of different types of reactions that
can occur in such a region is bounded, in the one-
dimensional case.

III. EXTENSION OF ONE-DIMENSION PROOF
TO THE THREE-DIMENSIONAL CASE

The foregoing proof for the one-dimensional case
can be easily generalized to the three-dimensional
case. To do this we consider simultaneously the first
x trajectory, the first y trajectory, and the first z
trajectory. These are the trajectories lying at the
largest values of x, y, and z, respectively.

A “triple” is a sequence of collisions (in their
natural order) that includes at least one collision of the
first x particle, at least one collision of the first y
particle, and at least one collision of the first z particle.
A “sequence of triples” is a sequence of collisions (in
their natural order) that are separated into an ordered
set of triples such that the final collision of any triple
is earlier than the earliest collision of the next triple.

Let N(E) be the least upper bound on the number
of triples in sequences of triples for reactions in S(E).
Let E; be the least upper bound on the values of E
such that N(F) is finite. Suppose (contrary to fact)
that E, is finite. Then for any positive integer n there
must be a reaction R,y in S[E; + (m/n)] with a
sequence of at least 3N = 3n? triples. Pick out those
n triples that contain the collisions of the first x
particle with the n largest values of dv,,. Here dv,, is
the change in the x component of velocity of the first
x particle. Pick out also those n triples that contain
the n collisions of the first y particle with the largest
dv,, . Do the same also for z. These 3n triples separate
the reaction Ry into at most 3n + 1 (sub)reactions,
at least one of which, called R,_,, must contain at
least n — 1 triples.

In the reaction R,_, the maximum possible change
of dv,, at any collision of the first x particle is less than
AV/n for exactly the same reasons as before. This
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bound holds also for the changes dv,, and dv,,. Thus
the same arguments as in the one-dimensional case
now give 3(E, + m)(CA¥/[n)? as an upper bound on
the center-of-mass kinetic energy of R,_,, where C
is again $(2b)’.

Continuing as before, one concludes that E; must
be equal to the sum of rest masses of some set of
physical particles, and that for sufficiently large n,
the sum of the rest masses of the particles of R,,_; , must
be precisely E;. Thus the center-of-mass kinetic
energy for R, , is again ¢ = E — E, for sufficiently
large n.

If the kinetic energy is ¢, then the total variation of
V;pin R, is no more than Av defined (3m)(3Av)? = e.
From this one concludes, by the same argument as
before, that N(E) cannot become infinite at finite E.

From the fact that N(E), the maximum number of
triples in S(E), is finite, it follows that the maximum
number of collisions of reactions in S(F) is finite. To
show this we proceed as follows: For any reaction in
S(FE) let t; be the greatest time such that the sub-
reaction consisting of the portion of the reaction
occurring at ¢ < ¢; contains no triple. Then let ¢, be
the largest time such that the portion of the reaction
occurring in the interval t; < ¢ < f, contains no triple.
Let ¢3, t4,-*, t, be defined in the analogous way.
This sequence of times must terminate at a time ¢,
with n < N(E), where N(E)is the maximum number of
triples for reactions in S(E).

The times ¢; divide the original reaction into a set
of no more than [N(E) + 1] subreactions each of
which contains no triple. But a subreaction that
contains no triple must have a first x, y, or z trajectory
that is disjoint from the other x, y, or z trajectories,
respectively. This implies that the particles of each of
the various subreactions must separate into groups
such that the particles of each group interact only
with each other. And at least one of these groups must
be confined to a single x, y, or z trajectory. The number
of these independent groups into which a subreaction
divides is evidently no greater than E/m, which is an
upper bound on the number of particles in reactions
in S(E).

The above analysis takes the original reaction into
no more than (E/m)[N(E)+ 1] independent (i.e.,
self-interacting) new reactions. The same analysis is
next applied to each of these independent new reac-
tions. For reactions that are confined to a single x, y,
or z trajectory, one uses, however, “doubles” instead
of “triples.” Doubles are the two-dimensional analog
of triples; one eliminates the x, y, or z coordinate if
the reaction is confined to an x, y, or z trajectory,
respectively. The number of doubles (and analogously,
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of singles) in reactions in S(E)are shown to be bounded
by essentially the same argument as was just given for
triples. In fact, the bound N(E) obtained previously
for the number of triples is also a bound on the
number of doubles (and also on the number of singles).

The original reaction is separated at the first stage
of the analysis into no more than (Efm)[N(E) + 1]
independent new reactions. Each of these is separated
at the second stage into no more than (E/m)[N(E) + 1]
new independent reactions. One continues in this way
until the stage at which no further decomposition is
obtained. This must occur after no more than Efm
iterations, since the energy of a part that decomposes
at a given stage must have been reduced at every
earlier stage by at least m, due to the separation into
independent parts. Thus the total number of inde-
pendent reactions that are picked out altogether is no
more than

AE) = {(E[m)IN(E) + 1]}1#Im+,

Also, the total number of times ¢; singled-out in the
entire course of the analysis is bounded by A(F).

Each (nontrivial) collision of the original reaction
occurs at one of the times ¢; singled-out in the above
analysis. For, on the one hand, the only collisions that
are eliminated at any stage of the analysis are those
occurring at one of the singled-out times. On the other
hand, the analysis does not terminate as long as any
nontrivial collision remains. In the first place any
independent part that is not confined to a single x,
¥, or z trajectory must contain a triple, since otherwise
a trajectory can be separated out. Thus the analysis
cannot terminate as long as there are still independent

HENRY P. STAPP

parts not confined to an x, y, or z trajectory. Similarly,
all parts confined to a single x, y, or z trajectory must
be reduced, before the analysis terminates, to parts
lying on at least two trajectories. These parts lying on
two trajectories are confined to one-dimensional
subspaces. For such parts the analysis proceeds until
the first trajectory becomes the same as the last
trajectory, since otherwise the first trajectory of an
independent part must have a collision. One is left,
finally, with only trivial collisions.

The conclusion from the above arguments is that
the collisions of any reaction in S(E) are confined to
a set of times 7, the number of which is no more than
A(E). Furthermore, the number of different types of
particles that can participate in reactions in S(E) is
also finite, due to the spectral conditions on the
particle rest-masses. (Particles of the same mass can
be identified, as mentioned in the Introduction.) But
a finite number of different particles colliding only at
a bounded number of different times can give only a
finite number of different types of reactions. In
particular, if mq(E)/E is the number of different kinds of
particles with rest energy less than E, then the number
of different possible collisions at a single given time
t; is no more than [2¢(E)J*¥/™. Thus the total number
of different types of multiple-scattering reactions
involving collisions at no more than A(E) different
instants of time is no more than (2¢4)?#4/™. This upper
bound on the number of different types of collisions
possible in the portion of the physical region lying at
center-of-mass energy less than E could be lowered
with but little extra effort, should the need arise.
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The convergence of the Bremmer series expansion for the solution of the one-dimensional Helmholtz
equation with varying wave number is investigated. It is proved that the series converges provided the
quantity eo is sufficiently small, where ¢ measures the relative rate of change 1/k%dk/dx) and o the
relative total change of the wave number k. An exactly soluble example is discussed in order to show
that convergence fails if the above criterion is significantly relaxed. It is shown that if the Bremmer
method is applied to the calculation of the time-dependent response to an externally imposed signal,
the series is convergent at any finite time after the signal is turned on.

L. INTRODUCTION

HE Bremmer series was originally constructed® in
order to obtain an expression for the reflection
coeflicient of the one-dimensional Helmholtz equation,
d*pldx? + k¥(x)$ = 0, 0))]
in the interval — oo < x < oo, where £%(x) is greater
than zero and approaches constant values at infinity.
‘The virtue of this series is that it can be derived from
a simple physical picture based on Huygens’ principle.
At every point in the medium where dk/dx # 0, a
wave is partly reflected and partly transmitted. The
lowest order term ¢{® is calculated by neglecting the
further history of all the reflected “wavelets.” ¢{? is
then found to be the first-order WKB solution for
forward propagation. The next term, $), is composed
of a coherent superposition of the reflected wavelets
propagating in the negative direction, where again
the wavelets generated by additional reflections are
ignored in this order. The next term, ${*, represents
a correction to the transmitted wave ¢{* and gives the
contribution from wavelets that have undergone just
two reflections and then propagate to 4 o0, and so on.
Thus the principle of the Bremmer series is that the
total field is composed of a coherent superposition of
multiply reflected wavelets, where the reflection
coefficient is determined by local gradient parameters.
This principle has been used by others in equations
more complicated than Eq. (1). For example, Beliman
and Kalaba? have used a variation of the method to
study 2Nth-order differential equations. Aamodt and
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Book® have studied a fourth-order differential
equation for a plasma fluid and Berk, Horton,
Rosenbluth, and Sudan* apply the Bremmer method
to obtain wave reflection arising from the Viasov
equation. We see that the Bremmer method can be
applied to a large class of problems where mathe-
matical proofs and alternative descriptions®® are
difficult to obtain, and it is therefore important to
establish the regime of validity of the Bremmer
method for the simplest case of application, the
Helmholtz equation.

It has been established that the Bremmer series is a
solution of the Helmholtz equation (or in the paper of
Aamodt and Book, the fourth-order fluid equation)
if the series converges.2-® However, previous conver-
gence proofs have used very general properties of k(x)
and as a result have obtained sufficiency criteria for
convergence only if the total change of k is of order k&
itself. For example, the convergence criteria obtained
by Bellman and Kalaba? for continuous k are
k> a?>0and %, |k'| dx < 2a, and by Atkinson’
for continuously differentiable 4(x), k% > 0, and
§® o |k'[kl dx < . Atkinson also shows that there
exists continuously differentiable k(x) for which the
Bremmer series diverges if {©,, |k'[k| dx > m. How-
ever, since physically interesting forms of k arise that
violate the above convergence criteria, we investigate if
stronger convergence statements exist when more
information is given about k(x) and k’(x) than just
their continuity.
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Specifically, it is known that the first term of the
Bremmer series is the lowest-order WKB solution,
and hence we might expect that the Bremmer series
converges when the WKB approximation

Ex)k(x) K 1

is applicable even when the criteria of Bellman,
Kalaba, and Atkinson are violated. Here we present a
convergence proof that when applied specifically to
the case when the WKB approximation is valid, has a
much greater range of convergence than previously
obtained. However, we can show by means of a
specific example that if the change of & is sufficiently
large, the Bremmer series diverges.

It is perhaps surprising that a method apparently
based on physical construction should break down for
a range of parameters that is physically sensible. To
throw some light on this problem, we show that the
Bremmer method does not break down if we treat
the Helmholtz equation as a Laplace transform of the
wave equation. We then show that the inverse
Laplace transform, which depends on time, converges
absolutely.

II. CONVERGENCE OF THE BREMMER
SERIES

Bremmer has shown that if k(x) is finite, non-
vanishing, and piecewise smooth in the interval
—w < x < +0o0, and

k(x) — k_ = const (x - — o),
k(x) — k. = const (x — + o),

then a solution of the Helmholtz equation can be

written as
$(x) = $i(x) + a(x), @
where ¢, and ¢, satisfy the relations

) , KX)o
410 = $0C0) + f ' 3 P ), ()
[t K ,
$o(x) = f xS PO, DB, @

Here the P* denotes the complex conjugate and

! i F 4

pe, 0 = [ ew [~ ay]. @
k(X) -4

In (3), ¢{” is the first-order WKB solution

$O0) = [ . )]iexp [ f k(y) dy]

The boundary conditions satisfied by this solution
are that ¢(x) asymptotically approach the forms
¢(x) = ei(k‘m—ﬁ) + re—ik’w (x — —oo),

¢(X) — et'k"'a:

(x — oo)
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Here 8 = [° , (k— — k) dx, exp [i(k—x — f)] is an
incident wave of unit amplitude and zero phase at
x = 0, and r and ¢ are the reflection and transmission
coefficients.

The solution with different boundary conditions is
obtained by varying the amplitude of the incident
wave or introducing the first-order WKB solution
for propagation in the negative direction, ¢{?. An
outline of the derivation of the Bremmer Eqs. (3)
and (4) is given in Appendix A.

When (3) and (4) are solved by the obvious iteration,
the Bremmer series results. However, first it is con-
venient to define the new variables

£(x) = 2fk(y) dy,
() = () (’—‘,%’)% exp [—i f [0 dy],

uslx) = $ol) (%)% exp [i f k() dy],

In terms of these, we have

§
w®) =1+ [ disoe i, @
w(e) = = [ st ®)
where d
1 dk 1 dk
O =z~ woax

Equations (7) and (8) are solved by iteration if we
put

(0)(5) =1 (9)
and define
@ = a0
and
o) = — [ansene. an
Then formally
n(®) = S, (12)
n) = 3 U 13)

satisfy Eqgs. (7) and (8). Equations (10) and (11) may
be combined to connect successive orders in the
expansion of ; alone:

& [*9]
) = — [ dnenye e )emur)
» n

= f_ e GE e, (14)
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where
. [F®, &<,
o= {F(n’), E217, (142)
&
F(&) =f_wdne‘”8(n). (14b)

Suppose temporarily that k(x) increases monotoni-
cally from k_ to k, and define a new independent

variable
§ L (% dk
={ dné(n) == —.
5 f_w n6(n) 2f_w k

Thus s(§) is just %In [k(&)/k_]; s(—o0) =0 and
0. < s < %1n(k,/k_) = 0. Equation (14) becomes

uP(s) = —fddtK(s, HuE(e), (15)
where ’
K(s, ) = e*"G[&(s), &(1)]. (16)

By a well-known theorem,® the series (12) converges
if the operator k has the following norm less than 1:

f "ds f dt |K(s, D < 1. a7
0 0
By (16) this condition is

L “ds L “dt |FIEDIE + ﬁ “ds |FEG)IE (6 — 5) < 1.
(18)

Now let §(£) take on values less than zero so that
& = 0 at a discrete set of points. We now define the
total logarithmic variation of k from —co to & as
twice the quantity

§
s = [__an el

Thus we have a one-to-one correspondence between &
and s. Equation (14) now takes the form

upre9(s) = — (K, om0, ()
where ’
K(s, ) = a(t)e¥IG[&(s), &1)]. (16"
Here o(t) is the sign of &[4(t)] and o = s(c). The
remaining arguments are as before and the general
convergence criterion is given by (18) with s, ¢, and
K(s, t) as redefined above.
We now investigate the implications of (18). If we
have a bound |F|2,, for |F(z)|, then (18) becomes

36® |FlRax < 1. 19)
By the definition (14b) of F it is clear that
IFs)l < s < o.

8 F. E. Riez and B. Sz-Nagy, Functional Analysis (Frederick
Ungar Publishing Company, New York, 1955), p. 147.
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So we have the sufficiency criteria.
(A) If &(x) is finite and piecewise smooth, then

o < (B}

implies the convergence of the Bremmer series (12).
It is clear that the same criterion applies to (13).

Criterion (A) is slightly more restrictive but
essentially the same as that given by Atkinson.’
However, it is important to determine whether the
Bremmer series converges in cases where the relative
change in k is large. Notice that if k is sufficiently
slowly varying, the usual WKB approximation is valid,
and we would expect the Bremmer series to converge
by its construction. Hence, we assume &§(§) <« 1 and
introduce the following definitions in order to classify
k(%). A function f(x) is defined to be gentle in the
small quantity ¢, if f'(x)/f(x) = €y(x), where a(x) is
order 1. Similarly f(x) is said to be very gentle in ¢, if
[ @)/ f(x) = €f(x), f(x) = O(1) and so on.

Now suppose [8(&)] < € K 1 for all & Let §(x) be
gentle in ¢,. Then integrating (14b) by parts, we have

4 .
F(§) = ig(&)e™ — if_ dn8'(m)e™",

$ i
IFE) < 18 + | dnetrpatre™

§
<eten dnler)

< €[l + aa].

Then (19) yields the criterion
(B) If &(¢) is gentle in € = max |8§(£)|, then

@)toe(l + a0) < 1

implies convergence of the Bremmer series. Continuing
to integrate by parts, we find the following.
(O) If (%) is very gentle in ¢, then

(®loe(l + poe) < 1

implies convergence.
(D) If §(¢) is very very gentle in ¢, then
Bles < 1
implies convergence.

It is thus clear that for “sufficiently gentle” wave-
numbers &, the natural measure of convergence is €g.
Note that the gentleness of any order criterion can be
slightly violated without changing the effective
convergence criteria. For example, if in a small region
of &, say A&, & changes rapidly but the total change
Ag in this region is much less than 1, then the con-
vergence criterion (B) is still valid.

Before going on, it is interesting to compare the
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Bremmer formulation with that of Knorr and
Pfirsch.® They show that Eq. (1) is equivalent to

WE) = w®) +  [[_desinds = EEME),

(20)
where w(§) = k¥(x)¢(x) and
_2d% _ (1dky
IO=a (k de)'

At £ ~ — o0, w(§) ~ wy(é) = exp (i£/2); this bound-
ary condition corresponds to making the upper limit
in (8) — oo instead of co. Then writing

f&) =2k* dié (k_lt %)

and integrating by parts, we obtain
& ’
W(E) = o2 — f df’[% sin 3(& — &)w(E)
k’ ¥ !
BETAY HE — &)

=3 () sin 1 - 3] 0

2(k) '
From the Bremmer equations with boundary con-
ditions modified as noted above, we get

wp(8) = e + w7,

=4 4 f dE'S(E") [we(£') cos H(& — &)
+ id(&") sin (& — &)]
where
95(5) — uleig/z _ uze—ﬁ/z.

ip(&) = 2[wp(E) — &EWR(E)];

so w and wg both satisfy Eq. (21); and thus wg = w.
In Ref. 6 it is shown that the series obtained by
iterating (20), starting with w,, converges absolutely
provided only that

[Cirenas < oo

As shown by the example of Sec. III, this is certainly
not true for the Bremmer series obtained in the
reflection problem. The difference is traceable to the
definition of the boundary conditions in the two cases.
Because the Bremmer problem includes specification
of the behavior of the solution at 400, each order
of the iteration process (14) involves integration over
the whole range of variation of k(&) and effects can
accumulate from the entire & axis; in the series of

But
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Knorr and Pfirsch, the value of w(§) depends on an
iterated integral from the boundary at — oo to £ only.
Thus it is possible to majorize the series with an
exponential series, implying absolute convergence.
We return to this point in Sec. IV.

1. SPECIAL EXAMPLE

Let us consider as a special case the following
example that can be solved exactly and readily
expressed in terms of the Bremmer series. Consider

ko, - 00 < § < 0,
k() = | koe®, 0<EL &,
k0e€§u’ Eo < E < 0.

For this example, (7) and (8) become

&
— £ i,
m@ =1+ f dneun), @2)

o 3
u®= - f dneuy(n). 23)

From the first derivatives of (22) and (23), we obtain
the relations

ui(§) = fee“uy(), (24a)
ug(€) = teeuy(8). (24b)

Using these relations we derive the following
differential equation for u,(£):

uy(8) + iui(é) —teuy(§) = 0.

[This is a special case of the equation

(25)

Y k/ k" . , k’
ui(®) + (; - z) W) = 75 m(®) = 0

that would be derived for arbitrary k(£).]
We obtain the appropriate boundary conditions
from (22), (23), and (24a):

u(0) =1, u(&)=0.

The exact solution for 1(£) is then found to be
e—ﬁig‘[(,y + l)e—i‘iy(E—L) + ()’ — l)efc'y(g-—L)]
2[y cos ¢ — isin ¢)

where y = (1 — e} and ¢ = 3y§,.

If we substitute this solution into (23) and integrate,
we find that u,(£) is given by

—ee™’2sin [{y(é — )]
[ycosd —ising]
We obtain the Bremmer series either by expanding

(27) and (28) in powers of € or directly iterating (22)

(26)

u(§) =

b

27

u(é) = (28)
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and (23). The first few terms are

u;.m(é) =1,
ug(§) = —(ef2D)[e® — €],
uP(§) = (4§ — i(e" P — e,
uP(§) = —(E[8i)[—2ikpe® + ik(e™ + &)
+ eifo  git + e2i(§o+§)]_

Notice that «{’(0) is a good approximation to the
reflected wave if €2, « 1. The next approximation to
the reflection is significant only if &, =2mn+ ¢
where 6 < €2&,.

We see that the Bremmer series is a power series in
€ in this example. The radius of convergence of this
power series is given by the value of ¢ closest to zero
for which u,(£) or uy(£) is singular. Both the points
€ =1 and the zero of y cos ¢ — isin ¢ seem likely
candidates. However, the point € =1 can be elim-
inated since, near € = 1, ©,(§) and u,(£) can be
expressed as a convergent power seriesiny = (1 — €?)%.
However, both (27) and (28) are even in y and hence
the power series is in y? = 1 — €%, which is also a
power series in e.

We now try to approximate the root of the equation

(1 — et cos [}(1 — €] = isin [J(1 — €],

By squaring this equation and using trigonometric
identities, this equation can be written in the form

cos? {[}(1 — e)t)&e} = 1/e2 (29)
Let us assume the root occurs where €25, >> 1 but

€', K 1. The square root of (29) can then be
expressed approximately by

cos (3&,) cos (Fe*£o) + sin (34o) sin (1*6,) = (1/e).

If we define p = —ie® and assume that & =
37(2n + 1), where n is an integer, we find

e,,’go/4 = 1/P,

£ = (4/p*) In (1/p)-

Hence, if € is small, the above approximations can be
satisfied, and consequently the Bremmer series for our
example diverges for a sufficiently large change in k.

The range of convergence of our special example
should be compared with the criterion (D) of Sec. IL.
For our example, the total maximum logarithmic
variation of k is given by o = €&, so that from (30)
the convergence criterion of our example is

eo < In (1/l€]),

and therefore,
(30)

while the general criterion is (3/2)%ec < 1. This
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shows that the bounds of the previous section are
almost optimal.

IV. TIME-DEPENDENT REFLECTION
PROBLEM

It is of interest to consider how the Bremmer series
can be applied to wave equations having both space
and time dependence. We consider the simplest form
of a one-dimensional wave equation

aZ 2 2
lé? — %) —a;}tp(x, f)=0. 31)
We investigate the response of this equation to a
localized source turned on at time ¢ = 0. Using a
technique similar to one employed by Nyquist® in
circuit theory, we show that the time-dependent
Bremmer series for y converges absolutely.

If ¢(x) is constant, we find that the normal mode
solutions described by (31) are waves propagating in
either direction without dispersion, i.e., w/k constant.

Suppose now that 1/c(x) satisfies the restrictions
placed on k(x) in Sec. II (positive, finite, piecewise
smooth). In addition, we assume that c¢(x) is constant
from — oo to some point on the real axis, and choose
x, inside this interval. At ¢ = 0, we begin to generate
a time-dependent signal at the point x,. Thus on the
right-hand side of (31) there is a source term in the
form

S(x, ) = 6(x — x)O@) f(2).

[O(¢) is the Heaviside step-function.] We assume that
[f(¢) is integrable,

(32)

(33)

[ <a
and impose the initial conditions
w(x, 0) = (9y/01)(x, 0) = 0.

Equation (31) with the source term (32) can now be
solved by means of Laplace transformations. Defining

H(x, w) =f dtey(x, 1), (34)
0
etc., with the inversion
1 —iwt
p(x, 1) = — | dwe'¢(x, w), (35)
2w J1

where I is a contour in the complex w-plane above all
singularities of ¢(x, ), there results

~w*p(x, ) — A(x)d*p|dx®)x, @) = 8(x — xo) f(w)

® H, Nyquist, Bell System Tech. J. 11, 126 (1932).
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or
(d*¢dx?) + k¥ (x)$ = S(w)d(x — x,).  (36)
Here
k(x) = wfe(x),
S(w) = —c*(x)f(w),
and f(w) is the Laplace transform of f(¢).
The solution of (36) is
¢ =d¢ + ¢u, (37

where ¢, is the Green’s function for a source localized
at x, and ¢4 is a solution of the homogeneous
equation. The former is readily found in a neighbor-
hood of x, using the fact that at x,, k(x) =k, is a
constant:

Pax) = Bemkolr=0)  (x < x,), (38a)
= Betkel®=Z0)  (x > x,), (38b)

where
B = S(w)[2iky = —[c(x0)/2i] f(w). (39

Causality requires that ¢5 be the solution of the
reflection problem for a wave of amplitude B incident
from the left at x = x, of the form (38b). [By trans-
forming back from w to ¢, we see that if ¢ has a term
like exp (—ikx) at + <o, y does not vanish for ¢ < 0.]

We can now use the Bremmer techniques of Sec. II

to solve for ¢y
¢ = ¢1 + ¢2,

where ¢, and ¢, satisfy (3) and (4) except that ¢{? is
multiplied by a factor B. We define 7(x) = [z dx/c(x),
the time required for a wave to propagate from x,
to x. In terms of the new variable, (3) and (4) become

u(r,w) = B + L Tdr’ﬁ(r’)e'z"“’"v(v’), (40)
v(r, w) = —J;wdr’ﬁ(r’)e“"'“”u(f’), (41)
where

&(m) = (1/2k)(dk/dT).

As before, an infinite series of functions u,, v, in
(w, ) space is obtained by iteration of (40) and (41.)
These yield a corresponding series Z(y{®™, p{2n+1) in
(7, t) [or (x,?)] space on application of the Laplace
inversion formula (35). Thus, using (39),

WO, 1) = f 90 piotg0)(r, o),
127
d({) —iwt ko i :
= | 2% —iwt] "0 iwrg , 42

= =1 G O

_ %@[%]* L af (o).
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By the assumption (33) and the conditions on c¢(x), we
can bound y{»:

lp®(r, ] < M.

Note that [ky/k(7)]} = [c(7)/c,]? is independent of w
because of the absence of dispersion. For ¢ < 7(x), p{®
vanishes, indicating that the signal does not have
time to propagate from x, to x.

Likewise, applying (35) to the recursion relation for
successive terms in the expansion of u,

(43)

sty = f dr'8(x' e f () uy (1), (44)
0 Fad
we have

,wi(n+1)(7_’ I) —

é(‘_oe—iwt’:_k_o:l%eimr
127 k()

X f dr 8( ‘T/) e—2imr’ f dr" S(TH) e2iwr”
0 v

mE
x [k(I: ):l e—iwr"¢§2'n)(7_n, w)

0

- - f () f (")
0 v

w i (2n) T S —— ’
x[k(T)] [ 2! ( ,t +27)
(45)
The following assumptions are now made:
()| < E, (46)
[k(r")k(7)]t < K “47)

for all 7, #”; both (46) and (47) certainly hold for
physically reasonable choices of c(x).
We show by induction that the series

Zow‘f"’(f, 1) = pi(x, 1)

is majorized by a series which converges as an
exponential series, and therefore itself converges
absolutely for any finite ¢z, 7.

Suppose

P, ) =0, 7>t (48)

|9, D] < (EK™n! 27M(t — D°(t + 7",
t>7. (49

By (48), the integrand vanishes in (45) unless the
variable 7" satisfies

LT LT+t — 7).
But (50) can only hold if ¢ > 7, so that (48) is true

(50)
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also for p2("+1), We are left with
|1p2(n+1)(,,. t)l

R

—7—7" 427

X w?n)(,rﬂ, t
r r‘+%(t—r) E 2'nK n
SJ d-r'J. dr"EK Mt — =+ 27)"
) r nt 2%
X (t—71—27" 427

2(n+1) prn+i1 T
<ET B M 4oy f dr
n! 2" 0
r+3t—1)
xf dr"(t — v — 27" + 27)",
_ EZ(ﬂ+1)K’ﬂ+1 M (t + ‘T)"T t — 7 n+1
n! 2 n+1 ( 2
E2(n+1)Kn+l

n+lrs __ \n+l
(n + Dy 2o MO+ DT
Clearly, (43) is a special case of (49) and, for »{®, (48)

follows from (42). So the induction is complete and

S ¥, 1)

n=0

< Mexp [1E*K(t + 7)(t — 7). (51)

In entirely analogous fashion we show that

y)‘f’”’”(’r, t) = 0, T>U,
and
i(t+r)
(2’n+1)(_r t) — l f ;8( )(k(T ))
k(7)
X '(/J(12")(T', t—7 417
%(t+r) (E2K)n
< EKf 22"n!
X (t+ )t ~27" +7)",
MEK (E*K)" ot =7\
= t .
ntlntzr 0D ( 2 )
So
3 y(r, 1
n=0
2 —1
<2 (e EKG + (= M) = 1), (5D)

Together (51) and (52) comprise the result sought.
It is clear from the proof just presented that
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convergence is a consequence of the finite speed of
propagation. The region in coordinate space which
can contribute wavelets to the total Bremmer wave in
any given order is limited by the condition +(x) < ¢,
in contrast to the situation of Sec. II. In that case there
is no initial point in time; waves have had effectively
an infinitely long time in which to traverse all of
coordinate space, and wavelets of any order of
multiple reflection come from all points in space where
k' # 0. Thus it is possible to find the terms in the
Bremmer series increasing with order, so that the
series diverges.

Because the idea of a finite speed of propagation is
central to the above proof, it should be possible to
generalize the argument to cases where the wave
equation describes propagation in dispersive media,
provided that the dispersion relation is such that e/k
is bounded.

We see that the Bremmer series for the Helmholtz
equation is simply a formal mathematical expression.
Only when time is brought into the picture can the
Bremmer series be viewed strictly as a physical
construction. Hence, only in the time domain is the
Bremmer series guaranteed to be absolutely convergent,
and it is not surprising that, for the Helmholtz equa-
tion, the Bremmer series can diverge.

V. CONCLUSION

We have presented a proof that greatly improves the
convergence criterion for the Bremmer series of the
Helmholtz equation in the case that

1 8(8) = (k) dk|dE = (2k?)* dk|dx

and &(¢) is sufficiently gentle. In principle the method
of proof should be applicable to higher-order
differential equations and similar convergence criteria
should be obtained.

It is important to determine if the first term for the
reflected wave ¢’ is a good approximation to the
exact solution. It is clear from our equations that if
&(£) formally can be ordered in some small dimension-
less parameter, say e, then the Bremmer series is
asymptotic in small e. Thus if the reflection is not
exponentially small, we have ¢, = ¢ + 0(e?). In
fact, the example of Sec. III demonstrated this
relationship explicitly. However, if 8(£) is sufficiently
gentle and smooth, the reflection coefficient is indeed
exponentially small. Then each term in the Bremmer
expansion for ¢, is exponentially small, and it is not
clear if the first term dominates the remaining ones.

It is interesting to observe that the higher-order
WKB solution can be obtained from the Bremmer
series. Each term of the Bremmer series in x space is
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explicitly given by

amey o (RN sstane 7 —i8an
¢1 (X) - k € _ d£2n8(£2n)e

Sen-1

x L " Ay B(Eam e f

a0

s ®
x f At 8(E) L dE (),
f 0
¢:£2n—1)(x) = (k_,;-) e—-iE(a)lﬁ J‘ ( dezn__le‘hn—x 8(52"_ l)
&lx)

Xfw o wdfleiglg(fl)-
San-1 s

If §(£) < 1 and is arbitrarily gentle, these integrals
are asymptotically evaluated by integrating by parts.
Now the WKB expansion is an asymptotic power
series in € when the derivatives satisfy dr§/d¢” ~ €™,
Hence the nth-order WKB term is obtained by
collecting the terms obtained by performing n partial
integrations of the above integrals. Notice that all
terms calculated in this way will be proportional to
exp [i5(x)/2] and hence appear to be forward propa-

gating waves, even though ¢,, the backward propa- -

gating wave, contributes to the result. An exponentially
small term proportional to exp [—i&(x)/2] is obtained
from ¢, only if the integral is evaluated with greater
precision. For large negative & where & ~ 0, the
partial integration of ¢, yields arbitrarily small terms,
and only then does the exponentially small term

dominate.
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APPENDIX A, DERIVATION OF THE
BREMMER SERIES

We begin with Eq. (1) and review a derivation of
the Bremmer equation.! Suppose k(x) > kpy, > 0
for all x, and suppose

kx)=k., x<a,
k(x) =k., x> b,
with a < b, where k_ and k, are constant. For p,

a positive integer, define Ax = (b — a)/p and x; =
a+ jAx, 0 <j < p. Let k, = k(x,), and define the

H. L. BERK, D. L. BOOK, AND D. PFIRSCH

stepwise approximation k*(x)
k*(x) =k_, x<a,
=ky X1 <X KX,
=k,, x>b

For a “wave” propagating from left to right [ie., a
solution that looks locally like exp (ikx)], there is a
reflection coefficient at the step at x = x;:

(AD

ry=(k; - ki+1)/ (ks + kiya) (A2)
and a transmission coefficient
t,=2kJ(k; + kya) =1+ r,. (A3)

Similarly, for waves propagating from right to left we
have r; and ¢, obtained by interchanging k, and k, + 1.
Let ¢(a) = 1, so as to satisfy the boundary condition
of unit amplitude in the incident wave at x < a; then
the pure transmitted (unreflected) wave is given by

io) = ¢1(a) eiklA’tleik’A’tg R eik,(a;—a:j) ( A4)
for x; < x < x;,,. Also, for the first-order reflected
wave,

95(21)(3‘) = 2 riﬁbgo’(xi)P (%, X)

‘

(AS5)

where the summation is carried out over x; > x. The
propagators P, and P, are given by

§
Pl(x,-, x) = ‘i[Ieik,Axtleik,(w—o:,)’ (A6)
where x; < x; < x < x;,4, and
PZ(xz', x) — ;l:lj’ e—ik;A:ctlre—ik;ﬂ(a:,—a:)’ (A7)
where x; ; < x < x; < x; and
t; = (k) ks + Kipo)
In general,
(X)) = 3 ridf U (x)Py(x;, %), (A8)
@ <z
$Ix) = 3 r g (x)Py(x;, X), (A9)
:c,-‘ @
where g

ri = (ki — k)[(k; + kipy).
Now let p, the number of steps, become very large.
In this limit £*(x) — k(x) and the sums go over into
integrals, and in place of (A4) (k" = dk/dx) we get

$17(x) = ¢i(a) exp (ikle)l:l _ k{Ax}
2k,
x eikgAm[l _ kéAx:l .
ke

= ¢,(a) exp [i SkAx -3 %’i_x}

— ¢(a) [kkT;iT exp ( iJ:k dx’)z (A4)
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(the lowest-order WKB solution). Similarly,

e = 0 KD pa, g0, (aS)
‘} 23
P(xy, xg) = [%] exp (—i f kdx), (A6")

#2700 = [ - P, ),
— -1 ¥ ILcl_(_x_') (2p-1)
= oot [ £

X exp (if:k(y) dy), (A8)
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{2p+1) _ — v /k’(x’) (2p)/ 1 ’
27+ (x) f av B2 4, ),
_ b , kl(xl) 2 ,
= —tkeor? [ a0 g7x)

X exp (i L “ k() dy). (AY)

If we formally sum these series, we get the Bremmer
integral equations

(%) = () + f “dx % PH(x', )do(x'), (A10)

$o(x) = — f "ax KD (e, a0, (AlD)

One can easily verify by substitution that the solution
of (A10) and (A11) satisfies (1).
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A perturbation-theoretic method is developed by which solutions to the monoenergetic neutron trans-
port equation for an unreflected critical slab can be obtained in the case of anisotropic scattering and/or
nonconstant cross sections. The method rests upon the use of a generalized Green’s function to solve
the perturbation equations. The Green’s function is derived by an eigenfunction expansion technique and
as the solution to two coupled singular integral equations, and the results are compared numerically.

1. INTRODUCTION

OLUTIONS to the monoenergetic neutron trans-

port equation for a critical bare slab reactor have
been obtained independently by Mitsis! and Zelazny.?
Both authors used the normal mode method of Case®
to cast the solution for the neutron distribution
function into the form of a singular eigenfunction
expansion, and found a Fredholm integral equation
for the continuum coefficient. The analysis of both
authors was based on the assumption of isotropic
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the auspices of the U.S. Atomic Energy Commission.

1 G. J. Mitsis, Nucl. Sci. Eng. 17, 55 (1963).

2 R. Zelazny, J. Math. Phys. 2, 538 (1961).

3 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).

scattering in the laboratory system of coordinates
and constant cross sections throughout the medium.
The extension of Case’s method to arbitrary ani-
sotropic scattering has been carried out by Mika.*

In principle, any problem that can be solved
subject to the assumption of isotropic scattering can
also be solved using Mika’s approach, which is to
expand the scattering kernel in Legendre polynomials.
Unfortunately, this technique loses most of its
practical utility if more than the first few terms of the
expansion are retained. This is due to two reasons:
(1) certain identities which are very useful in simpli-
fying the final analytical results in the case of isotropic
scattering no longer apply for anisotropic scattering;

4 J. R. Mika, Nucl. Sci. Eng. 11, 415 (1961).
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and (2) the roots (diffusion lengths) of a complicated
transcendental expression must be found numerically
in the case of anisotropic scattering.

In this paper we develop a perturbation-theoretic
method with which solutions to the neutron transport
equation can be obtained for systems which display
small departures from homogeneity and/or small
amounts of anisotropic scattering.

The plan of the succeeding sections is as follows.
We begin by showing how the problems of anisotropic
scattering and nonconstant cross sections can be
formulated in such a way that perturbation theory is
applicable. Perturbation theory is then applied to
recast the problems into a form where the perturbation
is introduced as inhomogeneous terms in an infinite
set of transport equations. It is then shown that these
equations may be solved by means of a generalized
Green’s function. The Green’s function is derived in
two ways: by eigenfunction expansion, and by con-
verting to singular integral equations. The two forms
of the Green’s function that result from these pro-
cedures are compared numerically.

2. STATEMENT OF THE PROBLEM

For an unreflected source-free slab the monoener-
getic steady-state transport equation has the form
+1
p 2B s, g0 = [0 i
x 2 Ja
@.n
Here y is the neutron distribution function, u the di-
rection cosine of the neutron velocity vector, x the
optical distance from the center of the slab, ¢(x) the
mean number of secondary neutrons emitted from a
collision event, and f(u’ — u) is the scattering kernel.
If the slab is taken to be of width 2b centered about
the origin, the appropriate boundary conditions are
pb,u) =0, pu<O0, 2.2)
and
p(x, #) = p(=x, —p). 2.3)
In the case in which the mean number of secondaries
¢(x) is not a constant, but the scattering is isotropic,
it is easy to cast the problem into a form in which the
inhomogeneity can be handled by perturbation
theory.. We write
co(x) = ¢ + eg(x), 2.4
where ¢ is a constant and € a small parameter. The
transport equation takes the form

w2 i = [ vt

Ox
gx) N
<= ,L w(x, p)du'. (2.5)

W. L. HENDRY

When the mean number of secondaries is constant,
but the scattering is anisotropic, we can obtain a
formulation suitable for the application of perturbation
theory by assuming that we have a mixture of
scatterers, some of which scatter isotropically and
some of which scatter anisotropically. The transport
equation becomes

is0
w2 gy = B )
ax 23,
aniso +1
+ 22 f(# — wyy(x, @) dw', (2.6)
s -

where 3,, 3/, and X, are the macroscopic scattering,
fission, and total cross sections, respectively, and v
is the mean number of neutrons released from a
fission event. If we define

¢ =(ZP° + IV 4 Z)[E,, 2.7
€ = Z:.nisol(zlsso + E:nlso + vE,), (2.8)
Fu's p) =fp' —p) — 1, 29

then Eq. (2.6) takes the form

op(x,
u p(x, 1)

I + y(x, w)

c [t
B 5]—1 [1 + eF(u'; w)lyp(x, ') dp’. (2.10)

The parameter e lies in the range (0, 1) and is small
when the fraction of secondary neutrons due to
anisotropic scattering is small. It is therefore suitable
as the basis of a perturbation expansion.

Of course, both the inhomogeneous medium
problem and the anisotropic scattering problem can
be solved simultaneously; it is only necessary to
use the same expansion parameter for each pertur-
bation. This is possible because the parameter e is
arbitrary in the inhomogeneous medium case.

3. APPLICATION OF THE PERTURBATION
METHOD
Both Eqs. (2.5) and (2.10) may be reduced to a
more tractable set of equations by making the
substitutions

Y(x, @) = Z PulX, W™, (3.1)

c= 2 €, 3.2)

=0
and equating equal powers of e. It follows from the
arbitrariness of - that the y,, must satisfy the same
boundary conditions as p. When this procedure is
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applied to Eq. (2.5) the result is
Bgyo(x, ) = 0, (3.3)
Bo'Pm(x, /l) = Rm(x)s 34)

where we have introduced the operator B, defined such
that

? +
By = p 5% +y- %’L v u)du' - (3.5)

and.

+1
Ro(s) = 1) [ s )

-1

m—1 +1
13 ey f e, ) di'. (3.6)

Similarly, when the procedure is applied to Eq. (2.10),
we obtain Eq. (3.3) plus

By m(x, :u) = Qn(x, ;u)’ (3.7
where
m +1
Qm(x: ll') = %lzlcz 1 1/"m—l(x’ :“‘,) d/.l«’
m—1 +1
+ % lZo €| Pmaa(% wIF(u, ) d’. (3.8)

Both cases are seen to result in the same type of
problem. Equation (3.3) is the unperturbed problem,
solved by Mitsis and Zelazny.

4. SOLUTIONS OF THE UNPERTURBED
PROBLEM

For easy reference, we present solutions to Eq.
(3.3), subject to the boundary conditions, Egs. (2.2)
and (2.3), as found by Mitsis,® with several minor
extensions. To avoid confusion with the expansion
coefficients in the perturbation series we denote the
nth eigenfunction and eigenvalue of Eq. (3.3) as
Xa(x, ) and 2y, (n =0, 1, - -). Thus

ax (X, 1)
ox

+1
- an lx,.(x, pldu =0. (4.1)

Mitsis was interested only in the everywhere-
positive solution yy(x, x) and the corresponding
mean number of secondaries required for criticality,
yo (given the half-thickness b). However, all eigen-
functions obeying the symmetry condition, Eq. (2.3),
were implicit in his results.

In addition to the symmetric eigenfunctions, a
denumerably infinite set of antisymmetric eigen-
functions exist which satisfy, instead of Eq. (2.3), the

Boxn(X, .u') = :u' + x'n(x’ .u)

5 G. J. Mitsis, Argonne National Laboratory Report No. ANL~
6787 (1963). ‘
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condition
P, 4) = —yp(—x, —p). 4.2
Mitsis found these solutions also, in the context of the
critical sphere problem, where they play the role of
a “‘density transform.”
Using the notation of Case,® the elementary
solutions of Eq. (4.1) are

v (x, ) = [y.vo/ (% F w)le™/", 4.3)

v, (x, ) = {Plyv[(v — )] + A(»)3(» — p)e =P,
4.9

where the symbol P indicates that the principal value
is to be taken upon integration, and A(») = PA(y),

where

+1
LI (4.5)
-1(z — )
The numbers =%, are the (pure imaginary for
2y, > 1) roots of the transcendental equation
A(z) = 0. In addition, the following notation is

needed. 1 o A de
X(z) = T exp {5;1 J; In [A_‘(;)] l—;:—;}, (4.6)
4.7

gQ2yn, p) = YA (WA~ (u),

where the functions A*(u) are the boundary values of
the function A(z) as z — ue(—1, +1) from the upper
and lower half-planes, respectively.

The eigenfunctions y,, are given by

Zzn(xs Au) = a2n[¢+(x’ /‘) + ’P—(x, ﬂ)]
1
+ f_ A ) d, (49)

where a,, is an arbitrary constant and A,,(») is the
solution to the following Fredholm equation.

Ao ()"t = — (5 — pPX(1 = 272,) X(—p)8(2Y2n > 14)
X {az,.[vu,(—b, WX(0) + v_(—b, B)X(—y)]
+ J:?@#vx (_v)Azn('v)e_b/v d’l’}.

v+ u
The constants 7,, must satisfy the auxiliary condition

B3,8" W[ X () — €7/ X(—,)]

= f X (=) Ay (e dv, (4.10)

A@)=1—1y,2

(4.9)

given the half-thickness b.
The antisymmetric eigenfunctions y,,, are given by

Xenta(X, @) = Azl (x, @) — pA(x, p)]
+1
+J:_1 Ay (V)9 \(x, p) dv, (4.11)
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where a,,,, is an arbitrary constant and A4,,.,(») is
the solution to the following Fredholm equation.

A2n+1(.“)eb/“ = —(¥ — ”2)(1 = 2Y2,41)
X X(—m)g(2yant1, )

x {aml[m—b, DX (@) — p(—b, )X(=2)]

- ! Yon? X(= ) App a(#)e”"” dv}
0 7
The constants y,,.,; must satisfy the auxiliary condition

By o[ X (75) + €/ X(— )]
1
= —f 'VX(-—’V)A2n+1(’V)e—b/v d‘V,
0

given the half-thickness b.

(4.12)

5. SOLUTIONS TO THE PERTURBATION
EQUATIONS: THE GENERALIZED
GREEN’S FUNCTION

The above reduction of both Egs. (2.5) and (2.10)
by the perturbation method led toasystemofequations
having the general form

Bypo(x, p) = 0, CR))
Boym(x, ) = Spu(x, ), m>0. (5.2)

In both cases, S, had the following two properties:
(1) S, is a functional containing ¥,, 1, Y25 " * 5 Yo,
but not ¢,,; and (2) S,, is a function of ¢,,,, 1, ",
¢y Thus, if we solve for yy, 95, - -+ , 9,,..1 Successively,
then S, will contain one degree of freedom: c,, .

To derive an expression for c,,, we introduce the
operator B], adjoint to B,, and the function ],
adjoint to y,, satisfying

dvh(x,
u o, 1)

p + v, ©)
X

Biys = —
clJ + \/ ’ ’
- —ZL polx, ') dp’ = 0. (5.3)

The function ¢} satisfies the adjoint boundary
condition

vaib,w) =0, u>0, (5.4)

and the symmetry condition

Yix, 1) = 9i(—x, —p). (5.5)

As usual,

(%o, Biwd) = (wd, Bowo), (5.6)

where we use the Dirac notation for the scalar
product:

b 1
og) = f_ dx f du( fe). (5.7)

W. L. HENDRY

We are interested in the everywhere positive solutions
to Egs. (5.1) and (5.3); thus,

’Po(xa :u) = Zo(x, lu), %CO = Yo> (5-8)

and, as is easily seen by comparing the equations
and boundary conditions for y, and ¢},

wi(x, 1) = yo(x, —p1) (5.9

and
2h0x, 1) = (%, ~p). (5.10)
We obtain a necessary condition for the solubility
of Eq. (5.2) by noting that since (v}, Byp,,) =
(W, Biwl) = 0, we have

(98 S = 0. (5.11)

This expression fixes the constant c,, and thus
specifies §,, completely. With §,, known, we turn to
the solution of Eq. (5.2) for ,,. The fact that this
equation is inhomogeneous suggests the use of a
Green’s function. The Green’s function in the
ordinary sense does not exist for this problem,
however, due to the existence of a nontrivial solution
to the corresponding homogeneous equation. We
therefore employ the notion of a generalized Green’s
function.®

We define the generalized Green’s function for our
problem as the solution to the equation

BK'(x, p | x0) = 8(x — Xo) — po(X)pulxo), (5.12)
subject to the (adjoint) boundary conditions

K'(=b,p|x) = K'(b, —u| %) = 0, p<0.

(5.13)
We have defined

+1
pol) = f s ) di

and chosen the normalization of p,(x) such that

b
f pi(x) dx = 1.
—b

The definition of the generalized Green’s function
differs from that of the ordinary Green’s function in
the term py(x)po(x,). This term renders the right-hand
side of Eq. (5.12) orthogonal to wy(x, #), which is
required for precisely the same reason that S,,(x, u)
must be orthogonal to y{(x, u).

To show that K suffices to solve the perturbation
equations, take the scalar product of XK' with Eq.
(5.2), with the result

Pul%) = (K'(x', ' | %), Sp(x’, 1))
+ (wm(x,’ lu’l)s Po(x'»Po(x), (516)

¢ R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Vol. I, p. 356.

(5.14)

(5.15)
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where

Te]
pu) = [ vl ) dp. (5.17)

Equation (5.16) reflects the fact that y,, (p,) is
arbitrary to within an additive multiple of v, (p,).
Given the normalization of the solution to the
unperturbed  equation, y,(x, u), and of the solution
to the perturbed equation, y(x, ), all the v, are
specified uniquely. If, for example, we require that

+b
L, p(D)p() dx = 1, (5.18)

then it follows immediately from Eqs. (5.15) and
(3.1) that

b
s po) = f_bpm(x)po(x) dx=0, m>0. (519

Since K' is arbitrary to within an additive multiple
of 9}, we can demand that

b
[ XK G [, 5,0, 0 d = 0, (520
from which it follows that
Pm(x) = <Kf(x,: ,"" l x)’ Sm(JC', /.t’))

Given p,,(x), Eq. (5.2) becomes an ordinary differ-
ential equation in x for y,,. The solution is

(5.21)

107 s
paliot) = Lbe‘” ""[%’ pul) + S, m} dy,

B2 0. (522)

We have therefore shown that the generalized Green’s
function K, if it can be found, suffices to solve the
perturbation equations, Eq. (5.2).

In discussing the construction of the generalized
Green’s function in the sequel, we demand that the
orthogonality condition (g, K') = 0 hold. Although
this will not in general satisfy Eq. (5.20), we can,
having calculated p,,(x) from Eq. (5.21), always add
on that multiple of py(x) which will satisfy Eq. (5.19).
Also, from a practical point of view, we are generally
more interested in the change of shape in the neutron
density that will result from a given perturbation than
in O(e) changes in normalization.

6. CONSTRUCTION OF THE GENERALIZED
GREEN’S FUNCTION: METHOD OF
EIGENFUNCTION EXPANSIONS

It is known that the functions x!(x, ) do not form
a complete set in the variables x and u.” We can,

7 B. Davison, Neutron Transport Theory (Oxford University Press,
London, 1958), p. 436.
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nevertheless, express the generalized Green’s function
as an infinite sum of these functions by first converting
the equation for K' to a Fredholm integral equation,
and then applying well known theorems. We define

+1
¢n(x) =f_1 xn(x’ l‘) d.”’ (61)

1
$a(x) = f_ 1% ) dp = (), (62)
G'(x [ xo) =J:1K1(x, ¢ | %) du. (6.3)

Of course, ¢y(x) = py(x). Substituting from Eq. (6.3)
into Eq. (5.12) and taking G' as known, we obtain
an ordinary differential equation in x, with the
solution

+b !
K'(x, | x0) = &f exp (L—)C—) G*(x’l Xo) dx’
2{& 2 124
4 u(Exe F x) exp (x - xo)
Iz Iz
2
= = W), B2 0, (64)
0

where u(x) =0, x < 0, and u(x) = 1, x > 0. Now
integrating over u, we obtain the desired Fredholm
equation

b
6'x [ x9) = £ ﬁ E(lx = 6" | ) dy

+ Ex(lxg — xI) — f— P o), (6.5)

0

where E, is the first exponential integral,

1
E.(2) =f e dy, (6.6)
(1}
In the same way, the Boltzmann equation for y! may
be reduced to the following (well known) Fredholm
equation for ¢,:

b
4= 7a[ Ex = D600 dn. (61

Noting that E,(lx — y|) is a symmetric, nondegen-
erate, quadratically integrable kernel; it follows
immediately® that the y, form a denumerably infinite
set of real eigenvalues, with a corresponding set of
eigenfunctions ¢,,.

It is not known that the ¢, form a complete set on
the interval (—b, +b). However, by virtue of the
properties listed above, the Hilbert-Schmidt theorem
applies [Ref. 8, p. 110] and the resolvent kernel may

8 F. G. Tricomi, Integral Equations (Interscience Publishers, Inc.,
New York, 1957), p. 105.
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be written [Ref. 8, p. 115]
Sa(X)$n(x0)
H(x,y; yo) = —Eflx — yD +
x, ¥ 7o) W(x = ¥D + o Z 0 — 70
(6.8)
The solution for G' is
G'(x | x0) = Ey(Ix — x) = = m.(x)po(xo)

z ¢n(x)¢%(x0) ( 6 9)

"“i ?u(}’n }’ﬁ}
where we have made use of the equality
[
[ Eutso = ypEix — yp ay =3, 2e08ul0,

92-

{6.10)

If we assume the validity of the bilinear formula
(which holds if the ¢, form a complete set)

(6.11)

n=0

Ey(lx — xD) = 2, éﬁ(x}jﬁ(xﬁ)

then Eq. (6.9) takes the elegant form

G?(x i Xy) = i $ulx)P(x0) .
=l ¥Yp — Vo
The numerical results presented below indicate that
this is in fact a valid representation.
Finally, we may substitute from Egs. (6.9) and
(6.12) into Eq. (6.4) to obtain

K'e,n ] xp) =
— 2
X exp (x xg) - Pﬁ(xo)’l’g {x, 1)

(6.12)

o u(u(xe — x) — u(~—pwu(x — xo)l

+ % E’M@, (6.13)
and =1 YPu(¥n = Vo)
K, i ] x0) --z.x_n(x_,#)é,&(_ﬁal
— Yo

Equations (6.12) and (6.14) are the simplest forms
for numerical computation, but Egs. (6.9) and (6.13)
would be expected to converge more rapidly, due to
the explicit representation of the singularity of XK'
and because y, increases with .

The idea of solving perturbation equations by
eigenfunction expansions is, of course, well known.
The advantage of the generalized Green’s function
formulation is that it allows one to do the analysis
once and for all, and obtain results by means of the
simple formula, Eq. (5.21). The objection to this
analysis is that now, in addition to truncating the
perturbation expansion in e, we must also truncate

(6.14)

W. L. HENDRY

the eigenfunction expansion for the generalized
Green’s function. It is desirable to have a closed form
expression for XK', even if it is too complex to be
used easily in applications, in order to determine how
much error is introduced in the truncation of the
eigenfunction expansion in selected cases, and to
estimate the number of terms of Egs. (6.13) or (6.14)
that should be retained. This expression is derived in
the next section.

7. THE METHOD OF SINGULAR INTEGRAL
EQUATIONS

In this section we obtain an expression for the
generalized Green’s function by solving two coupled
singular integral equations. Briefly, the method used
is to convert the integro-differential equation into the
coupled singular integral equations, and then convert
these into a pair of coupled Fredholm equations.
The latter may be solved by iteration. The generalized
Green’s function is given by a closed form expression
involving two functions related to its boundary values.
The solution to the Fredholm equations yields these
functions. The general methods used here were
developed by Leonard and Mullikin® and by Mitsis,®
whose work related to the unperturbed critical
problem.

Instead of solving Eq. (5.12), we solve for the
function X satisfying the equation

ByK(x, p I Xg) = 0(x — Xo) — po(¥)pe(x), (7.1
subject to
K(=b, 1| %)) = Kb, —pt | x) =0, u>0. (7.2)

We can dlways recover K' by using the relation
K'(x, p| xo) = K(x, —p | %,). Defining

+1
Gtx | x) = [ Keeae | 20 i

we see that G(x | %) = G'(x | x,).

We obtain dual singular integral equations from
which the function K can be determined by starting
from a pair of equations similar to the pair, Eq. (6.4).
Using Eq. (7.3) in Eq. (7.1), we obtain

(7.3)

. -
K(x, 1 : Xo) = f&f G(y } Xp) €Xp (Y x) dy
2u Jwb
£ HEED op (2=2) — 2 oyt ),
Iz # “
p20. (74)

Consider the analytic continuation of Eq. (7.4) onto

® A. Leonard and T. W. Mullikin, Rand Corporation Report
No. RM-3256-PR {1962).
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the complex u plane. Since the integrand in the
integral term of Eq. (7.4) is an analytic function of u
in every closed contour not enclosing the origin, and
is a continuous function of the integration variable y,
it follows that the integral itself is an analytic
function of u within every closed contour not en-
closing the origin.l® Referring to Eq. (5.22) (putting
m = 0), we see that v, is an analytic function of
p # 0 for the same reason. The second term on the
right-hand side of Eq. (7.4) is also an analytic function
of u0. It follows that Eq. (7.4) with 4 >0
generates a function K,(x,z|x,) analytic for all
z 7 0, and with z < Ogenerates a function K,(x, z I Xo)
also analytic for z # 0. In no case shall we evaluate
K, on the negative real axis of the z plane or K, on the
positive real axis. So expressions involving integrals
of K over the range pe(—1, +1) are unambiguous,
and we need not append subscripts for real values of
z. With these conventions, we write
)

K%, 2 | x0) = —f Gy | xo) exp (
= ") — 2 oo wexs 2),
z o

+ u(Ex Fxp) exp ( 0
z

k= {; . (15

Equation (7.5) can be converted into two singular
integral equations by the following procedure.
Substitute for G on the right-hand side from the
expression

G(x | xo) =J:[K(x, v| x0) + K(x, —v | xp)]dv, (7.6)

and invert the y and » integrations. The y integration
may be performed explicitly by substituting for K
from Eq. (7.4). After the y integration has been
performed, it is possible to identify certain groupings
of terms in such a way that G is again eliminated in
favor of K. The details are omitted here since the
analysis is very similar to that performed by Mitsis®
in finding a singular integral equation satisfied by v,.
The result of the above manipulations is the equation

1
= _exp (:F b :h x)f (%CO)'VK(q:b, :Fl'p x()) dv
z v+ z

" u(Ex F xp) exp (x

- X 2
2 ) - Po(xo)%(x, Z),
z z Co

k= {; a7

10 g T. Copson, Theory of Functions of a Complex Variable
(Oxford University Press, London, 1935), p. 108.
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In the above we have made use of (the analytic
continuation of) an equation for p, found by Mitsis:

Wi - P ~———-—@°°)”"’°2‘ 2

" Geopy(b, v) 4
v4u

b:l:x)
lu (1]

uz20.
(7.8)

Using the Plemelj formulas,'* we obtain the equation
corresponding to Eq. (7.7) for z = pu in the real
interval (—1, +1). The result is

MK (x, | x0) — P f_ :1 @co)”f_(f;‘ v|x) o
=f(x, 1| %), (7.9)

= —exp (ZF

where
b
f(xp] x0) = —exp (=F —%)

Y (3c)vK(F b, Fv I Xo) dv + u(+x F xo)
0 vEp I
- X

X, 2
X exp ( 2 ) - Po(Xo) Polx, 1),
0

2 0. (7.10)

Equation (7.9) amounts to dual singular integral
equations on the partial ranges (—1,0), (0, 1). We
may, however, obtain an explicit representation of
K in terms of its boundary values by treating Eq. (7.9)
as a single equation.

To solve Eq. (7.9) we introduce the complex
transformation

Nx, 2) = - 1 (3ewK(x, vl xo)

vy—2z

. (7.11)

Since K(x, z | Xo) is analytic for z 0 and continuous
at z = 0, it follows that we may proceed in the usual
fashion to conclude that

(a) N(x, z) is an analytic function of z in the plane
cut from —1 to +1,

(b) N(x,z) ~ 1[zas z— o0,

(c) N <constflzF I,y < 1,asz— FI.
Using the Plemelj formulas, for u € (—1, +1),

f (e K(x, v | %0) 4,

-1 VU

N*(x, ) + N(x, ) =
(7.12)

N*(x, p) — N(x, ) = beouK(x, p | x0). (7.13)
Substituting the above into Eq. (7.9), we obtain the

11 N, I. Muskhelishvili, Singular Integral Equations (P. Noordhoff,
Ltd., Groningen, The Netherlands, 1953), p. 27.
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following Hilbert boundary value problem

v AW e f( ] %)
N (xs l‘) A"(,u)N (x’ /“) - 2 A—(ﬂ) L (714)
where we have used the identity
AE@) = A(v) £ Gim)ey, (7.15)

which follows from an application of the Plemelj
formulas to Eq. (4.5). Equation (7.14) has been
solved by Mitsis® with a different inhomogeneous
term. The result is

Nex,2) = 22 o) + etz

Tl

4 e (5, 7| )
+[, XA G — 2) w019

where
Xy(2) = A@@)/[(v — 21 — c)];
@y(x) and a,(x) are at this point arbitrary.
To evaluate the functions a,(x) and a,(x) we take
advantage of the analytic properties of X in the
complex g plane. Note that
N g = [ Ge2Ks 220
2mi J1 Y F v,
Using the analyticity of X and the definition of »,,
we have from Eq. (7.9) that

f + (3co)vK(x, ¥ I Xo) dv

-1 v F v,

(7.17)

dv. (7.18)

= —f(x, £, l xp), (7.19)

SO
N(x, £v) = —(1/2mi) f(x, £v,| x0). (7.20)

Since there are two forms of f, one for u > 0 and one
for © <0, a question arises as to which is the
appropriate form to use for 4 = v, or u = —v,. The
answer is that it makes no difference: both forms are
equal to the left-hand side of Eq. (7.19) and hence to
each other. In what follows we consistently use the
expression valid for u 2 0 when substituting +»,.
Of course, the above consideration implies a con-
straint on the allowed form of f, which in turn must
relate to the necessity of the inhomogeneous term
of Eq. (7.1) being orthogonal to y} . This statement has
not been proven, however.

Combining Egs. (7.20) and (7.16), we obtain the
result

£, 20| x0) = —Xl(d:vo)[ao(x) + (0
+ (Jepdvf(x, v I Xo) dv
L XI A () F )} (7.21)

This provides us with two equations for the two
unknowns @, and a;. We may find K by use of Egs.

W. L. HENDRY

(7.13) and (7.16). The result is
ao(x) + a;(x)u
(v — lle)(l — Co)

1
+ M@gle, I p [ X0 + a5 T S

Pf+l (%Co)vf(x’ v I xO) d’V. (7.21')
-1 X{T(AO)v — w)

This result expresses K in terms of its boundary values
through f. It remains to find f.

We now derive a pair of coupled Fredholm
equations, the solutions of which will yield the
function f(x, ] Xo). Putting x = &b in Eq. (7.9) we
have

K(x, ] x0) =

MpK(kb, £ x)) — P 1 (37K (D, £7 |xo) b
0

v—p
= f(£b, £u|x), 120 (122
Introducing the transforms
1
Nib, 2y = - [ QoKD v |3 gy E
2m7i Jo Y —~z 2
(7.23)

we proceed as before: Equation (7.22) is reduced to a
Hilbert problem which has been solved by Mitsis
with a different inhomogeneous term. The result is

_X(@ ! (Bevf (b, £7|x0)
M0 =5 w4 e )

k= {; (7.24)

The numbers «,(b) and «,(b) are at this point arbi-
trary. Now put
fb,z | x) = ¥ f ' el Kb, kv | x0)

o v+ z ?

k= {; (1.25)
Then from Eq. (7.10)
e, | %) = —exp (— E)fzaw | x0)
7

— xo) exp (xo - x) -
P r

2
- C_ Po(xo)’l’o(x, ;u)’ :u > 03
]

u(x

+
(7.26)
Fo 18] %0) = —exp ( - 5) Filby —p | %o)

)

_ulxg — x) exp (xo — x)
JZ 2

2
- Po(X0)wo(x, 1), p <O.
(1]

(7.27)
Thus, given f;(b, u | x,) and f;(b, u | x,), the function
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SO, p | Xo) is determined. These functions are the
solutions to the Fredholm equations which are
obtained by noting that

fub, z| xo) = 2mie"*N (b, —z), k=1,2, (7.28)

and substituting into Eq. (7.24). The result is the
following pair of coupled Fredholm equations:

Filbs | x0) = €=M —u)[al(b) + Fy(b, )

_ f Gealre™*fb, » | xo)
o XA + )

Fulb, ] x0) = € X(—p) [az(b) + Fy(b, 1)
_ f ! (%co)ve—b/‘:fl(ba v I Xo)
b XA () + )

where g > 0. The functions F; and F, are defined by
the equation

Fyb, ) = f {eﬂ”ﬁ"’“ = 2 s, v)}
0 0
(%Co) dv
X WA + )’

The constant «,(b) may be determined by substituting
i = vy in Eq. (7.22) to obtain

Jq (Jco)vK(b, v l Xo) dv

1""70

dv:|, (7.29)

dv], (1.30)

k=1,2. (7.31)

= —f(b, v | x0). (7.32)

Using Eq. (7.26) to evaluate the right-hand side of
this expression and Eq. (7.24) for the left-hand side,
we obtain an equation expressing o,(b) in terms of
the constant f,(b, v| X,) and an integral of the
function fy(b, v | x,). Similarly, we may put u = —»,
in Eq. (7.22) and derive an expression for () in
terms of f;(b, v, | Xo) and an integral of f;(b, » | x,).

We now examine the Fredholm equations, Egs.
(7.29) and (7.30). We introduce the function ¢,

() = f1(b, u I Xo)e /A,
and the integral operator J defined such that

1
J(P - e—2b/uX(_lu)f (%CO)V‘P(”) d’V . (734)

o XA ) + p)
Then the result of substituting for f, into Eq. (7.29)
from Eq. (7.30) is, formally,

=G+ J%, (7.35)
with an obvious definition of G. The Neumann series
solution to Eq. (7.35) is

p=G+IPG+JG+ . (7.36)

To examine the convergence of this expansion we

(7.33)
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obtain a bound on the right-hand side:
lpl = |G + J2G + J*G + - - - |

<Gl + 2G| + |J*G| + - - -

S max |G| [1 + 21| + |J41] + -+ ]

< max |G] [1 + (maxJ1)® + (maxJ1)* 4 ---}
The Neumann series for ¢ (hence f;) converges if

maxJ1l < 1. Leonard and Mullikin'? have shown
that the required inequality

Co —2b/u 1 'Vd'l’ :I
= m X(— 1
205521[ S R erry vy S

(1.37)
holds whenever 1 < 2be, ie., 2b> 0.368. This
corresponds to a ¢, in excess of 2.6, and therefore
includes all cases of practical interest. Obviously,
the same procedure could be followed to show that
J: may also be expressed in a convergent Neumann
series.

It is apparent that the foregoing results are rather
highly implicit, necessitating an iterative procedure
in addition to that required to solve the dual Fredholm
equations. This does, of course, place a limitation on
their practical usefulness. It should be noted that
a similar situation exists for the “solution” to the
unperturbed problem. The auxiliary condition in the
latter case depends upon the continuum coefficient
Ay(»), which is the solution to a Fredholm equation
itself depending upon the eigenvalue y,, but the
eigenvalue is determined from the auxiliary condition
(given b). Thus an “outer iteration” is also required
in this case.

The reason that only a single Fredholm equation
needs to be solved in the case of the unperturbed
problem is that the duality which is introduced as a
result of having a separate relation between y, and
po [see Eq. (5.22)] for the two partial ranges of u can
be removed by a consideration of the symmetry of v,.
It is shown below that it is possible to define a sym-
metric generadlized Green’s function which has the
same property of depending on only a single Fredholm
equation.

8. THE SYMMETRIC PART OF THE
GENERALIZED GREEN’S FUNCTION

In the interest of both simplicity and clarity the
numerical results in the next section relate to the
asymptotic part (as b — oo) of the function

60x [x) = [ Klenu| s @)

where K is the symmetric part of K7.

12 Ref. 9, p. 17.
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The symmetric part of K is given by

Kl ) x0) = HK (e, 1| x0) + K'(—x, —p | x0)).
(8.2)

An equation for K| may be derived by writing Eq.
(5.12) once for x and x4, once for —x and —u, and
adding the results, making use of Eq. (8.2). The
result is

BoKl(%, 1 | X0) = 30(x — Xo)
+ %6(-" + x) — Po(x)Po(xo)- (8-3)

It is easy to see that if v, is symmetric, Eq. (5.16)
still holds. y,, will be symmetric if the term S,, in
Eq. (5.2) is symmetric. This is always true for the case
in which the perturbation is due to anisotropic
scattering. It will also be true in the case of non-
constant cross sections, if the perturbation is distrib-
uted symmetrically. It is also true that if §,, is
antisymmetric, then the antisymmetric part of K'
suffices to determine the (antisymmetric) y,,. This
fact is of little practical value, however, since an
antisymmetric perturbation of the cross section does
not imply an antisymmetric S,,.

If it is only G, that is desired, it is convenient to
separate the function K[ out at the level of singular
integral equations. Thus, if we write Eq. (7.9) twice,
once for x and u and once for —x and —g, and add
the results, we obtain

K | 59— p [ G r 130,

= —e (b, £u | x0) + H(xx, £p|x)),
©z0. (8.4

We have introduced the definitions
! (3eo)vK (b, v I Xo)

byulx)=e?| 22— 1"V,
I /‘l 0) . v+ p 14

)u(x — Xg)

(8.5)

1 Xg — X
H(x, u | xo) = — exp (L—
2u JZ

+ 1 exp ( %o+ x)u(xo + x)
2.u p

- c_ Po(Xo)polX, ). (8.6)

0
This equation may be treated in precisely the same
way as Eq. (7.9). We introduce the complex trans-
formation

Mo =L [P,

(8.7
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and obtain

N, (x,2) =

i) [ﬁo(x) + Bz

_ 0 (éco)‘l’f+(b, —_y I xo)e—z/y o
-1 X{A () — 2)
_ f L(3co)ufi(b, v | xg)e~ " "
o XTMA~()(v — 2)
0 (‘%Co)vH(—x, —y I xo)
+f X{»A~()(» — 2) dv
1 (JevH(x, ¥ | xo)
o XI A~ — 2) dV]- (8.8)
To find f, and f, we again put u = +v, in Eq. (8.4)
and obtain
27TiN+(x, :|:'Vo) = e:':”/vof+(b’ Vo I xo),

- H(:I:x’ Yo I xO)a

8.9
We have used the same convention in making this
substitution as before [see discussion following
Eq. (7.20)]. Equation (8.9) may be substituted into
Eq. (8.8) to obtain two equations in the two unknowns
Bo and B,. The solution for g, is

fi(b, ol x
Pux) = X1(”o) COSh ("’o)

[H(x, v, l xg) + H(—x, v, lxo)]

2X1( 0)
+ colco — I)J; ’g(co, ¥) cosh (i‘) ACRY ’ Xo) dv

co(co—l)flz
— ——————————— c’
> 0"8(0/‘)

X [H(x,» | Xo) + H(—x,» | xo)] dv. (8.10)

We do not write down the corresponding expression
for B,(x), since it is not needed in the derivation of G, .
From the definition of G, it is clear that
G (x| xp) = 2mi(2[c))N(x, 0). (8.11)
Putting z = 0 in Eq. (8.8) and using Eq. (8.10), we
obtain, after some simplification,

G (x| %) = 2Xcl(0) I:f+(l;; t‘; I)x.,) cosh (:—)
2X1( = {H(x, v | x0) + H(—x, %, | %)}

+ colco — l)vﬁj; g(co, v) cosh (’i) fu(b, v | xg) dv
- o= Da ot )

x {H(x, v | %o) + H(—x, » | x)} dv]. (8.12)
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This is an exact expression for G, in terms of the yet
to be determined function f (b, » | x,). Comparison
of the definitions of f,, f;, and f;, Egs. (8.5) and
(8.25), and use of Eq. (8.2) leads to the result

S+, v| x0) = 3f1(b, 7 | o) + fo, ¥ | %)) (8.13)

We can therefore obtain a single Fredholm equation
for £, by adding Eqs. (7.29) and (7.30). Putting

a (0) = 3oy (B) + ap(B)], (8.14)
F+(b: /‘) = %[Fl(b’ :u') + Fz(b: :u)]’ (8-15)
we have
1.0, 18] x0) = X (=10 s (B) + Fylb, )
L (3eave™ L, (b, v | xo) d’{l' (8.16)
o XA () + )

This determines G, completely. From Eq. (8.16) f,
is O(e™®/*) as b — oo. It follows that the first integral
on the right-hand side of Eq. (8.12) can be neglected
far from boundaries, since the integrand is O(e=*~%/#),
It is in this sense that we compute the “asymptotic”
part of G, . Note that our results will be asymptotically
exact no matter how small the quantity |x — xo| > 0,
so long as |x — b| is sufficiently large. Thus our results
are not comparable with diffusion theory without
further simplification, and may be expected to be very
good for thick enough slabs.

The simplification of Eq. (8.12) for the asymptotic
part of G.(f.=0) is straightforward with the
following exception: it is necessary to evaluate the
asymptotic part of y,(x, ) at 4 = +v,. Examination
of Egs. (4.8) and (4.3) (n = 0) shows that if we con-
sider the asymptotic part of v, to be given by the
right-hand side of Eq. (4.8) exclusive of the integral
term, then it has simple poles at +»,. This difficulty
can be circumvented by considering the asymptotic
part of g, to be given by Eq. (5.22) (m =0, S, = 0)
with p, replaced by the asymptotic part of p,. Since
the latter function is continuous, the right-hand side
of Eq. (5.22) is analytic for all u # 0. Subject to this
convention, Eq. (8.12) becomes

X _ __Xl(p)___
G, (x I %o) = 4 cos (|1’o|) 2 |vol coX1(79)

X {sin (Lx + xol) + sin (Ix - xol)
lvol Ivol
1
—8a+cos( )xs1 (x)=+lf g(cy, )
[%ol [7ol 2Jo »

X {exp (— [ + %ol x°|) + exp (— 1x = Xl x°|)} dv.
v v
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The notation ~ means asymptotically exact as b — oo,
Since the asymptotic part of p, is proportional to
cos (x/|vy]), the constant A4 is arbitrary.

9. NUMERICAL COMPARISON OF THE THREE
FORMS OF THE GREEN’S FUNCTION

The even part of Eq. (6.9) is
G (x | xo) = $E(|x — xo|) + 3Ey(|x + x,)

2 o) + 303, T g
n=l1 7211(727& - ?’o)

The even part of Eq. (6.12) is

G (x | x0) =§1 ———‘ﬁz;(x)f”;f"") L)

In the following the above expressions for G are
referred to as A and B, respectively. Equation (8.17)
is referred to as C. In calculating with forms A and B,
we use the asymptotic parts of the ¢,, (putting the
integral terms equal to zero). The following calcu-
lations were done for a slab of half-thickness
b = 4.196. The corresponding c, is 1.034. We choose
X, = 2.0.

Figure 1 shows a comparison of forms B and C.
Shown are ome-, two-, and four-term expansions
(the three-term expansion differed very little from the
two-term). The agreement between the two forms is
seen to be rather good for the four-term expansion
(we are trying to represent a logarithmic singularity
with continuous functions). It should be remarked
that the curves resulting from the eigenfunction

20— EXPRESSION C
1.5—
1.0—
‘:., EDGE of SLAB
= /
+ 0.5
o
| [}
° [ 2 3 | X
| (lFIEAN
REE
os ONE TERM OF B | PATHS)
: TWO TERMS OF B
FOUR TERMS OF B
=10
_|.5 b

FiG. 1. Comparison of the closed form (expression C) with an
eigenfunction expanded form (expression B) of the generalized

(8.17)  Green’s function.
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expansion are not orthogonal to py(x) because only
the asymptotic parts were taken, and the correct
extrapolation distances used. Since we are free to add
an arbitrary multiple of p,(x) to form B, it is clear
that we could shift the curves upward to agree better
with form C. In Fig. 2 we compare forms A and C.
The general agreement between the four-term expan-
sion and form C is seen to be excellent. As mentioned
above, we can improve the agreement by adding on
a multiple of py(x) to form A. This is shown in Fig. 3.

2.0

EXPRESSION C

EDGE of SLAB
I/'J

0.5/

G, (x]2)

Fi1c. 2, Comparison of the closed form (expression C) with an
eigenfunction expanded form (expression A) of the generalized
Green’s function.
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20—
1.5]—
1.0
EDGE of SLAB
L )
~N
=z
o o |
l" x
4 I(MEAN
FREE
PATH
o5k ATHS)
~—— EXPRESSION C
.0 ~-— FOUR TERMS OF A
-5k

Fic. 3. Comparison of the closed form (expression C) with a
renormalized four-term eigenfunction expansion (expression A) of
the generalized Green’s function.
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Drukarev Transformation of Dirac Equation*
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Drukarev has transformed the Fredholm equation that is the Green’s function formulation of the
solution of the Schrodinger equation into a Volterra equation. The present paper exhibits the corre-
sponding result for the Dirac equation. The advantages of this technique in the numerical evaluation

of phase shifts (and wavefunctions) are discussed.

1. GREEN’S FUNCTION

HE Green’s function. formulation of the Dirac

equation for a central potential was given by Rose.!
Denoting as usual by F/r and G/r the radial functions,
by Fy/r and G,/r the free-space functions (regular solu-
tion), and by Fo/r and Gy/r the corresponding irregular
solution,

F= F0[1 + f “(FFy + GGV dr

+ F, f (FF, + GG)Vdr', (1a)
[}

G= F0[1 + f “(FF, + GG(,)Vdr’;

+ G, f (FF, + GGV dr, (Ib)
0

where explicitly,
F, = S((E — 1)/k]*krju_,‘,(kr), (2a)
G, = [(E + D/k}krj, kD), (2b)

and the irregular solutions are obtained by replacing
the Bessel functions by Neumann functions (i.e.,
Ji—> ). More generally (as Rose points out), F,
and G, could be wavefunctions of a potential ¥,
(typically, a Coulomb potential), in which case ¥ in
Eqgs. (1) would be replaced by V — V.

2. DRUKAREV TRANSFORMATION

Following Drukarev’s approach,? Eqgs. (1) are
rewritten as

F= Fo[l + f “(FF, + GGO)Vdr']
0
— F, J' "(FF, + GGV dr
0

+F, f "(FF, + GGV dr', (3a)
0

* Work supported by the National Aeronautics and Space
Administration under Contract No. NASw-1235.

1 M. E. Rose, Phys. Rev. 82, 389 (1951).

1 G. F. Drukarev, Zh. Eksperim. i Teor. Fiz. 25, 139 (1953).

G = F0[1 + f “(FF, + GGO)Vdr’:]
[1]
-G, f "(FF, + GOV dr’
0

+ G, f "(FFy + GGV dr'. (3b)
0

The change of variable
p=CF, T'=CG )
is then introduced, where

© -1
c= [1 +f (FF, + GG,,)Vdr']
0
-1

— [1 4 c f " (@F, + I‘G.,)Vdr'] . (5
0
or, on inverting,
C=1 —fm(¢Fo + TGHvdr. 6)
(i}

Equations (3) then reduce to a coupled pair of
Volterra equations. With the convenient notation

Cir=1 —J‘r(q)F'0 + L'Gyvdr, (7a)
0
S() = —~ f (@F, + TGOV dr, (7b)
0
the Volterra equations are
p(r) = C(NF(r) — S()Fo(r), (82)
L'(r) = C(Go(r) — S(NGo(r). (8b)

Asymptotically,
[~ [(E + 1)/kE([C sin (kr — I(x)m[2) -
— Scos (kr ~ IG)7[2)], 9)
G = CI' ~ [(E + D)/kPsin (kr — I()m[2)

— (S/C) cos (kr — I(x)m[2)], (10)
leading to the identification
fm(tho + I'Gyvar
tan §, = S(e0) _ _ o . (1D
C(e0)

1 — f “(¢Fy + TGV ar
0
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For the alternative normalization convention

G ~ [(E + Dk} sin [kr — () (72) + 6,]
= [(E + D/k}[cos 8, sin (kr — I(x)n[2)
+ sin 8, cos (kr — I(x)=(2)], (12)
there results

cos 8, = C(0)/[C¥(c0) + S 0)]H,
sin 8, = S(0)/[C¥(0) 4 S*(0)]L.

3. COMPUTATIONAL CONSIDERATIONS

The formal properties of this approach have been
fully discussed previously for the Schrodinger
equation,® and the arguments carry over. Some
remarks pertinent to numerical solution are presented
here.

(1) There is no normalization problem, as the
solutions start out with the free-space functions.

(2) The direct numerical solution of the radial equa-
tions requires numerical integration for the wavefunc-
tions which (away from the origin) are oscillatory—a
delicate procedure. Here, the numerical integration
is for the slowly varying functions C(r) and S(r),
the oscillatory behavior appearing in terms of
analytic functions (the spherical Bessel and Neumann
functions, expressible as sines and cosines times
polynomials in 1/r).

(3) The integration procedure directly yields S(r)
and C(r), integrals whose limits are sin é and cos 4.
This integral representation of the phase shift con-
verges faster and more dependably than does the
determination of the phase shift by matching the wave
to its asymptotic form.

(4) If the potential cuts off at r = a, then forr > a
Eqgs. (8) become

¢(r) = C(@)Fo(r) — S(a)Fo(r), (142)

L'(r) = Ca)Go(r) — S(@)G(r), (14b)
yielding directly the appropriate analytical form for
the wavefunctions, not only their numerical value at
the cutoff.

(5) The last observation leads into a simple iterative
device for improving on a foreshortened solution.

(13)

3 H. Brysk, Phys. Rev. 133, B1625 (1964). The reader is referred
to this article for extensive references.

HENRY BRYSK

From Egs. (7),
C(o0) = C(a) — f “(¢Fs + TGYVdr, (153)

S(c0) = S(a) — f “(9Fy + TGYVdr. (15b)

Suppose now that the numerical integration has been
stopped at r == @, but the potential extends beyond.
The contribution from the tail to the phase shift can
be evaluated approximately by carrying out the
integral in Eq. (15) with ¢ and I represented by
Egs. (14). If the potential is given analytically (or is
fitted to an analytic expression for r > a), the integral
may be carried out analytically. If the error in the
phase shift upon truncation at r == g is of order e,
after this approximate evaluation of the tail contri-
bution there will be an error of order ¢ only.

(6) Suppose the Dirac equation has been solved by
some other numerical technique up to r=a,
yielding the unnormalized wavefunctions

F,= NF, G,= NG, (16)
with N the normalization constant. Define
C,(r) = CNC(r), S,r)= CNS({). an

Then, in view of Eq. (4), multiplication of Egs. (8) by
CN gives
F,(r) = C,(NFy(r) — S, (DF,(), (182)
G.(1) = C,(NG(r) — S,(NGe(r).  (18b)

From Egs. (18) at r = q, the values of C,(a) and S,(a)
are known. Then the counterparts of Egs. (15),

Cu(c0) = Cya) — f “(FJFy + G.GYVar, (19)

S.(00) = S,(a) _Lw(F,,F., + G,G)Vdr, (19b)

permit the integration to be carried forward. The
phase shifts are still obtained from Eq. (13), which
applies equally well to the unnormalized (subscripted)
C’s and S§’s. The wavefunctions (if desired) now
require normalization. This possibility of switching
integration schemes is of particular interest in the
case of singular potentials (such as a screened Coulomb
potential) for which the Volterra equation formulation
is troublesome at the origin.
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Possible ways of constructing field-theoretic operators satisfying the commutation relations of the
inhomogeneous Lorentz group are investigated along lines laid down by Dirac. They can be satisfied
in both the instant form, in which operators representing rotations and translations in space remain
unchanged, and the point form, in which operators representing the homogeneous Lorentz group G}
remain unchanged, provided one can find a causal Hamiltonian density such that [H(¢, x), H(z, y)] is
proportional to 6(x — y) and which transforms as a scalar under G} . Less restrictive sufficient conditions
in the instant form are found, similar to those of Dirac. The commutator can be proportional to
derivatives of §(x — y) if the coefficients on the derivatives satisfy a certain condition. The only way
found to satisfy these conditions for an interaction Hamiltonian constructed from fields for identical spin
% particle (in the interaction picture) is to have the commutator proportional to 6(x — y), which implies
local coupling with no derivations. The possibility of having relativistic theories in the instant form
without causality is also investigated for the case of a four-fermion interaction Hamiltonian constructed
from creation and annihilation operators for a spin } particle, but no definite conclusion is arrived at.
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INTRODUCTION

T is a well-known fact that the local four-fermion
(4F) interaction Hamiltonian

H = f X P p(X)0 PN IFX)0, 9,00,

=M1+ iyy)

leads to a nonrenormalizable S matrix. One might,
therefore, attempt to modify the Hamiltonian in some
fashion so that the resulting S matrix will become
renormalizable. For this reason, and also because
of the intrinsic interest that 4F Hamiltonians have,
we have initiated a search for 4F Hamiltonians which
give a causal and relativistic theory.? In the first two
sections we consider rather genmeral methods of
obtaining a relativistic and causal theory for any type
of field theoretical Hamiltonian. Then, in the third
section, we specialize to a Hamiltonian constructed
from the creation and annihilation operators of a
single type of spin % fermion.

We do not find any startling new results in this
paper, in particular no 4F Hamiltonians giving a
renormalizable S matrix are found, but rather con-
sider it to be a guide to the difficulties and possibilities
of constructing a relativistic theory with a 4F inter-
action Hamiltonian. »

If a physical theory is to be relativistic, then there
must be a set of unitary operators*~* U(A, a) obeying

o

* Work performed under auspices of the U.S. Atomic Energy
Commission.

1 We consider only the proper inhomogeneous Lorentz group and
thus do not deal with parity or time reversal.

3 P, A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

3 P, A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962).

4 L. L. Foldy, Phys. Rev. 122, 275 (1961).

the group multiplication law of the inhomogeneous
Lorentz groups (IHLG), i.e.,

UA,d)UA, @) = UANA ANa+d), (2

UAL, —A1g) = UY(A,a) = U*(N,a), (2a)

where U(A, a) is the operator representing the trans-
formation A from the homogeneous Lorentz group
G} followed by the translation a. The method normally
employed for finding operators satisfying Eq. (2) is
to find operators satisfying the commutation relations
which the infinitesimal generators (IG’s) of the
IHLG must satisfy, and this is essentially the method
we use. That is, we suppose that when A is very near
the identity I and g, is nearly O, then®

UA, a) = U({, 0) + i{a,P, + 0.J; + vk}, (3)

where 0,, v; are very small numbers, P; is the IG of
translations along the ith axis, Py = H is the IG of
time translations, J; is the IG of rotations about the
ith axis, and K; is the IG of “velocity boosts™ along
the ith axis. The multiplication laws (2) then imply
that these IG’s must satisfy certain commutation
relations [Eq. (9)].

The implication when one uses IG’s is that the
physical systems will be specified on some surface,
called the initial su-face, and then the IG’s will be
used to integrate forward and find the state of the
system on a different surface. The usual initial surface

5 A word about our summation convention: Repeated u and »
subscripts indicate a covariant sum, i.e., @a*b =achp—a‘'b=
auby = akb, = akbk; repeated o and B subscripts indicate a normal
sum from I to 4 while repeated / and j subscripts indicate a sum
from 1 to 3. )
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is a constant-time surface and one uses the Hamil-
tonian to find the state of the system on a later
constant-time surface. Other less familiar choices of
initial surfaces are possible, however; we use the
hyperboloids x2 — x? = d? where d® is a positive
constant.

The question of what initial surface to use is tied
in with how one tries to satisfy the commutation
relations. If we assume that some subset, which must
also be a subgroup, of the U(A, a) remains the same
as the free operators® when the interaction is “turned
on,” then the IG’s of this subgroup also remain the
same and hence some of the commutation relations
are automatically satisfied. Dirac has suggested,? and
we follow his suggestion, that the subgroup left the
same should be a subgroup, called an initial subgroup,
which leaves an initial surface invariant because the
initial subgroup is not involved in integrating the
system forward and thus does not involve the inter-
actions. If the initial subgroup is one which leaves the
initial surface # = const invariant (the set of all
rotations and translations in 3-space), then J and P
remain the same while H and K are changed. This
gives the instant form of Dirac. We have a somewhat
more symmetrical-looking situation in the case where
the initial surface is one for which x is a constant, for
there J, K remain the same while H, P are changed to
give the point form of Dirac.

In both the instant and the point form, three sets of
commutation relations are automatically satisfied
because the initial subgroup is unchanged, and four
more can be satisfied by assuming the interaction
Hamiltonian is the integral, over the initial surface,
of a Hamiltonian density having certain transforma-
tion properties under the initial subgroup. The
remaining two commutation relations are quadratic
in the Hamiltonian density and it is here that all the
difficulties are concentrated. These quadratic relations
can be satisfied in the instant form provided the
density H(x) transforms as a scalar under U9(A, 0),
where A belongs to G}, and

f Px dy(x, — y)H®), HY)] =0,  (da)

f &x d(xy, — x,y)HEX), HY)] =0. (4b)

And they can be satisfied in the point form, provided

¢ Free operators are those which transform free states (i.e., states
before the interaction Hamiltonian is “‘turned on”) from one
coordinate system to another. The free Hamiltonian is just the
kinetic energy part of the Hamiltonian with the interaction part
equal to 0, Free operators will be denoted by a 0 superscript.
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H(x) is again a scalar under U®(A, 0) and
f &x & ("" y‘) [H(x), H()] = O,

Xo=@+d}, y=F+d, £>0 (9

There are various ways to proceed in attempting to
satisfy Eqs. (4). The most general method is to write
H(x) as an integral in momentum space over products
of four creation and/or annihilation operators times a
function of the four momenta [Eq. (38)] and then
obtain conditions on the function implied by Eq. (4).
This is done in Sec. 3. The general conditions obtained
are too difficult to work with, however, and so we are
led to try a somewhat simpler approach.

Since the difference between any two points on .
either of the initial surfaces we have used is never
timelike, it would seem that one could try to satisfy the
commutation relations by letting

[Hx), H)l=0, (x—y)*<0,

[H(t, x), H(t, y)] = ad®(x — y) + b,0,09(x — y)
+ ¢;;0,0,09(x —y) + - (6b)

where the series is a finite one in ¥, and its derivatives
and g, b,, ¢, - - - are functions of x, y, 2.7

In Sec. 1, we discuss possible ways of satisfying the
commutation relations in the instant form. The general
line of discussion follows Dirac® and holds for any
interaction Hamiltonian. The interaction Hamiltonian
is written as

(62)

= f d*xH(x)

with H(x) a scalar under G% and Eqgs. (6) are assumed
to hold. A sufficient condition on the coefficients
a, b, c,--- of Eq. (6b) is found such that the Hamil-
tonian density will give a relativistic (and causal)
theory. The only 4F densities we find which satisfy
the equation, however, have b = ¢=--+ =0 and
are the usual local ones:

5
H(x) = z G H . (x),
m=1
H (%) = P A p()P)A™ pix), )
A(l) = I A(2) = 175 A(S) =y
’ 'e)
A(4) l}’ﬁyla’ ALSV) = yv’

where the G, are arbitrary real constants.
Possible methods of satisfying the commutation

? The requirement that Eq. (6a) holds is called (microscopic)
causality because one should be able to. sxmultaneously measure the
energy density at points of spacelike separation. If this is to be so,
then evidently the energy-density operators at spacelike separations
must commute.
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relations in the point form are discussed in Sec. 2.
Again all of the discussion holds for any interaction
Hamiltonian. The only way found to obtain a rela-
tivistic theory in this form was to suppose that

H = J dxB(x)O(x> — mH(x)xq )
with H(x), a scalar under G}, satisfying Eqs. (6a) and
(6b) with b = ¢ = - - - = 0; i.e., the density must be

that described in Eq. (7).

Instead of using a causal Hamiltonian in the instant
form and obtaining conditions on the coefficients a,
b, c, - - -, one can go directly to Egs. (4) and see what
conditions they imply on the Hamiltonian. This is
done in Sec. 3 for 4F interaction Hamiltonians, but
the conditions derived there are too complicated to
yield any further information.

1. THE INSTANT FORM

If we are to have operators satisfying Eq. (2), then
the 10 IG’s of Eq. (3) must satisfy the commutation
relations

[P;, P;] =0, (%2)
Vi, Pj] = i Py, (9b)
Vi, S = iegpdy, %)
#, P} =0, (9d)
[H,J]=0, (9¢)
[P;, K;] = —id,;H, (9f)
V:, K;) = i€k, €7:4)
[H, K]]= —iP,, (%h)
[K;, Kj] = —ieydy. ey

The assumption of the instant form is that U(R, a) =
U(R, a), where R belongs to O(3), and thus J, P
remain the same as in the free case. This implies that
the first three commutation relations are satisfied.

Equations (9d)-(9g) are the infinitesimal forms of
the transformation rules of H, K; under UY(R, a).
For example, (9d) and (9¢) can be derived from
U(R, a)U(0, a))U7Y(R, a) = U(0, a,) for very small a,
ay, and R near the identity. It is more convenient to
use the fully integrated forms of Eqs. (9d)—-(9g) rather
than having to calculate J, P and then calculate their
commutators with H, K, so, for these equations, we
substitute

U1, a)HU (1, a) = H, (10a)
UR, )HU® (R, 0) = H, (10b)
U1, a)KU® (I, a) = K, + a,H, (10c)
UOR, OKUY (R,0) = RAK,.  (10d)
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We are assuming that H is the sum of a free plus an
interaction part, and so K; will also be the sum of a
free plus an “interaction” part, i.e.,

H=H" 4+ H, (11a)
K,=K® + K. (11b)

Since the free operators evidently satisfy Eq. (10), we
must have

U0, ) H'UY (U, 2) = H, (12a)
UYR, 0)H'U® (R, 0) = H', (12b)
U, KU (1, 8) = K + a,H', (12)
UOR, OKU (R, 0) = R;2K),. (12d)

The commutation relations (9h) and (9i) are the
difficult ones to satisfy in the instant form, so we defer
a discussion of them until after we have shown how
to satisfy Egs. (12).

We start out with the general form

H = f dxf (x0H'(x), (13)

where
U1, a)H' QU (I, —a) = H'(—a),

and derive

U, a)H' U, —a) = f dxf (%o, X + 2)H'(x).

(14)

If the right-hand side is to equal H’, then we must
have findependent of x so that f = f(x,). We can then
integrate over x, and replace | dx,f(xo)H'(x) by H(x)
to obtain

H = f d*xd(x)H'(x) = f PxHx)  (15)

as the most general form for H' allowed by Eq. (10a).

A necessary and sufficient condition that the H'
of Eq. (15) satisfy Eq. (12b) is that H(x) be a scalar
under rotations from 0O(3) i.e.,

UOR, OHEU™ (R, 0) = HRx), ReO0@). (16)

It is not difficult to find the most general solution to
(12¢), for we see that the difference between any two
K, satisfying it commutes with P. Thus the most
general solution is any particular solution plus any
operator commuting with P. One can show, by using
Eq. (14), that a particular solution is

(17

The particular solution of Eq. (17) is the only one we
use (see, however, footnote 8); we do not add onto
it any operator commuting with P,

K, = fd"‘xx,.H(x).
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From (16), we see that the X; of Eq. (17) satisfies
Eq. (12d). This leaves us with the two difficult com-
mutation relations (9h) and (9i) to satisfy.

After subtracting off the free parts of these equations,
they read

[HO, K]+ [H', K" + [H', K] = 0, (18a)

(K, Kj1 + [K;, K1 + [K;, Kj] = 0. (18b)

All the difficulties in satisfying these equations lie in

the terms [H', K], [K, K], which are quadratic in

the Hamiltonian density. If we assume that they are

both 0 (it is not necessary that they be 0, but they are
0 for the solutions we find), then we must have

[H, K] + [H', K®] =0, (192)
K", Ki] + [K, K] = 0. (19b)
Equation (19) can be made to hold if we require that
H(x) transform as a scalar® under the whole of G}
[and not just the subgroup O(3) as in Eq. (16)], i.e.,
UYA, OH(x)U® (A, 0) = H(AX),  (20)
for then
K, H(x)] = x,[H, H(x)] — x,[P;, H(x)],
[in analogy with the IG K; = i(x,0¢ + t0x,) in space
time] and thus (setting x, = 0),

[H®, K;] — [K{”, H']
= f Px[x[H®, H(x)] — x,[H®, H(x)]] = 0,

[K®, K,;] — [K®, K]
- f Bxlxx; — xx[H®, Hx)] = 0.

Finally, we must consider the terms [H’, K] and
[K;, K;] which are quadratic in the Hamiltonian
density. Although these terms do not have to be 0,
there will be certain parts of them which must vanish
for a 4F density. That is, [H’, K;] and [K;, K] will
contain terms proportional to b*3d*? (for example)
and the coefficients on these terms must be 0 if Eqgs.
(18a) and (18b) are to hold. This argument can be
used to find necessary conditions [see Sec. 3, Egs. (45)
and (46)] on the Hamiltonian. These conditions,
however, appear to be too complicated to work with,
so we drop this general approach and retreat to a
somewhat simpler one.

Under the assumptions of Eqs. (15) and (17), we have

[, K}] = f &x Py [HEX), H()]

=—1 f & dy(x, — y)IHE), HY), (21)

8 We could be slightly more general here by adding a term L,
onto the K, of Eq. (17), where [L;, P] = 0 and L transforms as X;
in Eq. (10d) under rotations. Equation (18) can then be satisfied
provided [H’, K;1=I[K;, K;1=0, 6(x)[K{® 4+ L,, H(x)]=
O(xo)x JH®, H(x)), and [L;, K{] + [K/”, L] + [L,, L;] = 0.

E. A. BLOOD, JR.

(K, Kj) =3 f dx By(x,y; — %,p)HE), HY)),
2)

which suggests that the use of a causal Hamiltonian
density might provide a method of obtaining

[H', K] = [K;, Kj] = 0.

We therefore assume that Eq. (6b) holds and obtain
for [H', K]

(', Ki) = — § [ d'y(r = 3
X (a + blai + Chha-‘fﬂa + dhhhahhf; + o ')63(X, y)s

where, as in Eq. (6b), a, b, - - - are functions of x, y
and the partials are with respect to x — y holding
x + y constant. If we now integrate by parts, we
obtain

[H, K] = — } f &Px dy8(x, — y,)

X [(x; = y)a — 0;b; + 0;,4,b,5, + "+ )
+ (=b; + 9,,(c;y, + C13) = Osysy
X (disgsy + digizy + dgys) + )1

The first term, proportional to (x; — y,), integrates to
0 since xd(x) = 0, but the rest of the integral is not
automatically 0. If we require that [H', K] = 0, then
this introduces the condition on the coefficients
b, c, - that

[b; — 0y,(css, + €1, + 04,5, (disys, + sy, + d5.0)
+ ey =0. (23)

We can deal with [K, K] in a similar manner and
find that Eq. (23) also guarantees that it is 0.

Thus we have found sufficient conditions on a
Hamiltonian density (4F or any other kind) so that
it will give a relativistic theory. The conditions are
that it transform as a scalar under G} and that it
satisfy Eqs. (6b) and (23). This is similar to the
conditions that Dirac obtains for a relativistic theory.

The only densities we have found which satisfy
these conditions are those of Eq. (7), which have
b=c=--=0.

2. THE POINT FORM

In the point form, we assume U(A, 0) = U(A, 0)
for all A in G}. This implies that the commutation
relations (9¢), (9g), and (9i) are satisfied. The com-
mutation relations (9b), (9¢), (9f), and (9h) are the
infinitesimal forms of

U9(A, 0)U(0, d)U® (A, 0) = U(0, Ad),

which states that the P, (with H = P,) transform like



FOUR-FERMION INTERACTION HAMILTONIANS

a vector under UY(A, 0), i.e.,
UOA, )P, U™ (A, 0) = AP, (24)
We again assume that (11a) holds so that we must
have
P,=PQ + P, (25)
where the P{” are the IG’s of U0, g). Since the
P satisfy Eq. (24), we must have

U, 0)PU (A, 0) = AP} (26)

There are, of course, a large number of ways to

satisfy Eq. (26). One way is to modify the Hamiltonian

of Eq. (43) (with f, g functions of k%) by replacing the

first 6° by y, and the second by I to obtain P,.

Another possibility, which gives a Hamiltonian more
nearly like that of Eq. (15), is to suppose that

P, = f dxxd(® — DOxDHK),  (27a)

P, = f Bxx (2 ~ BPYHK),  (27b)
where H(x) is a scalar under G} obeying Eq. (14), d*
is a positive real number, and 6(x,) is the step function
which is 0 for x, < 0 but 1 for x, > 0. We restrict
our attention to interaction momenta of the form of
Eq. 27).

The two commutation relations left to satisfy are
(9a) and (9d). Since (9a) can be derived from (9d),
(9f), (9h), we need only to satisfy (9d). After sub-
tracting [H®, P{""], Eq. (9d) reads

(H, P}l — [P, H'] + [H', P}] = 0.
From Eq. (27), we obtain
[P, H']
= f B )0 — d¥)
X (x,[H?, H(x)] — x,[P{", H(x)])
- [Kgo’, f d*xB(x)8(x* — dz)H(x)} =0,

and so we must evidently have

[H, P} =} f &x dby (1’ - i‘—’) [H(x), H)] = 0,

Yo Xe

=@ +dt y="+a)h @
One might possxbly try to do the same sort of
analysis for a general causal Hamiltonian density in
this case as is done for the instant form in Sec. 3. But
the resulting conditions on b, ¢, - - - are considerably
more complicated than in the instant form, so we will

not pursue this possibility.

[H(o)’ P;] —
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We see that one solution to Eq. (28) is to have
H(x) satisfy Eq. (6) with b = c¢=--+=0. This,
coupled with the scalarity of H(x) under G}, gives
sufficient conditions for the construction of a Hamil-
tonian,

H = f ExH(x), xo=@E+d),  (29)
which gives a relativistic theory in the point form®
(for a 4F or any other kind of interaction Hamil-
tonian). As before, the densities of Eq. (7) satisfy
these conditions.

3. FOUR-FERMION HAMILTONIANS AND
NECESSARY CONDITIONS ON THE
HAMILTONIAN IN THE INSTANT FORM

There are two aims in this section. One is to show
how to construct densities from particle creation and
annihilation operators which transform in a simple
manner under U®(A,a) and the other is to give
general conditions on the Hamiltonian implied by
Eqgs. (4).

The interaction Hamiltonian is to be made up of
sums of products of creation and annihilation oper-
ators for a spin 4 fermion. These are, respectively, fora
particle with momentum p in spin state r (r = 1, 2),
b¥(p), and b.(p), and for an antiparticle d*(p), 4,(p).
The star denotes Hermitian adjoint and b, b*, d, d*
satisfy the usual anticommutation relations, i.e.,

(b, b, = [d, d], = [b, d]+ (b, d*], =0,
[b4®), b; (@) = [dp), d (@) = 8,80 — P,

plus the Hermitian adjoint relations. If we N-order
the interaction Hamiltonian, it will consist of a part
which is the sum of products of four creation and/or
annihilation operators (the 4F part), a part which is
the sum of products of two creation and/or annihila-
tion operators, and perhaps a constant. We give only
the 4F part in momentum space because that is the
only part one uses in finding necessary conditions
that the Hamiltonian must satisfy. In both the instant
and point forms, it is necessary that we know the
transformation properties of the Hamiltonian under
the free operators U®(A,a), so we discuss these
properties for the creation and annihilation operators
before giving the general form for the 4F part of the
Hamiltonian.

The transformation properties of a one particle state
(without interaction) under U are

UY(A, a) [p, 1) = | E(Ap)/E@)I}
x D, (R(p, A) |Ap, s),

? We note that we do not need to assume Eq. (11a) for H’;; we can
drop the free part and still obtain a relativistic theory.
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where p, = E(p) = (p* + m?)} (with m the mass of
the base particle), R(p, A) is a rotation belonging to
0Q3), and D, (R) is a matrix representation of R in
SUs,. Since |p, r) = bX(p) [0), we evidently have

U9, a)b} (U (A, a)
= €7 | E(Ap)/E®)E D, (R(p, A)bY(Ap). (30a)

The transformation properties of b,(p) are obtained
by taking the Hermitian adjoint of (30a):

U, a)b, U (A, a)
= e |E(Ap)/E(p)|* D,.(R(p, A)b(Ap), (30b)

where the bar over D,, stands for complex conjugate.
The transformation properties of the antiparticle
creation and annihilation operators are, similarly,

UA, a)di @)U (A, a)
= D, (R(p, A))d; (Ap), (30c)

U(O)(A’ a)dr(p)U(o)_l(A, a)
= ¢~"A2s B (R(p, A))dF(Ap), (30d)

where D, (R) is another representation of R in SU,.

The quantities D(R(p, A)), D'(R(p, A)) depend
upon p and A in a complicated way, and if we had to
deal directly with them, life would be difficult. Fortu~
nately, however, it is possible to find linear combina-
tions,

‘+’(p) U Db (D),

¥o®) = U (—pdr (—p), 3
P = U @bl @), ¢h
#7(p) = U (—pd(—p),

of the creation and annihilation operators which
transform in a simple way, and we therefore construct
our Hamiltonian from the ¢’s rather than directly
from the creation and annihilation operators. The
U’s in Eq. (31) are column vectors of length 4
(the component beingdesignated by «) which satisfy the
Dirac equation

(YuP, — em)U () = 0,
0m)(y,p, — em) = 0,
where T(p) =

ditions

€= +1,

U9*(p). They also satisfy the con-

U i®MUGP) = [(m + ep,y)2mly,  (32)
TedU)®) = ebecdy,. (33)
If the proper choice is made for the D, D', then the
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transformation properties of the y’s are [with U@ =
UO(A, a)]
U(O)"P‘(zH(P)U(O)—l

= [E(Ap)/E@IIS;3(M)wsP(Ap)e7,
U‘“’cpﬁ"(p)U“”_l
= [EAD)E@IIS Ay (Ap)ethrimetitra,
Um)’pf.“(P)U(orl

[E(Ap)/E(p)]* F5(AP)S(A)e™,

U(O)'CP‘-(—,(]))U(O)

= [E(AD)/E@)H35 (Ap)Syo(A)e drloaoitoe,

34
where S(A) is a2 4 X 4 matrix satisfying ¢4
SHA)ySA) = Ay, (35)

We can now build our Hamiltonian out of products
of y’s and ¢’s. The 4F part in both the instant and
point form is

Hip = f dixf(x)H(x), (36)

H(x) =

Z H(x)", (37

with
H)Y = f i BT Q9 (+ 3

X (+4)hLY (1234)ex 1+2-3-t—ize (1+243+4)

@1234

Hx)® = f O e R

% ( 4) h ; 2“( 123 4) eix-( 1+2—3—4)—ixo(1+2+3-—4)’

H(x)® = f s ()P Q9 3) 9

X (4)h,(;ﬁ“(1234)e"x'(1“2—3+4)—£zo(1+2+3_4)’

Hx)® = f i FP QU G)p,

X (4),1 4) (1234)eix~(1+2—-3—4)—izo(1+2-—3—4)

%1234

H(x)® = f (D9 (3)ps
X (4)h‘5’ (1234)e:‘x-(1—2+3—4)—m(1+2—3-4),

1234

H(x)® = f R N R O RO

X (4) h c(‘ 234( 123 4) eix- (—1—2+3+4)—izo(1+2—&4),

H(x)m — H(x)(:i)*’ H(x)(s) = H(x)(z)*’

H(x)"® = H(x)V*, (38)

where we have made use of the Hermiticity of the
Hamiltonian to obtain the last three equations. The
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somewhat abbreviated notation used in Eqs. (38) is
dr, = dspl[m/E(pl)]&’ d7i934 = dry d7y dTy d7y,
'p;l(l) = 'I’al(.pl)’
hanu(1234) = halaaaaq(Pl s P2 3 Ps > PA),
exp{i[x-(1+2-3—-4) —x,(1+2+3+4)]}
= exp {i[x- (P, + P2 — Ps — PO
— Xo(Pro + P20 + Pso + Pa)]}. (39)
We note that the 4 can be assumed to be asymmetric
in certain variables. If we look at H(x)®, for example,
interchange ${*(1) with ${*'(2), and then exchange
variables 1 and 2, we find that one can substitute

i(h,,,, (1234) — b, (2134)) for h,  (1234). Actually,
in H(x)W, one can substitute

i(hlzsal - h2184 - h1248 + h2113)
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for hyps,.

We can now show how the densities transform
under U(A, a). It follows from Egs. (34) and (38)
that Eq. (14) is satisfied, i.e.,

U, a)H(x) U1, a) = H(x — a) (40)
and

UO(A, 0)H(x)PUW (A, 0) = H'O(Ax), (4la)

where H')(x) has the same form as H')(x), except
A% is changed to 4, If we look at the i = 1 case,
for example,

h;g:t(ql st Gy = Salﬁx(A)Saaﬂs(A)SEalaa(A)S;llal(A)
WA gy, A, (41b)

The equations for the other ') are the same except
for a permutation of the «, # indices. Equations (41)
were derived by changing Ap, to g, in

UO(A, 0)H(x) U(o)“( A, 0).

If H%(x) is to transform as a scalar under G}, i.e.,
if
UO(A, O HO(x)UO (A, 0) = HO(Ax), (42a)

then we must have

h:(i) (1234) — h(t')

%1234 *1234

(1234). (42b)

It would perhaps be useful to correlate certain
forms of the Hamiltonian in the more familiar con-
figuration space with their corresponding 4 in Eq.
(38). As a rather general example, we suppose that

H(x) = f dyT(x + YFO)(x — y),  (432)
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where

J(2) = f dwip(z + w) 0'p(z — w)G(w), (43b)

F(y) = f ke (k), @30)
G(w) = f d*ke=*g(k), (43d)

0= al + ibys, Yy t+ i d}’s‘}’p, euw
a, b, c,d real, (43e)

wx) = f drly @ + p(—p)e®e], (43f)
) = 9o
= (@5 @e + 9§ (-peL @)

[All of these densities are scalars under G}, provided
the f and g of Eqs. (43c) and (43d), respectively, are
functions of k% only.] We then find that

Bl = —0% .0t 8k )g(k) f(ks),  (44a)
with
k10=P1o—Pso, kK, = p; + s,
Kao = P20 — Paos ke =p; + s,

k3 = P10 — P20+ Pso —Paos Kz=Pr—P2—Ps+Pu
hg)sal(1234) = —6:113 0:214 g(kl)g(kZ)f(ks)
+ 6Z ., 05,0, 8(k)g(ky) flks)  (44b)

with
kxo=P10"‘Pso, ki=p: + ps>
k2o = P30 + Puo> ky=p, + s,

k3o = P10 = P20 + Pso + Paos ks =P1— P2 —Ps+ Ps>

Kio = P10 + Pso ki =p1 + Pps>

k3 = P2 — Pao> k; = p, + ps,

k3 = P10 — P20 — P30 — Pao> K3 =P, — P2+ Ps — Ps-
We also deal with Hamiltonian densities made up

of products of w(x), ¥(x) (Eq. 43f, g), and their

derivatives. The transformation properties of a few
selected operators are

UDA)p(x) U (A) = SHA)p(AX),
UOA)F)U® ™ (A) = H(Ax)S(A),
UMY, p()UD” (A) = £330, Y3y, =Aux,,
UOA)F)y, @)UY (L) = Ay, p(x).

We see from these that the densities of Eq. (7) are
scalars under G}. Two more scalar densities are

P(x)0,p(x)P(x)y,p(x) + h.a.,
#(x)3,p(x)P(x)0,9(x) + h.a.
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The reason it is useful to work with densities
constructed from products of v, ¥ and their derivatives
is that it is a simple matter to construct causal densities
from them. In fact, any finite linear combination of
the densities

Dy iyaiprand(*) = (05, Par()N 0, ¥s(¥))
X (B3, PN Op%es(3))
is causal, where 0, is a finite product of derivatives.
Now we turn to the second goal of this section,
namely, to find conditions on the A® of Eq. (38)
implied by Eqgs. (18a, b). We find conditions only on
AW, @ BB but the same methods can be used to
find conditions on the other A). The quantity
[H(x), H(y)] occurs in both [H’, K] and [K, K;].
The commutator of the densities will contain terms
proportional to 5*2 d*3 and, after a lengthy calcula-
tion, we find the sum of all such terms to be [using
the notation of Eqgs. (38) and (39)]

My(x, y) = f drisasesb (DBE)BE(3)

x d(=5) di(—6) d¥(=T) f BPf, 0 (123567; 4)
X [eiX BTN Hr-(H458) _ i (LH-5-6) iy (243-7—0)]
where b}(1) = b¥(py) and f is the function

=000 THGURGUR (-6 UL (—T)

N
0 84

2p,
| y] }
84

m =+ PyYo —
2p40

with U; ;(1) = Ual.rl(l’l)' If Eq. (18a) is to hold, then

we must have

Ny =fd3x dsyyiMsa(x, y)=0.

izA(1654)h;;’73(3278)[ =

If we do the integration on x and then on p,, we
obtain (to within multiples of i and 2)

Ng, =fda)’)’ifd7'123567b1*(1) e d;"(7)ew-(1+z+3—5—6—7)
X[fA4=243-7—-f@d4=5+6-1)]

where f(4 = 2 4+ 3 — 7) means f evaluated at p;, =
pP. + Ps — p,;. Since Ng; is to be 0, it must have 0
matrix element between all possible states and thus
between |0) and

(0] f d3P123567b1(1)b2(2)b3(3)
X dy(—5) de(—6) dr—= )81 (123567)
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in particular, where g is an arbitrary function. This
implies that

fd3YYifd"'lzaswgew.(lﬂﬁ—s—s—" A(123; 567)
[f=24+3-7N—-f@=54+6—-1)]=0,

where A(123; 567) indicates that the quantity in
brackets is to be antisymmetric in the variables 1, 2, 3
and separately in the variables 5, 6, 7. Evidently the
only way this can hold is if

A(123; 56T f4 =243 =T —fd=5+6— 1)]
=0. (45

Equation (42) is, therefore, a necessary condition on
BY, B, B implied by Eq. (18a).

A similar necessary condition imposed by Eq. (18b)
can be found in an analogous manner. The only
difference is that, when the integration on x is done,
one obtains a derivative, with respect to p,, of a
d function rather than just a 6 function. The necessary
condition is

A(123;567)
« [af(4=2+3—7) _3f(4=5+6—1)] —o
? E

Pe

(46)

Equations (42) and (43) are only one of a set of ten
similar conditions on the #%). The other nine arise
because the coefficients on b*% d*2b, b*2 d*3 d, etc.,
must also be 0. The author has not been able to obtain
any simple conditions on the density which these equa-
tions imply, but would conjecture that they imply the
density must be causal.

4. SUMMARY

In summary, we point out the various possible
methods which have been suggested for satisfying
the commutation relations of IHLG. The first point
one must decide upon is what subgroup of IHLG to
leave as free operators. If one would like a causal
theory, the most logical choice is one which leaves an
initial surface invariant, provided any two points x
and y on the initial surface satisfy (x — y)? < 0. The
two initial surfaces we have worked with are ¢ = const
and x? = d* (Another possibility suggested by Dirac?
is the surface ¢ — x3 = const, but we have not
examined that case.)

Once one has decided on what subgroup to leave as
free operators, there are still a large number of
possibilities. Let us examine the instant form first.
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There, one is forced to write the interaction Hamil-
tonian as

H = f dx8(x)H(x) = f PxH(x),

and H(x) must transform as a scalar under rotations
in space. Then for the IG of velocity boosts, one has
the general formula

K, = Kﬁm +K;+ L,
K, = f PrxH(X),

U(R, LU (R, 0) = Ri'L,,
where Rbelongs to O(3). The least complicated method
of proceeding from this point is to assume L = 0, so
the burden of satisfying the commutation relations
falls entirely on H(x).
If one assumes a 4F Hamiltonian density, then the

equations

[H', K] + [HY, K] + [H', K] = 0,

[K;, K] + K, K] + [K}, K] =0,
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imply certain conditions on it. They are too com-
plicated to deal with, however, and one is thus forced
to fall back on causality. The above equations then
give the condition (23) on the commutator of the
densities. This condition, plus that of the scalarity of
H(x) under the free G1, is sufficient for a relativistic
theory.

In the point form, H’ must be one of four quantities
which transforms like a vector under the free G} . This
gives a very wide possibility of choices for H’. The
only one we examine, however, is the one in closest
analogy to the instant form, namely

H = f A xxf(x)002 — dYH().

If [H(x, x), H(x, y)] is proportional to §**(x, y), then
this H’ yields a relativistic theory.

It would thus appear that the only simple way to
have a relativistic theory is to have a causal Hamil-
tonian density.
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The spectral density of a fluctuating light beam may be determined from the knowledge of both the
modulus and the phase of the complex degree of self-coherence y(7) of the beam. The phase itself may
be determined from the modulus and from the location of the zeros of the analytic continuation of y(r)
in the lower half of the complex = plane. In the present paper results of an investigation are presented
which show that the determination of the zeros is equivalent to the solution of a certain inhomogeneous
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problem is found to be equivalent to a certain stability problem in mechanics. Although no general
technique for the solution of this type of an eigenvalue problem appears to be known, the new formu-
lation may be used to determine spectral profiles for which the associated degree of self-coherence has
zeros at prescribed points in the complex 7 plane. Some illustrative examples are given.

1. INTRODUCTION

T is known!-? that the determination of the spectral
density g(w) (0 < o < ) of a fluctuating light
beam is possible from the knowledge of the absolute
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value of the complex correlation function p(7)
(— < 7 < ) and the knowledge of the zeros of
the analytic continuation of y in the lower half of the
complex T plane.

In the following we prove that the aetermination
of the zeros is equivalent to the solution of a
certain eigenvalue problem of the Sturm-Liouville

type.
It is well-known that in terms of the spectral density
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function g(w) the correlation function y(7) is given
by?

W) = f " e(@)e " do, .0

where Im 7 < 0.
The spectral density function g(w) is real, non-
negative, and its integral is normalized to unity, i.e.,

(@ g(w) = g*(w), 1.2
(b) g(w)>20 for >0, (1.3)
© fo ® g(@) do’ = 1. (1.4)

The correlation function has the following prop-
erties:

(@) y(0) = 1. (1.5)

(b) It is analytic and regular in the lower half of the
complex 7 plane* (Im < 0).

© y(=%) = y*(),

where 7 is real or complex with Im = < 0.

(d) It does not vanish for any value of = on the
negative imaginary axis, i.e., for any + = —if, where
g>0.

Because of the property (c) satisfied by the cor-

(1.6)

relation function y(7) we conclude that if
y(1) =0, (1.7a)
then also
y(—75) = 0. (1.7b)

We are interested only in the zeros of the correlation
function in the lower complex + plane and on the real
axis. We sce that, because of property (b), they occur
in pairs and, because of property (d), there are no zeros
on the imaginary axis of the = plane. Hence we may
restrict our discussion to values of 75 = a — if,
which lie in the fourth quadrant and on the positive
real axis of the complex = plane;ie., « >0, § >0,
and for which y(7y) =0, y(—75) = 0. We confine
our attention to this quadrant.

From Eq. (1.1) we see that once the spectral
density g(w) is defined for w > 0, the correlation
function y(r) is completely determined and so are

3 A similar relation exists in the quantum theory of coherence
between the quantum mechanically defined coherence function
and the power spectrum. [Cf. C. L. Mechta and E. Wolf, Phys. Rev.
157, 1188 (1967.] Hence our results apply both within the domain of
classical and quantum mechanical theory of optical coherence.

4 This is true under the assumption that

|7 e < e,
-0

[Cf. E. C. Titchmarch, Theory of the Fourier Integral (Oxford
University Press, New York, 1948), 2nd ed., p. 128.]
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the values 7, (with Re 74, > 0, Im 7, < 0) for which
y(7) vanishes.

2. THEOREM CONCERNING THE ZEROS
OF THE CORRELATION FUNCTION

We prove that the following statements are
equivalent:

(i) The correlation function y(7) vanishes for
7=To=m—iﬁ,(a>0,ﬁ20),i.e.

(7e) = 0. Q.1

(if) lim ¢"*°y(ry, @) = 0, 2.2)
where o

w1, ) = L mg(w’)e““"' do'. (2.3)

(iii) There exists a unique real function y(w; 7),
defined for 0 < w < oo, which satisfies the differ-
ential equation

Y3 70) — ire — 7)Y (@} 70)
+ 7o pw; 7o) = g(w)  (2.42)
and the boundary conditions

v(0; 70) = ¥'(0; 7)) = 0, (2.4b)
¥(00; 70) = 9'(0; 1) = 0. (2.4c)

Here
' (w; 1) = Oyp(w; 75)/0w, etc. .5)

Before proving the theorem, several observations
may be of interest:

(a) Statement (i) is equivalent to the equation

lim p(7q, @) = y(zy) = 0, 2.6)

W0

as we see from the definition (2.3) of the function
y(1, w). Also e = gfotize  which oscillates as
w — oo and its absolute value increases beyond any
bound. (If § = 0, it oscillates and its absolute value
is unity.) From Eqs. (2.6) and (2.2) it may appear
that the statement (ii) is stronger than the statement
(i), but as we show below, they are actually equivalent.

(b) In Eq. (2.3), let 7 be a value for which y(7) does
not vanish. Then

lim y(7, w) = y(7) # 0.

Since e (with Re + > 0, Im = < 0) does not tend
to zero as w — oo, we conclude that the limit in
statement (ii) is zero only for values 7, for which
y(7o) = 0 and for these alone.

(c) Using the fact that

.7

y¥(r, 0) = y(—7*, 0) (2.8)



PHASE PROBLEM OF COHERENCE THEORY

and taking the complex conjugate of the Eq. (2.2), we
obtain
lim e~ 2p(—1¥, w) = 0.

Equations (2.2) and (2.9) are equivalent.
(d) The relation between the function y(w; 7o) and
the correlation function y{(7) is

p(@) = (v — r)(r + —r: )J;m[_ wo'; .ro)]e-—irm‘ do'.

(2.10)
This relation is established later. We note that the
integral on the right-hand side of (2.10) exists because
of Eq. (2.4c).

(e) The function y(w, ry) is uniquely determined
by the second-order differential equation (2.4a) and
the boundary conditions (2.4b). It satisfies the
boundary conditions (2.4¢), too, if and only if =, is
such that y(7g) = 0. This last remark is closely
related to the statement (b) [Eq. (2.7)].

We see then that, for each =, for which y(rg) = 0,
there is an eigenfunction y(w, 7o) and an eigenvalue
solution 74 = « — iff of the system (2.4a)-(2.4c) of
the Sturm-Liouville type.

29

3. PROOF OF THE THEOREM

First we show that the statement (i) implies
the statement (ii).
We have from (1.1) and (2.3)

2(7) = ¥, 0) + f 2N dw'y ()
so that '
érop(r) = e"y(, ) + f g0 do'. (3.2)

Hence, if 7g=a — i (« > 0,8 > 0) is a zero of
y(7),

0= e%y(ry, ) + [ @) dot. (3)

Also for o' such that ' > w, we have

]e—iro(m’—w)l < g—Blo’~a) <1, (34)
and
[1aten) ao < f ¢(@) do' 5> 0, (3.5)

because of the properties (a), (b), and (c) of g(w).
[See Egs. (1.2), (1.3), and (1.4).]
From Eq. (3.3) we obtain then the inequality

B
«

< [Tlet@nt et dor

le7e2y(ro, )] =

sflg(w’)l do', 3.6)
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In the last inequality we used Eq. (3.4). Finally, using
Eq. (3.5), it follows that the last expression in Eq. (3.6)
tends to zero as w — o0, so that

7o,

lim €"®p(7,, @) = 0.

W= o
Hence the statement (ii) is established.
Now let us prove the converse statement, i.e., the
fact that (ii) implies statement (i).
According to (ii), for each € > 0 there is an N'(¢)
such that for every w > N(¢)

[e7p(7o, )] < €.
Equation (3.7) implies that

3.7

[¥(70, ®)] |67 < ¢,
or, since |&*®] = efo,

h’(TO’ (l))] eﬂw < €,

ie.,
[¥(ro, W) < e < ¢,
because
ef*<1 for 20, w>0.
Hence

(7o) = lim y(79, w) = 0,
w0

which is what was to be proved.

This completes the proof that the statements (i)
and (ii) are equivalent.

Next we show that the statement (iii) implies
the statement (i). [Because of the equivalence of
statements (i) and (ii), we conclude that statement
(iii) will also imply statement (ii).]

For this purpose we make use of the identities

@
f (@' )e do’
0

(] o

= p(w; To)e™ ™ — p(0; 79) + ir f o' ro)e do’,
0

(3.8)

w;;( o' : 70) e——im)’ do’
0

= ¢ (w; T)e™ — ¢'(0; 79) + ir[y(w; To)e e
(0 7] — f W(@'; e do’, (3.9)
[1]

from which we obtain the identity
[ s — it = dwering
+ rara p(e’; 7o)l do’

— [w'(w, To) -+ l{’T —_ ('r“ — T:)}QP((‘O; 70)18..1,&,
+ ¥ 0379 + i{r = (70 — )} p(0570)

= = e + 7 T o gl dor.
(3.10
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Here y(w, 7o) is the function satisfying Eq. (2.4a)-
(2.4c).

First we must show that these identities are mean-
ingful if y(w, 7,) is chosen as stated. The solution of
Eq. (2.4a), subject to the boundary conditions (2.4b),
is

1
W(w; 7o) = -

iT00, _ —ir*o, 0 *’w
o+ 1) [e7®p(Ty, w) — € Y(—To,®)]

.11

defined for every w (0 < @ < ). Because of Eq.
(2.8), we see that yp(w; 7o) is real. From Eq. (3.11) it
follows that

, 1 ro00
14 (w; “'o) = * ["'oei ¢ 7(7-0 ’ C())
To To .
+ Tpe 0 p(—15, ®)]. (3.12)

With the help of these two expressions and from the
formula (2.4a) written in the form

¥'(w; 7o) — g(w)
= i(rg — 10)¥'(; 7)) — ToTs (03 7o), (3.13)

we conclude that p(w, 7,), ¥’ (w, 1), " (w, 79) — glw)
are continuous functions of w in the range 0 < w < 0.
From the continuity of these functions and from the
existence of the integral [@g(w’)e"®'dw’, which has
been assumed in Eq. (1.1), we conclude that also the
three integrals

(]
f Yo' To)e™" do',
0

f Y(o'; e do’, (3.149)
0

[ v@smgere aw,
0

which occur in Egs. (3.8), (3.9), (3.10), exist for all
pairs of complex values 7, 7, with Im7 <0 and
(Re 7y > 0, Im 7, < 0).

Now we assert that the integrals in Eq. (3.14)
exist even when w — . From the identities (3.8),
(3.9) we obtain, as w — o,

f eo'P'(w'; e dw' = i-rfmqp(w'; r)e ™ do’,
° 0 (3.152)
f @ ol = f "o’ re ™ do,
° 0 (3.15b)

where (2.4b), (2.4c) were used. All we have to show
then is that the integral [Py(w’; To)e@'dw’ exists
for = and 7, as chosen above. Using Eq. (2.4a), the
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identity (3.10) becomes

fmg(w’)e“’m' do’
— [¥'(w; 7)) + i{r — (70 — T:)}'V’(wi T0)]e
+ [¥'(0; 7o) + i{"' — (10— T:)}'I’((); 7o)l
= (= ) +73) f I3 rle do, (3.16)

and using (2.4b) and (2.4c), we obtain, as w — oo,
o) = “g()e = dor

= (r — 7)r + 72 f "I’ ro)le ™ do.
(G.17)

The left-hand side of Eq. (3.17) is the correlation
function y(7), which exists. Hence also the integral
Jep(o'; re'dw’  exists for 7,7, such that
Im 7 € 0and Re 7y > 0, Im 7y < 0. Moreover,

(7o) = Y(—75) = 0, (3.18)

which was to be shown. [What we tried to show above
was that each separate terminthe identities (3.8), (3.9),
(3.10) exists, so that no cancellation of any meaning-
less expressions occurs.] Equation (3.17), which is
identical to Eq. (2.10), proves the assertion (d).

Finally let us prove that the statement (ii)
implies the statement (iii). [Because of the equivalence
of statements (i) and (ii) we conclude then that
statement (i) also implies the statement (iii).]

For this purpose we define the function

[€7(ry, @) — €70 p( =15, )]

(3.19)

in the range 0 < w < . This function is real
because of Eq. (2.8) and is uniquely determined once
g(w) is given (0 < w < ). The first and second
derivatives of this function are

s =
HieTo i("o+"':)

’ 1 700,
Y(w;7) = 3 [10€™"Y(79, @)
To To .
+ 107" p(—15, ®)], (3.20)
7, 1 T00,
¥'(w;7) = g(w) + ———— [—75"¥(ry, w)
i(mo + 79)

+ 7% Y (13, ), (3.21)
from which we conclude that the function y(w, 7o)
satisfies the second-order differential equation
Y'(w; 7o) — i(7g — “': Y (w; 7o)

+ Tomo (@3 70) = g(@). (3.22)
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Moreover it satisfies the boundary conditions

_ 90,79 =9 (0,79) =0 (3.23)
since
70, 0) = p(—75,0) = 0. (3:24)

Equations (3.22) and (3.23) completely define the
function (w, 7y), and so they are equivalent to
Eq. (3.19) by means of which this function is defined.

Now assuming the statement (ii) [whichis equivalent
to Egs. (2.2) and (2.9)] and taking into account the
expressions (3.19) and (3.20) for y(w, 7,) and p'(w, 7o),
we find that

p(00; 7o) = y'(00; 7o) = 0. (3.25)

The reason why we must consider the function
y(w, 7,) as well as its derivative as w — oo is that
p(w, 7o) is a real function while the limit in Eq. (2.2)
implies in fact two conditions, since the expression
ei1®y(ry, w) is generally complex. The function
y(w, 7o) is proportional to the imaginary part of this
expression, while the function ' (w, 7,) is proportional
to a linear combination of its real and imaginary parts.
Also if 7, is not a zero of y(7), then certainly y(w, 7,)
and/or y'(w, 79) do not tend to zero as w — , as
deduced from Eqs. (3.19), (3.20) and the statement
(b).

The results (3.22), (3.23), and (3.25) taken together
are the statement (iii), which was to be proved.

We have thus demonstrated that the statements
(@, (ii), and (iii) are equivalent.

From Eq. (3.17) we see what is the mathematical
meaning of the function y(w, 7,). Let y(+) have a
zero at 7o (Re 7y > 0, Im 7y, < 0) (and consequently
also at —7) and let us set

Yr) = — 1) +7)y(r,m).  (3.26)
Comparing this expression to Eq. (3.17), it follows
that

¥(7, 7o) =J:°[_ p(w’; To)]e_im’ do’. (3.27)

If the correlation function y(7) vanishes for » = 7,
then the function —y(w, 7,) exists with the properties
(iii). Then also Eq. (3.17) is valid [consequence of
(iii)], and so is Eq. (3.27). We see then that the
integral [*[—y(w’; To)le"'dw’ of the function
—y(w, 7o), defined in the range 0 < w < o, is the
correlation function divided by (r — 7o)(t + 7§). We
note that the form of this integral is exactly the same
as the one defining the correlation function in Eq.
(1.1), except that the spectral density g(w) has been
replaced by the function —y(w, 7).

We also conclude that the existence of a zero 7, of
the correlation function is equivalent to the solution
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of an eigenvalue problem, since the function y(w, 7o)
with the properties (2.4) exists only if a zero of the
correlation function y(7) exists.

The statement (iii) does not make it in any way
easier to find the zeros of y(7) in any particular case
from the knowledge of the spectral density g(w). But
it does solve the converse problem of allowing the
determination of spectra g(w) such that the corre-
sponding correlation function y(r) has zeros at
prescribed points 7,. This is done by choosing an
appropriate function y(w, 7,) satisfying conditions
(2.4b) and (2.4c) and then constructing g(w) ac-
cording to the formula (2.4a).

So far we have confined our attention to the case of
a single zero. Our analysis can, however, be extended
to the case of several zeros and such a situation will
be considered in another publication.

4. PROPERTIES OF THE FUNCTION w(w; 7y)

If we set 7p =« — ifi (@ > 0, 8 > 0), the system
(2.4) becomes

¥'(@; 70) — 2By (w5 70) + (&2 + Bp(w; 70) = g(w),

(4.1a)
p(0; 79) = 9'(0; 79) = 0, (4.1v)
p(00; 7o) = y'(e0; 1) = 0. (4.1¢)

Let us multiply Eq. (4.1a) by ¢'(w, 7). Then
3y"%(@; 79l — 28y"%(w; 7o) + 3(o* + B9

X [y} w; )] = g(wly'(0; 70), (4.2)

or, after integrating over the w range from 0 to w and

on taking into account the condition (4.1b), we find
that

3y (w; 7o) + 3P + Bp¥H(w; )
- j o)/ (' 70) da + 28 f VHW's 79) oo
“4.3)

The left-hand side of this equation tends to zero as
w— oo, and the integral [ey'*(w’; 7y) do’ will be
larger than some positive number M if o > w,, so
that the expression

3y'¥(w; 7o) + He® + By(w; o)
L Vo' 7o) do

tends to zero as w — . From Eq. (4.3) it then
follows that

L (003 7o) de’

B = —1% lim

_ (4.4)
e [ s do
0
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If the function p'(w; 7,) is square integrable, then

L +3
1 ﬁ (@) (@'; 7o) do’
= — E .

1] 4.5)

®
f Pi(e'; 7o) do’
0

Another property of the function y(w; 7,) can
be obtained from Eq. (2.10) if we set 7 == 0. We then
have

© 1
J; Wo'; 1) do’ = — = (4.6)
We see then that the function y(w; 75) is integrable.
Let us solve the differential equation (4.1a) subject
to conditions (4.1b). We have

;) =1 f * o) sin o(w — ') doo’,
o JOo

(4.7a)
or, changing the variable of integration,

Y(w; 7o) = —l-f gl — )e? sin aw’ dw’. (4.7b)
&L Jo

Let us restrict o to the interval 0 < w < nfa. Since
' lies in the interval 0 < o’ < w, we have 0 <
o € nfeor < aw <7and 0 <sinaw” < 1. Re-
calling that the spectral density g(w) is nonnegative,
we see that if 0 < w < n/a, the integrand in Eq.
(4.7b) is also nonnegative, and hence
Pow; ) >0 for 0 < o< nfa (4.8)
The functions y(w;7,) and ¢'(w;T,) are con-
tinuous and they tend to zero as w — 0. Let us assume
that y(w; ) becomes negative for some range of w
values with @ > w, (certainly wy, > /). Since the
function y(w; 74) is continuous and tends to zero as
@ —> o0, it will certainly have a minimum for some
®,, > wy Where
P(@n; 7o) <0,
w'(wm; Tﬂ) = 05
Y'(@n; 7o) = g(@,) — (& + Bp(@y; 79) > 0.
Now for some range of values of & with v > w,,, the
function 9’ (w; 7y) Will be positive (it is equal to zero
when o = w,,) and monotonically increasing. Since
this function y'(w; 7,) is continuous and tends to

zero as w— oo, it will certainly reach a maximum
value at v = w, > w,,, where

%D,(wi; Tﬂ) > 0;
(w5 79) =0,
and

o 7o) = [1/(e® + fH]Ig(w) + 26y (w5 79)] 2 0,
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because 8 > 0 and g(w,) > 0. But w; is the first
inflection point of the function y(w;; 7o) which is
closest to its minimum at w = ,,, if we consider only
values of w > w,,. We have then shown that:

(a) The function y(w; 7o) must have an inflection
point that follows a minimum at o = o, where
P(wn; 70) <05

(b) At the inflection point ® = w; > w,,, we must
have y(w,;; 79) > 0, or p(w,; 7)) =0, if both § =0
and g(w;) = 0;

(c) In the interval o, < o < w;, the function
¥'(w; 7,) is monotonically increasing and positive,
except at o = w,,, where ¥'(w,; 7o) = 0. Hence
the function

ay
ww; 7o) = PO 7e) + | (07 do’

is also monotonically increasing in this interval.

An immediate consequence of the results (a), (b),
and (c) is that, if there is an w for which y(w; 7¢) < 0,
then there is certainly an o' > @ for which
p(w'; ) > 0; ie., if p(w; 7o) becomes negative for
some value of , then there is a value ' greater than
o for which it becomes positive again. In other words,
there can be no value w, for which y(w; 75) < 0 for
all o > w,.

5. EQUIVALENCE OF THE ZERO PROBLEM
TO A STABILITY PROBLEM IN MECHANICS

In the system of Eqs. (4.1) let us make the sub-
stitutions

w =1,
p(w; 7o) = X(1), (.1
g(w) = F(o).

Then the system becomes
X'(0) = 28X'(1) + («® + F)X(1) = F(1), (5.2a)
X(0) =X'(0)=0, (5.2b)
X{(o0) = X'(0) = 0. (5.2¢)

Now if we rewrite (5.2a) in the form
X'(6) = F(t) + 28X"(1) — («* + p)X(0), (5.3)
we see that this is the equation of motion of a particle
with unit mass upon which the following forces are
acting:

(a) The force F(t) = g(t), which is nonnegative for
all values of £ > 0;

(b) A force +28X'(t) proportional to the velocity
of the particle, not opposing the motion but in the
same direction to it (consequently, not a friction
force of the medium surrounding the particle);

(c) A force —(a* + pHX(t) proportional to its
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displacement, ie., an elastic force, with elastic
constant «® 4+ %, which tends to move the particle
towards the origin.

The forces F(t) and +28X’(z) have the tendency to
move the particle to infinity while the force
—(@® + B»X(t) has the tendency to bring the particle
back to the origin.

The particle starts at ¢ = 0 from the origin with
zero velocity. The requirement is that it returns to the
origin with zero velocity at ¢ = co. This cannot be
done with an arbitrary set of the parameters (28,
a? 4 B%) or («, f) once the force F(¢) is given. As a
matter of fact there may be no values («, ) for which
X(0) = X’(0) = 0. In this case the particle will
oscillate around the origin with increasing amplitude,
i.e. its position is unstable.

Let us define as stable a solution of the system of
Egs. (5.2a), (5.2b) which satisfies also Eq. (5.2¢). In
this case the particle returns back to the origin with
zero velocity at f = oo, ie., it does not oscillate
indefinitely in time with a finite amplitude. In this
case the particle will eventually return to the origin—
its position is a stable one at ¢t = co. This situation
arises when the parameters (x,f) are properly
chosen ; whether this is in fact possible depends on the
time-dependent force F(¢). It is obvious then that our
problem as to the existence and location of zeros of
the correlation function in the lower half and on the
real axis of the complex 7 plane is equivalent to the
stability problem in mechanics, which we just dis-
cussed.

6. EXAMPLES

Example 1

As an illustration of the equivalence of statements
(i) and (iii), we first give an example which can be
solved explicitly. Consider the case when the power
spectrum is given by the expression

”4
62-2 +‘u2

(A + 4ud)0® — 12u0® + 6w)e™,

(6.1)

where 2 > 0, u > 0; if g(w) is to be nonnegative, we
must also assume that A% > 242,
Evaluating the integral (1.1), we find that

g(w) =

. \
LA SR R A+ ip).
P+ et i) (r + iw)(r + A+ ip)

(6.2)

We see then that the correlation function vanishes for
1o =A—ipand —7§ = —1 — iu.
Next let us solve the differential Eq. (2.4a) subject

()= —
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to conditions (2.4b). We set 7y =a — if (2 > 0,
f 2 0), where «, § are unknown quantities that may
be determined by using condition (2.4c). We obtain
the solution

1_# [ 6
6 2% + u* Lafa® + (B + p%)°
12
(o + B+
——————-—12 Ce™
(o + @B+ w7
+ —————6 Dwe™* + ——————6
o + (8 + p’ of + (B + u)’
2 + 4"‘2 3 —Hno

x Eleh® 4 —2 T W 3 ] 6.3
T B+ 6.3

p(w; To) =
X AeP® sin aw —

%X Bef® cos aw + He

where
A=@B+pf — o — 4u(B + 1)

2 _ 3,2
a2+(ﬂ+ﬂ)2«ﬁ+ﬂ) “)

12 + 4‘u2

TG g P oG,

(6.43)
B=ﬁ+u+E:%§EE
e e R e
@%ﬁ%ﬁw+m—w} 6.4b)
2
C=ﬂ+u+3:%%;E
x@—m+mfﬁ&f;9 é?gf}
@%ﬁ%§w+m—w} (6.40)
D=ﬁ+é+w(_ﬁi$?w)
fféiw@aiéfw“+”1xi
- E% B + ) — 2u. (6.4¢)

If the function y(w; 7o) and its derivative are to tend
to zero as w — co[condition (2.4c)}, we must have

A=B=0, 6.5)
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or
2
A2 4 44t
2 — A N o (66
x (-G n G =0 69
2=
Bl G+
2 2
X (2#—(ﬂ+u)%) =0. (6.7)

To solve Egs. (6.6) and (6.7) for « and §, we note that
the expression 4a2(f + u)B — (a® — (8 + u)>)4 must
identically vanish. Hence
4B+ (B — W) — (& — (B + w?)
X[(B—pwt+ 2 —a]=0, (6.8)

or
ot + [4(F* — p) — (B + p)* ~ (B — W — 2]

+ B+ W —w+ #1=0. (69

Now Eq. (6.7) is equivalent to the equation

B + 3wt + 20%(B + p)* — (A + 4p?)
X (B + w) — 2(2% + 4u®}e® + (B + p)?

X [(B— @B+ w*—4p®) + 4 3u] = 0.
(6.10)

If we multiply Eq. (6.9) by (8 + 3u) and subtract
it from Eq. (6.10), we obtain the equation
(B — W46 + ) + 44* + 2o + (B + p)?

X {4u(B + p) — 4* — 23] = 0. (6.11)
This equation shows that either

B=up (6.12)

or
2 4u(B + p) — 4 = 2
4u(f + p) + 4* + 22

First let us consider the case § = u. Then from
Eq. (6.7) we obtain either

o= —(8 + u) (6.13)

w=A (6.14)
or

« =2y (6.15)
Now for the pair of values « = 4, § = u we obtain,
from Eq. (6.6), 4 = 0, while for the pair of values
a=2u, f=pyu we obtain [again from Eq. (6.6)]
A = —2% + 4%, and this quantity is zero only if
A=2u, in which case the pair « =2u, f=pu
becomes a = A, f = u. Then, if both Egs. (6.6) and
(6.7) are to be satisfied, we must have « = 4, 8 = u.

Next let us consider the case when « is given by

D. DIALETIS

Eq. (6.13). Substituting for «® from Eq. (6.13) into
Eq. (6.7), we obtain B = f + 3u = 0; this condition
can never be satisfied since § > 0, u > 0. We see
then that if both Eqs. (6.6), (6.7) are to be satisfied,
Eq. (6.11) must also be satisfied. Butif § ¢ u, 8 > 0,
u# > 0, and Eq. (6.11)is satisfied, then Eq. (6.7) cannot
be satisfied. We have then the final result that the
only pair of values «, § which satisfies both Eqgs. (6.6),
(6.7 is « = A, f§ = u, so that 7o = A — iu. For this
pair of values we obtain the following eigensolution
of y(w; 7):
1_#
6 12 + Iu2
The above example illustrates that the statement
(i), which is equivalent to the statement (i), does not
seem to help appreciably in the determination of the
zeros of the correlation function, but it does make it
easy to determine spectra g(w), which are such that
the corresponding correlation function y(7) has zeros
at prescribed points 7.

w’e e,

Yoo =4~ ip) = (6.16)

Example 2

Next, we give an example of a quasi-monochro-
matic spectral density for which the corresponding
correlation function has no zeros anywhere in the
complex 7 plane. Such an example is furnished by the
spectral density

8(w) = (¢"*'p)) w®e ™, (6.17)

where p > 0, ¢ > 0, and p 3 1. The corresponding
correlation function is readily found to be

() = ¢**/(g + i) (6.18)

We see that y(r) does not vanish for any complex
value of 7.

Next we show that the spectral density g(w), given
by Eq. (6.17), is quasi-monochromatic if p 3> 1. We
define

Aw = [w? — @2, (6.19)
where the average, denoted by a bar, is defined by
[T o
flo) = "————— (6.20)
f glw) dw
0

The spectral density will be said to be quasi-mono-
chromatic if Aw/d K 1.
For the spectral density g(w) given by Eq. (6.17),
we have
w? = ()*p + D(p + 2),

s =g p+ 1,

(6.21)
(6.22)
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so that, according to Eq. (6.19),

Aw = (@) (p + D (6.23)
We see that the ratio
Awld = 1/(p + 1} (6.24)

is much less than unity if p 3> 1.

Example 3

Now using some results derived in the previous
example, we determine a spectral density g(w) with
its corresponding correlation function having a
single pair of zeros in the complex = plane. For this
purpose let us define the function

q9+1 a‘)p‘e—qm
o® 4 B¢ p! ’
where p > 1, ¢ > 0, « > 0, # > 0. This function is

similar to the spectral density given by Eq. (6.17).
Then, according to Eq. (6.18),

.[aw[—w(w; le " dow = —

Yo7 =a — if) = (6.25)

1 qv+1
of + B2 (q + i)
(6.26)

The function y(w; 7,) satisfies the conditions (2.4b),
(2.4¢) and

;7o) = 1 a7 (p — qw)o™ e, (6.27)
1P » 10, oc?‘ + /32 p! ) .
v 1 g
viwsm) =3 + 8 p!

x [(p — Dp — 2pqo + ¢*o?lw® %%, (6.28)
Substituting for u(w;7,) and its derivatives in
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Eq. (2.4a), we obtain the following spectral density
function:

qD+1
g(w) = 2 ol
X [{«® + (8 + 9)*}0® — 2p(8 + Q) + (p — 1)p]
X 0% (6.29)

This spectral density function is nonnegative if
(p — a2 > (B + g)*

From Egs. (6.25) and (6.29) we see that in the
solution of the system (2.4) different spectral densities
g(w) may lead to the same eigensolution p(w; 7¢). In
this example the different spectral densities g(w)
correspond to different values of the set «, § with
o + % equal to a given constant, and y(w; 7o)
depends only on «? + $2 and not on the particular
values « and f.

Making use of Eqgs. (2.10) and (6.26), we find that
the corresponding correlation function is

v = — (r—a+if)

1
az + ﬁﬁ
, gt
X —_—,
(r+a+ zﬂ)(q Fpse
We see then that y(7) has a single pair of zeros at the
points 7o = & — if and —7F = —a — i}, and y(0) =1,
so that the integral of the spectral density g(w), given
by Eq. (6.29), is normalized to unity [in accordance
to Eq. (1.4)].
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This paper rederives the Bogoliubov/Sadovnikov classical-equilibrium-correlation Green’s function
hierarchy by using the double-time theory of Rostoker. Thus the traditional variational technique

is avoided.

1. INTRODUCTION

NE nced only refer to Zubarev’s® review paper

on quantum statistical Green’s functions to re-

alize the importance of the concept of these functions

not only in quantum field theory but also in quantum
statistical mechanics.

In classical statistical mechanics Balescu demon-
strated the utility of causal and anticausal Green’s
functions in the initial-value solution of the Liouville
equation? and also in the study of transport co-
efficients.?® This technique was also used by Severne?
in a study of systems in uniform external fields.

The question of extending the quantum statistical
Green’s approach to classical statistics has been raised
by Bogoliubov and Sadovnikov.? These authors
established a hierarchy of classical equilibrium
Green’s functions using a variational technique on the
single-time distribution functions of the Bogoliubov—~
Born-Green-Kirkwood-Yvon hierarchy.® Recently
Sadovnikov? employed this hierarchy in a study of the
Boltzmann equation,

In the present paper the causal Green’s functions
are used to relate the double-time system function® of
Rostoker®® to the well-known single-time system
function. Reduced double-time distribution functions
are defined in which no particles are singled out as
test particles. These reduced functions, which obey
the BBGKY equations in their later-time variables,
are directly related to the correlation functions of the

1 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.:
Soviet Phys.—Usp. 3, 320 (1960)].

2 R. Balescu, Sratistical Mechanics of Charged Particles (Inter-
science Publishers, Inc., New York, 1963).

3 R. Balescu, Physica 27, 693 (1961).

4 G. Severne, Physica 30, 1365 (1964).

5 N. N. Bogoliubov and B. I. Sadovnikov, Zh. Eksperim. i
Teor. Fiz. 43, 677 (1962) [English transl.: Soviet Phys.—JETP 16,
482 (1963)].

¢ D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory
(McGraw-Hill Book Company, Inc., New York, 1964).

7 B. 1. Sadovnikov, Physica 32, 858 (1966).

8 The term ‘“‘system function” is used as synonymous with
N-particle function.

? N. Rostoker, Nucl. Fusion 1, 101 (1961).

B-S theory with the result that obtention of the
Green’s hierarchy is straightforward.

2. THE SYSTEM

The system considered is conservative, contained
in a box of volume V, and consists of N identical
particles interacting via central two-body forces. All
results are stated in the thermodynamic limit, N — oo,
V — oo, for which it is assumed N/V — n. Integrations
extend over the entire phase space of the variables
concerned, and when performed by parts assume that
all distribution functions and Green’s functions obey
periodic boundary conditions in positional space and
homogeneous boundary conditions in momentum
space such that they approach zero exponentially as
any momentum variable on which they depend
approaches infinity.

3. SYSTEM FUNCTIONS AND THE
LIOUVILLE EQUATION

The single-time system distribution function
D,, (I, t),"* the probability density that, at a particular
time ¢, the system’s particles occupy the phase points
I', satisfies the Liouville equation

oD
—ét_l(F’ 1) = [H\D); DT, 1)}, 6y
where
dA 0B 04 0B
A;Bl= 3 |\— ———"=— , 2
4; B] 15:2;21\7(8&- op;, Op,; ax,-) @)
and
p:
HyM= > =4+ 3 o 3
155N 2m  1<i<GsN

@;; being the scalar potential between particles i and

10 The symbol I" denotes the entire set of phase points (x, p,,
Xy, P2, ", Xy, Pxy) and (x;, p;) is denoted briefly as X;. Where
reference is made to particular points in the system rather than
particular particles, the symbol R, = (z;, /i,«) is used.
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J- More explicitly the Liouville equation is
9y _ 5 (%94.9D: _ by, 921)
ot 15;szv(axj op;, m ox;/

which may be abbreviated by appropriately defining
a Liouville operator L such that

aDllat = ""iL.Dl .

@

&)

This equation may be solved as an initial-value
problem by defining causal and anticausal Green’s
functions.? The causal function is defined to be
the solution of

0t + iL)g(THT't) = fi 8(X, — X)o(t — ') (6)

=6 -1 —1), (6a)
and to satisfy the causality condition!
gt/ty=0 for t<1t. )

The unprimed differential operators in (6) only act on
the unprimed variables of g.
One then has

DT, ) = f AT DA, 1) (8)

This solution shows g(I't/T"'t,) as a transition proba-
bility that the system in the state I'" at time ¢z, moves to
the state I' at a later time #. Thus one must have

©)

One may now define the double-time system
function of Rostoker’s fluctuation theory® as

DTty = g(Tt{T') D (T't');

gIeI't"y —> (I — I).

(10

that is to say, D,(I't/T''t') is the probability density
that the system is at I'" at time ¢’ and at T" at a later
time ¢. In view of (9) the initial value of D, is given by

Dy(Tt[T't") > 6(T — T")D(I"?). ¢9))]
Also since g obeys the Liouville equation in its later-
time variables when ¢ > ¢’, the double-time system
function also obeys it under this condition.

4. REDUCED DISTRIBUTION FUNCTIONS

Instead of following Rostoker and defining a
reduced system function (T'¢/X;#') such that
w(Tt/X(t'){V is the probability density that particle 1
is at X] at time ¢’ and the system moves into the state

11 The notation used here treats primed variables as corresponding
to earlier times and conforms with that of Balescu (see Ref. 2).
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Iattime¢, asymmetrical function'V'(I't/Xt")is defined.

¥(@yX)= 3 J‘ Al DTHI")8(X’ — X,
B (12)

No particle is singled out at the earlier time, that is,
W(I't{X't") is the probability density that at ¢’ thereisa
particle at X’ and at time ¢ the system occupies the
point T'. Reduced functions are defined as
‘?-S(Xlx2 e XJ/X’I’)

= V* f X, dXgpe - XY TYX). (13)

As an example, the fluctuation of density in phase
space is given by

n(ROA(R'LY)
= f AT dU' DTt S 8(R — X,)0(R’ — X.)
15 SN
1Lns<N (14)
= nF(Rt/R't’). (15)

The generalized class of dynamical variables defined
in the Bogoliubov-Sadovnikov theory is

Ag x,.---»(0) = > (R, —X,)

1giy< " <ig<N

X O(Ry — X, ) -8R, — X,), (16)
so that, instead of (15), one may write

(4r(DAg(t)) = nFL(Re/R'Y). (17)

In general,
ns
(Ap.g, ... », (D4 (1)) = o1 F(RR, - - - Ry[R'D).

(18)

In terms of particle probabilities, this is thus the
probability density that there is a particle at (R, ¢')
and an arbitrary set of s particles occupying the phase

points Ry, R,, * - - , R, in a particular array at time 2.
The 5’s obey the BBGKY hierarchy equations.

5. EQUILIBRIUM CORRELATION GREEN’S
FUNCTIONS AND THEIR HIERARCHY

The classical analogs of the quantum statistical
double-time retarded and advanced Green’s functions
are, respectively,!?

G, (t/t) = K(t — 'X[A(1); B,

Gty = —X(t' — tX[A(t); B(t))D),
where J is the Heaviside function.

(19)
(20)

12 From the definition of double-time averages in terms of D,,
one can show that these averages may be expressed in terms of
classical Heisenberg operators Ag(f) == e*Z¢4(0)e*%*, highlighting
the analogy with quantum statistics.
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For brevity, only retarded functions are considered
here.
In the equilibrium case

D} = Qyle Hxl, @y

where 8 = kT and Qy is the partition function. Using
(21) one can show on integrating by parts that'?

([4(0); B@)) = 67XB()[4(@); HyD).  (22)

The dynamical quantities are considered to depend
on time only via the time dependence of phase
variables, so that they satisfy

(dldn)A{L'(1)} = [4; Hy]. (23)
Combining (22) and (23) gives
([A(1); B = (1/6)(d[dr){A@)B(E)).  (29)
Now
(Arp(t) Ax (")) =¥ (T'[X’t") (25

so that one may writel4
(9/98)(Ar(t)Ax (1)) = [Hy; (Ap(DAx ()] (26)
Equations (23), (24), and the fact that the system
is conservative enable one to rewrite (26) as
(0/01)([Ar(2); Axt)]) = [Hpy; {[Ar(t); Ax(t)]).
27
Using (13), (18), (24), and (25), one can show that
([Axx, .. x,0; Az ()D)

= V’;i: fdl"N “H[Ap(t); Ax()]). (28)

Therefore multiplication of (27) by V*rf/s! and inte-
gration with respect to X,,;, X,,5, -, Xy yiclds a
hierarchy of Green’s functions.

/0t ([Ax x, ... x,(0);4x (t)])
= [HX:X; - X,); ([Ax x, ... x,(1); 4x()D)]
+ (s+1) Y dX,,

1<i<s

X [@i.0115 4y, - .. xx,,,0; A OD].  (29)

H, is the Hamiltonian of s interacting particles.

The hierarchy equation (25) of the B-S paper can
be shown to be the one-sided Laplace transform of the
above equation.’®

Since the system is in equilibrium, D; does not
depend explicitly on the time; and noting that

12 One can show that the double-time averages are expressible in
terms of dynamical quantities which are solutions of (23), that is,
A@t) = ¢/444(0), and which therefore are not operators. See J.
Weinstock, Phys. Rev. 139, 388 (1965).

14 Note that a hierarchy for the correlation functions may be
written down valid for both the nonequilibrium and equilibrium
cases.

15 See Ref. 2, APP. 1, for a concise discussion of such one-
sided Laplace transforms.

HERZEL

g(T't/T’t’) is the solution to (6), one may write it as
g(T/I’; t — t'). Hence, according to (10), one may
write

Dy(Te[T't") = Dy(T[T"; 1 = 1), (30)

and therefore the functional form of the fluctuations
is

(ABE)) = o(t — 1). €2y

If one now takes the Fourier transform of (29)
with respect to T = ¢ — ¢, one in fact has a one-sided
Laplace transform since g(#/t') is zero for t < ¢,
so that

—iE{Ax,x, .. %, Ax Mg
= [H(X, Xz - X,); {{(Ax,x, - ‘X, Ax gl

++1) 3 | Xl Pens ({dx,. . x X005 AxDE]

1<i<s
+ ([4x,x, .- x,(t); Ax()D/2m, (32

where
(s By = 5 f B AR BED,  (33)

and, in deriving (32), it has been assumed that the
imaginary part of E is positive definite.

The initial-value term may be expressed in terms of
the reduced equilibrium single-time distribution
function F? defined by

FX,X, - X)) = V* J dT™D0.  (34)

One can show that [the primed time has been removed
in respect of (30)]

n8
<[AR1R2 Ce R, ;AR']> = :‘9"‘ z fdxl dX2 A dX,

f1<j<s

x TT8(R, — X)R, — X); 6 — X)IFY. (39

#4
Now using

f_:dx £0) % 8x — x) = —5%, £, (36)
one finds that
xy-x AxD =5 3 [0 = X); Fll. (37)

On substitution of (37) in (32), the hierarchy pre-
sented as equation (25) of the paper by Bogoliubov
and Sadovnikov is recovered.
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The boundary-value problem for the linearized Boltzmann equation is shown to have a unique solution
for a bounded domain (two walls separated by an arbitrary distance). The proof applies to a general
class of models with finite collision frequency and appears to be easily extendible to similar problems in
two and three dimensions. It differs essentially from previously known proofs because no limitations are

put on the distance between the walls.

1. INTRODUCTION

HE solution of boundary value problems in
kinetic theory has been treated by many approxi-
mate methods, but until now the question of proving
the existence of the solution has remained substantially
untouched—even for linearized flows. In fact, either
only trivial boundary conditions have been taken into
account,! or the domain has been assumed to be
sufficiently small (of the order of a mean free path).2-3
Rigorous existence proofs have only been presented
for models of the Boltzmann equation, either directly
by the method of integral iteration* or, indirectly, by
the method of “elementary solutions.”

In the present paper we present a rather simple
proof of existence and uniqueness for the linearized
Boltzmann equation with finite collision frequency.
Therefore, the proof applies to rigid sphere molecules
as well as molecules interacting with any cutoff
intermolecular potential. Any linearized molecular
model, including the recently studied model with
velocity-dependent collision frequency,®? is also
contained in the class of equations to which the proof
applies.

The domain is assumed to be a slab and the bound-
ary conditions have a rather simple but realistic form,
i.e., the distribution function is given for emerging

* On leave of absence from Applicazioni ¢ Ricerche Scientifiche,
Milano and Universita di Milano, Milano (Italy).

1 H. Grad, in Rarefied Gas Dynamics, J. A. Laurmann, Ed.
(Academic Press Inc., New York, 1963), Vol. I, p. 26.

2 D. R. Willis, in Rarefied Gas Dynamics, L. Talbot, Ed. (Aca-
demic Press Inc., New York, 1961), p. 423.

3 H. Grad, “High Frequency Sound According to the Boltz-
mann Equation”, Joint AFOSR-NSF Report, AFOSR-66-0145,
MF-49 (New York University, 1966)—to appear in the SIAM
Journal.

4 D. R. Willis, Princeton Univ. Aeronautical Eng. Rept. 440
(1958).

5 C. Cercignani, “Elementary Solutions and Boundary Value
Problems in the Kinetic Theory of Gases”—Brown University
Report (1965).

8 C. Cercignani, Ann. Phys. (N.Y.) 40, 454 (1966).

7 C. Cercignani, Ann. Phys. (N.Y.) 40, 469 (1966).

molecules at each wall. The problems which are
considered are steady in a general sense, i.e., a
dependence on time through an exponential factor
e’ with Re s > 0is allowed. This implies the existence
and uniqueness of Laplace transformable solutions in
time-dependent problems, as well as the existence
and uniqueness of the solution for forced wave
problems (s = iw).

2. BASIC EQUATIONS AND OPERATORS

Consider a one-dimensional problem between two
parallel plates for the separated time equation:

sf + ¢,(0f]0x) = Lf, @1
where f is the perturbation of a basic Maxwellian f;.
We suppose that the emerging distribution f, = f, is
given at x = —3d(c, > 0) and f=f_ is given at
x = 3d(c, < 0). We restrict to suitable collision

operators L by requiring that they can be split into
two parts as follows:

Lf = Kf — v(o)f, 2.2)
where ¥(c) is a multiplication operator and X is such
that »#Kyt is a completely continuous operator
in the Hilbert space ¥ of square summable functions
with respect to the weight f;. It is well-known!-® that
the rigid spheres interaction and a general intermolec-
ular potential with angular cutoff satisfy the above
conditions. It is also very likely (and worthwhile to
be proved rigorously) that more general cutoff
operators (with radial rather than angular cutoff)
enjoy the above properties.

As a consequence of these properties one can show
(Appendix A) that a real number A exists such that, if

Hf = Kf + Mf, (2.3)
0 < (f, H) < (A + DO, 1), (24)

8 .. Finkelstein, Ph.D. thesis, Hebrew University, Jerusalem
(1962).

then
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where round brackets denote, as usual, inner product
in the J space. Of course, if A is a number such that
(2.3) and (2.4) are satisfied, then any 4 > A, is also
such a number. It could also turn out that min A = 0,
in which case H can be taken to be equal to K.

As a consequence of Egs. (2.2) and (2.3), we have

Lf = Hf — (A + of, @.5)

and consequently one can rewrite Eq. (2.1) as an
“integral” equation:

/=t + UH,
where

Jo=Fexp [— (ii%’i_s(g + xsgn cw):l, Q.7)

2.6)

1 [(A + 1) + 5]
Ug =~ B N
& Co f—id 88D ¢z P { [ o yl}
x g(y)dy, (2.8)
fis for ¢, >0,
= 2.9
4 {f_, for ¢, <0. 23)

For a steady problem we have merely to set s = 0.
In the following it is useful to consider a Hilbert
space J. of square summable functions with respect
to both x and ¢ and with the weight p(c)f®(c), where

p(©) = {(A + DOP + (#¥adDc2. (2.10)
The norm in such a space is given by
2 ba (0) 2
1=, dx [ denor@ises o, @1n

and because of the Fubini theorem,

2= iflel= sz, @12
I flI% and || |3 denote the partial norms
lglt = f dep@f OO ©F,  (@13)

ta
Islz = [, dx leGo (214)

where C is the three-dimensional velocity space.

3. EXISTENCE AND UNIQUENESS
IN THE LARGE

We present here a proof of the following:

Fheorem: The integral equation form of the Boltz-
mann equation, Eq. (2.6), has one and only one
solution f € X, for any given f such that | £\ is finite.
This solution f can be obtained in principle by a con-
vergent iteration procedure.

CARLO CERCIGNANI

The above theorem is an immediate consequence of
the contraction mapping theorem, the fact that f, as
given by Eq. (2.6) belongs to X, and the following:

Lemma: The operator UH is a contraction operator
when acting on functions belonging to X.

To prove this lemma, we first note that for any
square summable g(x),

1Ugll. < [1/p(e)] liglle - @G.0)

This inequality is a matter of a rather elementary
exercise; details are given in Appendix B. From Eq.
(3.1) it follows that

IUHFIZ = | g UHf 1|2 < o7 1HS 1|
- f " dx f dep(c) |HF 1S ¥(c)
—3a

$a
= f_,}dd" gz = [IVglels, (32

where || |l denotes the norm in the more usual
Hilbert space ¥, while

J = p¥Hpt; g = plf. 33
But it can be easily proved (Appendix C) that
ITglk < o liglg = IfIIE, (3.4)
where
0<a<1.
Therefore
IUHf I3 <o [Iflele =2lf1} O <a<1)
@3.5)

i.e., UH is a contrattion operator, as was to be shown.

4. CONCLUDING REMARKS

A theorem of existence and uniqueness for the
boundary value problem of a rarefied gas enclosed
between two parallel plates has been given. With
respect to the previously known results,*® we stress
the fact that the proof is not for existence in the small
but in the large; i.e., the separation between the walls
is arbitrary.

The proof applies to a large class of collision
operators, including all the cutoff interactions con-
sidered by Grad® and the rigid sphere interaction
considered by Willis.2 It is also very likely, although
a formal proof has not been presented here, that more
general cutoff operators (with radial rather than
angular cutoff) are also included in the same class.
This circumstance appears to be important since a
full proof of this statement would give a sound
mathematical basis to the theory of collision operators
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with radial cutoff, i.e., with a much more realistic
cutoff than the angular one. We notice that the ques-
tion of the kind of cutoff is not merely a matter of
convenience, but influences essentially predictions of
(at least in principle) experimentally verifiable results,
as, e.g., the far-field disturbance produced by an
oscillating wall. Grad® presented results for any
angular cutoff intermolecular potential, but the
same potentials with a radial cutoff would yield
essentially different results.

The present proof should be easily extended to
two-dimensional and three-dimensional internal prob-
lems, while for external flows a preliminary study of
the far field should prove expedient.

Finally we remark that, although we proved
coavergence of the successive approximations method
in the X space, convergence in more usual norms,
weighted with »(c)f?, lc,| f© or simply £ imme-
diately follows, since these norms are bounded by a
constant times the norm in X.
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APPENDIX A

Here we want to prove that any collision operator,
which can be split according to Eq. (2.2) with X such
that v2Kv—% is a completely continuous operator in
¥, can also be split according to Eq. (2.2), where
A > 0 and H satisfies Eq. (2.4).

In fact the complete continuity of »~3Ky—* implies
its boundedness and consequently

I(f, KNI < kGf, f) (AD

for some positive k. Besides it is well-known that

(£, Lf) L0, (A2)

(/s Kf) < Of. 1) (A3)

Equations (Al) and (A3) imply that a nonnegative
value of 4 exists such that

=20%.1) <(f, Kf) < 6f .

Hence, if H is defined by (2.3), Egs. (2.4) and (2.5)
follow.

ie,

(A9

APPENDIX B

Here we want to prove that

1Uglls < [1/p(c)] ligllz»

where the norms are defined by Eq. (2.14) and p(c)
by Eq. (2.10).
We have, since Re s > 0:

(B1)

y|]g(y) dy

le.|

Lo 1 (A + () 2
d —_—— X~ dy|.
< leoft Jta x f_ifo [ o |x yl] |g(»)| dy (B2)
We can assume that ¢, > 0, since no essential differ-
ences arise. Then we can put Therefore
o=+ Due)lcl, (B3) 1Ugls < (e 1ul g2, (B6)

i‘d @ @
(gl < 5 [ax [ av [ deexp—alx — i
x exp [—a |x — z|] |g(y)| 182
= (1/le®)(Igl; 4 1gD.> (B4)
where ( , ), denotes the inner product which gen-

erates the norm given by Eq. (2.14) and A is an integral
operator with the kernel

14
A(x, y) = fm dz exp [~o(2z — x = )]

— (llza)[e—aly—zl — e—a(L—v—z)], (BS)

where M(x,y) =4(x + y + [x — y| = max (x, ). 4
is compact and self-adjoint.

where 4 is that eigenvalue of 4 which is largest in
absolute value. To find u we consider the eigenvalue
equation

Ag = pg, (B7)

which, by double differentiation, is seen to be equiva-
lent to

(d*pldx?) + BPp = 0, (B8)
p(3d) =0, (B9)
¢(3d) = ap(—1d), (B10)
where
B = (1/p) — o2 (B11)

The solutions of Eq. (B8) satisfying condition (B9)
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have the form
@ = Csin [f(3d — x)), (B12)

where C is an arbitrary constant. In order that Eq.
(B10) be also satisfied, we must have

B cos fd + asin fd = 0; (B13)
i.e., since § # 0;
tan Bd/d = —1/ud. (B14)

Since ad > 0, it is easily seen (e.g., by sketching a
graphic representation of tanx and —Kx with
K > 0) that there are always two real values of § in
any strip AKn < BL<2K+ ) (K=--+, =2,
-1,0,1,2,--+), and the nearest to the origin are
one between — 7 and —3# and another one between
4w and =. Therefore all the real solutions of Eq.
(B14) satisfy

|Bd| > 3. (B15)

Now, it is easy to show that there are no complex
values for 8 since Eq. (B14) cannot have more than
two complex solutions in any strip of width 27 parallel
to the imaginary axis of the SL plane. This is proved
by writing

~—tan™! (Bdfad) = pd (B16)

with some fixed determination for tan—* and applying
the argument principle. Therefore Eq. (B15) applies
to any f and, because of (B11),

1 < 1
o2 + ﬂz o? + 7r2/(4d2) )
Then, thanks to Eq. (B6) and (B3), we can write

|l = (B17)

1 1
leof® (A + D’[W)T’

lea[®

Igllz

gl < ; gl

ad:
_
(o)

as was to be proved.

(B18)

CARLO CERCIGNANI

APPENDIX C
Here we have to prove that

Iglle <eliglie 0<a<1), (&)

where J = p~¥Hp~}. Since J is a self-adjoint operator
in J, its norm is the largest of the absolute values of
the lower and upper bounds of its spectrum. Since

J = p¥Kp=t + Ap(c)/p(c)), (C2)

if A# 0, J has both a continuous and a discrete
spectrum. The continuous spectrum is constituted by
the values o taken by A»(c)/p(c) and therefore

0<a<HA+1DLI; (C3)
i.e., the continuous spectrum is bounded away from

1. If we now prove that any « > 1is not an eigenvalue,
i.e., we cannot have

(7t 9) + A p(OI0(0) = apl©), (x> 1)
(C4)
for any ¢ € JC different from zero, then (C1) will be
proved. Let us take the scalar product in J€ of ¢ times
both sides of Eq. (C4); we have

(oo, K(p~49)) + (/p)g, ¢) = « @l
(C35)
Now, because of Eq. (A3), the first term in the left-
hand side is smaller than (vg/p, ¢) and consequently
A + IXC/P)e, 9) 2  19lgs (Co)

ie.,
lole < 2E1 ‘(3 ?, q)) <G+ 1)(3 ?, w)
« \p P

O<a«<D, (C7)
where « is positive because of Eq. (2.4) of the main
text and not smaller than 1 by assumption. But Eq.
(C17) cannot be true, even with the equality sign,
because, apart from a zero measure set, (A + 1)y/p <
1. Therefore, for « > 1, Eq. (C4) does not have any
solution ¢ € X which is different from zero in a set
of nonzero measure, as was to be proved.
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A state of an infinite system in classical statistical mechanics is usually described by its correlation
functions. We discuss here other descriptions in particular: as (1) a state on a B* algebra; (2) a collection
of density distributions; (3) a field theory; (4) a measure on a “space of configurations of infinitely many
particles.” We consider the relations between these various descriptions and prove, under very general
conditions, an integral representation of a state as superposition of “extremal invariant states” corre-

sponding to pure thermodynamical phases.

1. INTRODUCTION

HE idea of representing states of physical systems

by states on B* algebras has been present for some
time.! Actually the word “state,” used to describe a
normalized positive linear functional on a B* algebra,
is borrowed from physics. Recently, a number of
nontrivial results of general nature have been
obtained>? concerning the use of B* algebras in
physics. In the present paper we apply some of these
results to classical statistical mechanics.

The use of states in statistical mechanics is not new.
The well-known ensembles of Gibbs correspond to
states both in classical and quantum statistical
mechanics. They describe, however, only systems
with—essentially—a finite number of degrees of
freedom. If one takes the limit of an infinite system
(the thermodynamic limit), another description is
needed, and is given by the correlation functions
or the reduced density matrices. The correlation
functions in classical statistical mechanics and the
reduced density matrices in quantum statistical
mechanics may be considered as “states” on algebras
of unbounded operators.®® Dealing with unbounded
operators is, however, a serious mathematical draw-
back, and we here make use of a B* algebra which
may bethought of as generated by bounded functions
of these unbounded operators.

1 See (a) L. E. Segal, Mathematical Problems of Relativistic Physics
(American Mathematical Society, Providence, Rhode Island, 1963),
and references quoted there; (b) R. Haag and D. Kastler, J. Math.
Phys. 5, 848 (1964).

£ S, Doplicher, Commun. Math. Phys. 1, 1 (1965).

3 D. Ruelle, Commun. Math. Phys. 3, 133 (1966).

1§, Doplicher, D. Kastler, and D. Robinson, Commun. Math.
Phys. 3, 1-(1966).

§ D. Kastler and D. Robinson, Commun. Math. Phys, 3, 151
(1966).

¢ D. Robinson and D. Ruelle, “Extremal Invariant States,”
Ann. Inst. H. Poincaré (to be published)

7 0. Lanford and D. Ruelle, J. Math. Phys., 8, 1460 (1967).

8 D. Ruelle, J. Math. Phys. 6, 201 (1965).

* D, Ruelle, Quantum Statistical Mechanics and Canonical
Commutation Relations, F. Lurcat, Ed. (Gordon and Breach
Science Publishers, New York, 1967).

We proceed by giving some motivation for the
definitions and assumptions which we make below.

The systems considered in classical statistical
mechanics are formed by a large number of “particles.”
These particles may be points in R* or on a lattice,
or points in R¥ with a velocity vector, or more
complicated objects like continuous mappings of the
interval [0, 1] into R. Furthermore, a system may be
composed of several species of particles. There is thus
a naturally defined one-particle space 7. In general
there is also a natural group G acting on T.
Typically, G might be the Euclidean or the translation
group in » dimensions or a lattice group.

Let 7" be the symmetrized product of n copies of
T. The sum T of the T* is the space of configurations
of an arbitrary finite number of particles. If we have
a locally compact topology on T, we may now define
states “‘with an essentially finite number of particles”
as probability measures on 2. Tt would be natural
to represent the states of statistical mechanics, which
have typically an infinite number of particles, by
probability measures on a new space & of configura-
tions of an infinite number of particles.

We consider, as states of classical statistical
mechanics, states which are invariant under the
action of G and have the property that their restriction
to a compact region has an essentially finite number
of particles. These states are exhibited as states on a
B* algebra %, actually an algebra of functions on <.
A large part of the paper consists in obtaining
equivalent characterizations of these states and in
connecting them with the correlation functions. The
space L mentioned above appears as a subset of the
set of pure states on U, and this imbedding yields
a natural compactification of X.

2. ASSUMPTIONS

It is convenient, for reasons of conciseness and
generality, to axiomate that part of classical statistical
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mechanics (CSM) in which we are interested. We
call CSM theory a triple (7T, G, r) satisfying the
following properties:

(T)- T is a locally compact space called one-
particle space;

(G) - G is a topological group;

(7) - 7 is a homomorphism of G into the homeo-
morphisms of T such that the mapping (g, x) — 7,x
of G X T onto T is continuous.

A number of the results which we derive do not
depend upon the existence of a topology on G. Our
assumptions are, however, not restrictive since, when
G is given, the discrete topology, the continuity of
7:G X T— T, is ensured by the fact that =,:7— T
is a homeomorphism. For some results we need a
stronger assumption than (7'), namely:

(T”) - T is locally compact with countable basis.
This means that the topology of T is generated by a
countable family of open sets, and is equivalent to
requiring that T is countable at infinity and that its
compacts are metrizable (see Ref. 10, Secs. 8.3 and
8.19). Condition (7”) is, for instance, satisfied for
T=R.

The above axiomatic setup is, of course, more
general than required by the applications, but seems
to contain precisely those assumptions which we
later need, so that a particularization would lead to
no simplification of the arguments.

3. BASIC DEFINITIONS
In what follows, we make constant use of the topo-
logical sum T of the powers T" of T

T=3T"

n=0

(3.1)

where T is by definition reduced to a point. It would
be natural to consider instead of T™ its quotient 7%
by permutations and to define ¥ =T3,.,T" as
indicated in the Introduction. It is, however, more
convenient to work with ¥,

Let X(Z) be the space of real continuous functions
with compact support on &, i.e., the direct sum of
the spaces X(T™) of real continuous functions with
compact support on T, Let f,, f, € X(T) and f; =
(fD, fa=(f3); we define £, » f, € K(T) by

mwwmu~Jgﬁ§ﬁmf~w»

X f2_m(xm+1s T, xn)' (32)
With respect to this multiplication X(T) becomes a

10 N. Bourbaki, Topologie générale, fascicule de résultats (Her-
mann & Cie, Paris, 1953).
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noncommutative algebra which we call X, to avoid
confusion with the structure of algebra defined on
J(T) by the usual multiplication of functions. We
call 1 the identity in J¢, .

Let f€ X(T™), n > 0, and let w be a partition of the
set{1,2,---, n}intorsubsets S; = {iyy, f15, ",
S, = {i,1, ira, " * *}. We may suppose that i, < iy if
k < k' and iy < i, if j < j'. For all

}’=(}’1,"',}’r)ET',
let x¥(y) = y, if i € S;. We define f,, € X(T7) by

fw(yl’ V) =fw(y) =f[xip(y)’ R x'ﬁ()’)]- 3.3

The sum of the f,, over all partitions of {1,2, -, n}
is an element Af of X, . For f°e X(T°), we write
Af®= f° A extends then to a linear mapping of X,
into itself, and one sees readily that this mapping has
an inverse A1,

Let C(X) be the algebra of complex continuous
functions on I (for the usual multiplication of
functions), i.e., the product over » > 0 of the spaces
C(T™) of complex continuous functions on T,. If
F = (Fr) e C(T) and g € G, we define 7,F e C(T) by

(o F)" (1, * - " Tg1¥n) (34)

In particular, it is seen that if f;, f; € () = C(T),
then 7,f, € K(T), T,Afy = Av,fy, 7 (i 2 o) = T, fix 7, fa
If f = (f") e X, we define Sf € C(T) by

’ xn) = F"(T -1%1 5 v

S =1
(SfMx1, 75 %) (3.5)
=f +mz=:1 i2=1. . .iglf'n(xil » X)) (n>0).

One checks readily that S is a homomorphism of ¥,
into C(T) such that S7,f = 7,Sf. Furthermore, it is
easily seen that

(SA_lf)n(xl PR xn)
-r+3 3

m=1 14y, ,i

fm(xil’ Y xi,,,)’ (36)

where the summation Y’ extends over the n!/(n — m)!
sequences (i, ', i,,) of m different integers i, with
1<iLn

We define U to be the closure, with respect to the
uniform norm, of the subalgebra of C(I) constituted
by the elements of the form ¢(Sf;, - - -, Sg,) for all
integers ¢ 2 0, f, -+ -, f, € X, and ¢ bounded con-
tinuous complex function on R?. With respect to
complex conjugation and the uniform norm, % is
an Abelian B* algebra with identity 1. We note
E < U the set of all states on .
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If g € G, 7, is an automorphism of A. If p € E, we
define 7,p by (7,p}(4) = p(r,.14) for all 4 €. Let
£ be the subspace of N generated by the elements of
the form 4 -~ 7,4 and

£ ={feW:Adely=f(A) =0} (3.7

Then, the set of 7 -invariant states on A is £ £5.
The sets E and E — £} are both convex and weakly
compact.

4. THE SET § OF STATES

We concern ourselves in what follows with the set
F < E consisting of those states p on A which satisfy
the condition:

& if fi, -, f,€X,, then the functional on the
bounded continuous complex functions on R? defined

by
¢ — p($(Sf1> ", SA))
is a measure on R°.

To understand (&), we interpret p($(Sf1, -+, S))
as an expectation value of the function ¢(Sf;, -« -, Sf;)
on . If we restrict ¢ to tend to zero at infinity, the
positive linear functional ¢ — p{é(Sf1, * - -, Sf7)) de-
fines a positive measure on R? which represents the
probability distribution of finite values of Sf;, - -,
Sf,. Condition (¥) means that this distribution has
total mass 1, in other words, that the functions
Sfi, -+, Sf, take the value oo with probability 0.

As an example, take g =1, f1 =0, f? =0 for
n>1 and f1 >0 not vanishing identically. Since
S} has compact support and

SR Gar %) = _:Zlfi(xi),

it is seen that, for (¥) to hold, it is necessary (in fact it
is also sufficient) that the probability of finding
simultaneously an infinite number of particles on a
compact subset of T vanishes.

We now express condition (¥) in a manner better
suited to later purposes (see Proposition 4.3.2 below).
Let 0<keX,. We denote by %,, the sub-B*
algebra of U generated by the elements of the form
&(Sh, Sf, - - -, Sf,) where supp f;,-,supp f, are
contained in {X € T:A(X) > 0}. We denote by I,
the closed ideal of U, generated by those elements
for which ¢ tends to zero at infinity.

4.1

4.2

_ Proposition 4.1: If supp h is metrizable, then J, is
separable.

If ¢ tends to zero at infinity, we may approximate

&(Sh, Sfy, -+, Sf) by $(Sh, Sy, +, Sf), where §
belongs to a countable family of functions with

compact support on R%1, The space { f € X, : supp f <
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supp h} is separable (see Ref. 10, Sec. 13.27). and
therefore, given € > 0, one may find f;, - -, f, e X,
such that |f; —Ail < eh, -+, |f, = fi| < eh, where
fi, -+, f, belong to a countable family of elements
of X, with support, in (X-€ T:A(X) > 0). Since ¢
has compact support, one may approximate $(Sh,

Sfla e ’Sf;l) by $(Sh’ Sfl, T Sj;)'

Proposition 4.2: Let p € E; then p € ¥ if and only if,
for all A, the restriction of p to J,, has norm 1.

If p € &, then, according to the comment following
the statement of condition (&), the restriction of p to
I has norm 1.

Conversely let the restriction of p € E to J,, have
norm 1. Given € > 0, there exists then ¢(Sh, Sf;, - -,
Sf) € 3y such that ¢ has compact support, 0 <
¢ < land p(&(Sh, Sfy, -+, 8f;)) > 1 — €. One may
then choose ¢'(Sh) €3, such that ¢ has compact
support, 0 < ¢ < 1 and p(¢'(Sh)) > 1 — e. Given
oo e Xy, let Ae X, be such that A >0 and
supp f1, -+, supp f; < (X € T:h(X) > 0). One may
choose ¢°(Sfy," -, Sf;) such that ¢” has compact
support, 0 < ¢" < 1 and $'(SK'(Sfs, -+, ;) =
¢'(Sh); we have then

P(S"(Sf1s -, SR)) 2 p($'(SH$"(SS1, *« + 5 SFD))
=p($(SH) 21 —e (43)

Proposition 4.3: Let (h); be a family such that

(i) foreach:el:'0 < heX,;

(i) for each compact K < ¥, there exists t €7
such that K< {XeJ:A(X) > 0}. We then write
A = Ay, I, = Iy . We have:

(1) the union [J %, is dense in A;

(2) let p € E, then p € F if and only if, for all
¢ € I, the restriction of p to J, has norm 1;

(3) if T is countable at infinity, then one can
choose for (#,) a countable family. (1) follows from the
fact that, by (i), every ¢(Sf;,-- -, Sf) belongs to
some U, .

The proof of (2) is identical to that of Proposition
4.2, except that everywhere one has to take 4 in the
family (4,).

In (3) one can even choose for (%) an increasing
sequence (see Ref. 10, Sec. 8.19).

Corollary 4.4: If T has a countable basis, one can
choose for (k) a countable family and the J, are
separable.

- This follows from Proposition 4.1 and Proposition
4.3.3.
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5. G SYSTEMS OF DENSITY DISTRIBUTIONS

The discussion of (¥) in Sec. 4 suggests to describe
a state p € F by giving for each relatively compact
open set A < T and each integer n the probability of
finding » particles in A and the probability distri-
bution of their positions.

For every relatively compact open set A < 7, and
integer n > 0, let u3 > 0 be a measure on A < T™.
We assume that u7% is invariant under permutation of
the » factors of T". We say that the % form a G
system of density distributions if they satisfy the
following conditions:

(D1)
pY(T® = 1. (5.1)

(D2) Let A = A’ and y,._, be the characteristic
function of A" — A.
Iffre X, A™) < X,, then

wa = 3 EEI e g @ 32m). (52)
m=0 HImM!

(D3) If f* € X(A™) and g € G, then
BRU™) = pr Ao f™)-
Notice that from (D1) and (D2) we obtain
g HAA") = 1.

(5.3)

54

Theorem 5.1: Given peF ML}, there exists a
unique G-system (u3) of density distributions such
that if f;, -, €K, > A = K, and ¢ is a
bounded continuous complex function on R?, then

PHSTs > S =3, [duiss, o 50
x'¢(Sf1(x1, Tt xn), T, ng(-xla Y xn))' (55)

The mapping p — (43) is one-to-one from F N £}
onto the G systems of density distributions.

We prove here only that (5.5) determines a unique
mapping of the G systems of density distributions into
Fnts.

Given a G system of density distributions, (5.5)
defines a linear functional § on expressions of the
form ¢(Sfy, - -, Sf,) [because of (D2) the definition
does not depend on A]. It follows from (5.4) that
p is continuous with respect to the uniform norm of
functions on I, and thus extends uniquely to a
continuous linear functional p on A. Clearly p is
positive and, by (D1), normalized, hence p € E. By
(D3), peLy. On the other hand, one checks easily
from (5.4) and (5.5) that (¥) is satisfied. The other
half of the theorem is proved in Sec. 7.

D. RUELLE

6. G-FIELD THEORIES

By definition we call G-field theory a quadruple
D, 0, U, Q) satisfying the following conditions.
(9) 9 is a complex Hilbert space.
(@) 0 isamapping of X, to self-adjoint operators
in $ such that:
(Q1) Forallf;, f; € X, , the spectral projections
of Q(f1), O(f:) commute;
(Q2) Q is a homomorphism in the sense that,
for all f;, fo € X, and A € R, we have

oM =1, (6.1)

Q(4f) = A2(fD, 6.2

O(fi + /2 = 2(fH) + 2(f)s (6.3)
O(fi*f2) > Q(fD - (S (6.4)

(Q3) If0 <L feX,, then QAY) > 0.
(U) U is a unitary representation of G in  such
that, forallg € G, fe X,

U)(HU(g™) = O(r.f)- (6.5)

Q) Qs an element of $ such that ||Q] = 1 and
Q1) forallgeG, UgQ = Q.

(©2) Q is cyclic with respect to Q in the sense

that if 9 is the C* algebra generated by the bounded

continuous complex functions of the Q(f), then AQ
is dense in $.

Theorem 6.1: Given pe§ NL}, there exists a
G-field theory (9, @, U, Q) unique up to unitary
equivalence, such that if f;,- -, f, € X, and if ¢ is
a bounded continuous complex function on R?, then

(Q, HQ(fD), -+, QUID) = p(B(Sfis -+ 5 SF))-
(6.6)
The mapping p — ($, O, U, Q) is one-to-one from
F N £} onto the G-field theories defined up to unitary
equivalence.

We prove here only that (6.6) determines a unique
mapping from F N £} to G-field theories defined up
to unitary equivalence.

Let p e F NL},. The Gel’fand-Segal construction
yields a complex Hilbert space $, a ¥ homomorphism
m, of A into the bounded operators on $, a unitary
representation U of G in §, and a vector Q € § such
that Q| =1 and the following conditions are
satisfied forall A €U, g € G:

(Q, 7, (A)Q) = p(4); 6.7)
) U@ (ADU(g™) = m,(1,4); (6.8)
QD UgQ = Q; (6.9)
Q2) m(U)Q is dense in . (6.10)
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Furthermore, the Gel’fand-Segal construction is
unique within unitary equivalence.

Given f € X, there exists, according to (¥) and the
Appendix of Ref. 3, a self-adjoint operator Q(f) such

that
$(2(N)) = m($(5)) (6.11)
for all continuous complex functions ¢ tending to zero
at infinity on R. It is obvious that (Q1) is satisfied.
Let f;,- -+, f; € X, . Using the simultaneous spec-
tral decomposition of Q(fy), * * -, (), and (6.11), we
see that

v(Q(f). -5 QD) = 7 (¥(Sfrs -5 D) (6.12)
if y is a complex continuous function tending to zero
at infinity of R% The properties (Q2) are seen to hold
on vectors of the form

v(Q(f)s - QUNDY, (6.13)
where ¥'e § and y has compact support. This
actually proves (Q2) because the operators involved
are the closure of their restriction to such vectors.

Let P be a complex polynomial on R?; then

P(Q(fl), Y Q(fa))'/”(Q(fl), Y Q(f;l))\lf

= Wp(P(Sfl, T Sf;l)'p(‘sfl’ ) S.ﬁz))‘F (6.14)
If ¢ is a bounded continuous complex function on
R4, it can be approximated uniformly on compacts by
polynomials so that P may be replaced by ¢ in the
above equation, yielding

(O, > Q) = 7 (Q(Sfi, -, §f))- (6.15)
Using (6.15), (6.8), and (6.10), one checks readily (U)
and (Q2). Property (Q3) follows from the fact that,
if £ > 0, then SA-f > 0 by (3.6). This concludes the
verification of the conditions defining a G-field theory.

Finally, (6.6) follows from (6.7) and (6.15). Given
p € F, we have thus proved that there exists a G-field
theory satisfying (6.6). This theory is unique within
unitary equivalence because of the uniqueness of the
Gel’fand-Segal construction and of the uniqueness
of the construction of Q(f) when the ¢(Q(f)) are
given. The other half of the theorem is proved in
Sec. 7.

7. PROOF OF THEOREMS 5.1 AND 6.1

To conclude the proof of Theorems 5.1 and 6.1, we
have to show that, given a G-field theory (9, Q, U, Q),
there is a unique G-system of density distributions
(u3) such thatif f;, -+, €X(Q, A" and ¢ isa
bounded continuous complex function on R?, then

2| duRGe, s %)
X ¢(Sf1(x1a L, Xp) qu(xl’ T xn))
= (Q, $(Q(f), -+, QUNQY). (7.1)
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Let (H, O, U, Q) be a G-field theory and A be an
open relatively compact subset of T. Let & € J(T?) =
X, be such that >0 and A(x) =1 if xe A, If
f™ e X(A"™), the reader will check that

A[AY™)y xh] =f" «h + nf". (7.2)
We assume that f” > 0; then
A[(AY )y« h] —nf*=f"xh > 0. (1.3)
Hence, by (Q2), (Q3),
QAYIIGH) — n] 2 0. (7.4)

For every integer p > 0, let «, > 0 be a continuous
real function with support in the closed interval
[—1, p+ 1] < R and such that a,(r) =1 if 0 <
t < p. We assume also that «, < «,,;. From (Q1),
(Q3) and (7.4) we obtain

QAo (QW) =0, if n>p. (7.5)
Furthermore, for all n, Q(A7Y)a,(Q(h)) is bounded

because ™ is bounded by a multiple Ch*" of #*", and
therefore

0 < Q7Y™ < COATH*™) < CQ(R*™) = COR)™.
(7.6)

This shows that [Q, Q(A~Yf)e,(Q(h))Q]is a positive
linear functional of (f°, f%,- -, f?). Thus there exist
bounded measures »® >0 on A" forn=20,1,---,p
such that

(Q, QAN (Q(M)Q) = 207"0 DN G0

and (Q1) implies that »" is symmetric in its n arguments

If f* is assumed to be symmetric in its n arguments
forn=0,1,---,p (f°f%---,f?) is uniquely deter-
mined by the restrictions of SA=Yf to A°, AL, .-, A?
of SA~If; and the correspondence is such that there
exist bounded measures u?,, on A" forn=0,1,---,

p, symmetric in their arguments and for which

(2, QA7) (0IND) = 3 ut (A1) (18)

We define further uf,) = 0 for n > p. We then have,
writing f instead of A~Yf,

(Q, () (Q(M)Q)
= go duip(x1, "t s X )Sf(x1, "0 05 Xyp)
= tp)(Sf)- (7.9

This formula is valid for all fe X(3, 5, A"). Now let
fir o o €K, 50 A™ and let P be a complex
polynomial on R% we have

(€, P(Q(f), " - » Q[ (2(M))

= p(P(SFrs 4 ). (1.10)
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If P tends uniformly on the compacts to a bounded
continuous complex function ¢ on R9, this gives
@, H2(fD, - -, Q(f)2AL2(M))Q)
= pe($(Sfr, -+, ). (1.11)

We take f™ € X(A™) symmetric in its arguments,
k € X(A). We assume that k& has values in [0, 1] and
that k(x) = 1 if x € K, where K is a compact such that
supp f™ < K™ < A™. We have

(Q, QA7 M, (Q(k))a, Q1))
= ém’;)((SA‘lf ™o, (SK)").  (7.12)

Clearly (SA~Yf™)"a,,(Sk)" is zero if n < m by (3.6), is

m!f™if n = m, and vanishes on K"if n > m. By taking

K adequately large, the terms with n > m are made
arbitrarily small and we obtain

S 20=>ui(f") 20, (7.13)

™2 0= uim(f™) — uin(f™ 2 0. (7.14)

Equations (7.13) and (7.14) show that g, >0,
Hps1) = Py » and therefore

im [lug) = p|| = lim |uG)) — uGll = 0. (7.15)
p,p"—0 7,9’ =0
Let
oy = lim g ;
P00

(7.1) then follows from (7.11), (D1) follows from (6.1),
(Q), and (D3) follows from (U), (QI). Let A’> A
and h(x) = 1if x € A’. We define p,. like p,, except
for the replacement of A by A’; then, if f € K(3,,5,A"),
we have

z /‘?p)(sf)"
= 3 uiASH”

n n'! n'—m n—-m m
=3 2 T R o

m n+m, n Y13 m
=3 s OEME meinssy @ 8. (116

Taking successively f= A~lf" with f* e X(A") and
n=p, --,1,0 yields

pty(fmy = 3 S (" + ’") WP ® 2Em, (1.17)

hence (D2) when p — oo.

Finally we show that the system (u%) is uniquely
determined by (9, 0, U, Q). Let indeed /™ and k be
as above (7.12); then

(Q, (A ™, (Q(k)Q) — m! uR(f™)
= 3 uR((SA™Yf ™), (SK)") (7.18)

n>m
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and the absolute value of the right hand side can be
made arbitrarily small by taking K adequately large
so that, if f™ > 0,

HR(S™ = (mH™ sup (Q, QA7 ™. (Q(K))Q)

(7.19)
8. CORRELATION FUNCTIONS

Let (9, 0, U, Q) be a G-field theory. If Q is con-
tained in the intersection of the domains of all the
o(f), feX,, there exist positive measures p" on
T* n > 0, such that

(Q, 0(47'NHQ)
= goﬁ"(f "
=3
n=0

p" is invariant under permutations of its arguments
and is called the n-body correlation function'* of the
G-field theory.

The correlation functions, when they exist, may or
may not determine the G-field theory (up to unitary
equivalence). It is of interest to know when they do
because the information about a CSM system is
usually given in terms of its correlation functions.
The following criterion may be useful for this purpose.

dﬁn(xla Tt xn)fn(xl, Y xn)- (81)

Proposition 8.1: Suppose that for every f!e X(T),
f1 > 0, there exists C > 0 such that

f d5(xy,x ) i) - ) S C° (8.2)

Then, the G-field theory is determined up to unitary
equivalence by (5").

We have assumed that
[, QA (fH)*)Q] < C. (8.3)

Since the number of partitions of {1,-- -, n} is <n!
(use the cycle representation of permutations), there
exists C’ > 0 such that

«Q, o(fH"Q) < n! C'™
If fe K, , we thus have, for some C" > 0,

AU QN = (1/n(Q(fH*"Q, O(f)*Q)}
< (1/nIXQ, O(fH*Q) I Q(f)Qllt
< (An)EnMIC™ 122U < C™, (8.5)

1! This terminology originates from the situation where T = R,
and p" is absolutely continuous with respect to the Lebesgue
measure on 7", in this case p" is identified to a locally integrable
function. If this function is bounded by a constant C*, where C is
independent of n, then Proposition 8.1 applies.

(8.4)
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which shows that Q(f)Q is an analytic vector for
O(fY (see Ref. 12), hence that Q(f") is essentially
self-adjoint on the complex Hilbert space generated
by Q(3,)€2 (see Ref. 12, Lemma 5.1., and for a similar
application see Ref. 13). '

For arbitrary feX, one may find f*eX(T),
f1 2> 0, such that |Sf| is bounded by a polynomial in
Sf1. In this case, the vectors a{ Q(f))Q(S)Q, where
feX, and « is complex continuous with compact
support, are analytic for Q(Sf), and Q(Sf) is thus
essentially self-adjoint on these vectors.

Therefore, if the p" are known, the Q(f) are known
as self-adjoint operators on the complex Hilbert space
generated by Q(3,)Q, and it follows from the cyclicity
(€2) of Q that this Hilbert space coincides with $,
which concludes the proof.

9. PROPERTIES OF G-FIELD THEORIES

Proposition 9.1: In a G-field theory, the representa-
tion U of G is strongly continuous.

Letf,- - -, f; € X, and ¢ be a bounded continuous
complex function on R?; we write

¥y = [rd* (S - SP(Sh, -5 Sf)
— 16(Sfr, - SR 0D

for g € G. We have to prove that, if p € &, then

lim p(y,) = 0, (9.2)

g—e
where e is the identity of G.
We choose A open relatively compact in T such that
Sis s o €ERC 59 A, then, given € > 0, there
exists p such that

g lual < GUg(Sh, -, SN e (9.3)

Because of the continuity of (g, X) — 7,x, there exists
a neighborhood N of e in G, such thatif g € N’ then

Tof1s 0 TS € JC(znZOA") and

max max |pyx;, -
n<p @1, ,Tn€A

If g € N, (9.3) and (9.4) give |p(y,)| < ¢, which proves
(9.2) and the proposition.

Lx)l <3 (94)

Proposition 9.2: If the condition (7") is satisfied
(the topology of T has a countable basis), then the
Hilbert space $ of a G-field theory is separable.

Let p be the state on U corresponding to the G-field

12 E, Nelson, Ann. Math. 70, 572 (1959).
13 H. J. Borchers and W. Zimmermann, Nuovo Cimento 31, 1047
(1964).
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theory. Let (3,), (J)) be as in Proposition 4.3. Accord-
ing to Corollary 4.4, we may choose these families
countable and the J, are separable. Let now £, be the
closed subspace of $§ spanned by =,(U)Q. By the
uniqueness of the Gel’fand—Segal construction, the rep-
resentation of ¥, in $, is unitarily equivalent to the
representation , constructed from the restriction
p. of p to U,. Since the restriction of p, to I, has
norm 1 by 4.3.2, m,(T)Q is dense in H, [see Ref. 14,
Sec. 2.11.7], hence $, is separable. Since the $, form
a countable family and span $ by 4.3.1, & is separable.

10. INTEGRAL REPRESENTATIONS ON
Fnel

In this section we apply to the states in F N L
some recent general results®57 which are summarized
in the Appendix for the convenience of the reader. If
A € U, we denote by A the function p — A(p) = p(4)
on E. If K is a convex set in a topological vector
space, §(K) denotes the set of its extremal points.

Theorem 10.1: Let (T") hold. Given peF NL},
there exists a unique measure g, on E NL5 con-
centrated on §(E N £}) such that, for all 4 € ¥,

p(A) = 1y (A).

The mapping p— p, is one-to-one from F N L}
onto the positive measures of norm 1 on E N}
which are concentrated on ¥ N §(E NLF).

(10.1)

This follows from Proposition A3.1 and Theorem
A3.2 of the Appendix, using the fact (Theorem A2.3)
that, since U is Abelian, it is G-Abelian.

Proposition 10.2: Let p € F N L, U be the unitary
representation of G in the Hilbert space $ of the
corresponding G-field theory. If P, is the projection
on the subspace of $ formed by the vectors invariant
under U(G), then:

(i) the measure u, introduced in Theorem 10.1 is
determined by

up(A‘l’ Y A‘l)

= (Q, n,(ADP,m,(A)P, " "+~ P (4)Q); (10.2)

(ii) p €8 (E NLg) <> P, is one-dimensional.

(i) and (ii) follow, respectively, from Theorem A2.2
and Proposition A2.4 of the Appendix.
Let G now be a locally compact group. A directed

14 J, Dixmier, Les C*—algébres et leurs représentations (Gauthier-
Villars, Paris, 1964).
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set (x,) of functions on G is called an A-directed
set® if

D x.20, (10.3)
(ii) f dgre) = 1, (10.4)
(iii) lim |dglx.(gg) — x.(8)] =0, (10.5)

oa=-->00

where the integrations are with respect to the right
Haar measure. The existence of M-directed sets is
insured if G has an invariant mean [see (A4), Ap-
pendix]. This is true in general for the groups of
interest in classical statistical mechanics (the Abelian
groups, the Euclidean group, etc.) and the M-
directed sets may be taken to be sequences.

Proposition 10.3%5: With the notations of (10.2), we
have

® Hp(ﬁl - A)
= lim f dg, - f Agixa(g1) " Xa(8)
X p(1,, 45 - - 7,4); (10.6)
dgx(8)p(A; - 7,45)
= p(A,)p(Ay),

(i) p €8 (E NLG) <lim

a—ao

forall 4,, A, €N

The representation U of G is strongly continuous
by Proposition 9.1; therefore, Theorem A4.1 of the
Appendix yields

dgx(e)U(g) =

strongly. In view of Proposition 10.2 (i), we prove (i)
by showing that

f R CALACGW TS f dge2)

p p(Al)Q ” = 0

(10.8)
The norm to be evaluated is majorized by a sum of /
terms of the form

’ f A8 e (8770 D) f At

X T A& 7o 1A s)

x [ f A8 en (BT T0r ) — P,,w,,(Am)}
LT (A)Q “

lim (10.7)

[ ST 4 Sl )

X w1, A)Q — P,m (A)DP, -

X Pymry(Apyr) P,

< (:ijllAm) [ [denitntemvien - P,]

X T (AP, (Apyia) -+ Py (4)Q “ (10.9)
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which tend to zero in view of (10.7) when oy, -,
o — 0.
(ii) results from (10.7) and Proposition 10.2 (ii).

Remark: The interpretation of the integral repre-
sentation in Theorem 10.1 as a decomposition of a
state into phases has been discussed in Ref. 8.

11. PURE STATES

Let X be a function from T to the integers >0 such
that, for every compact K < T, X restricted to T
vanishes except at a finite number of points. We call
& the set of all such X. Given A, relatively compact
open set in T, and X € X, there exist n > 0 and
(x1,° -, x,) < A" such that, for all x € A, X(x) is
the number of elements of (x;,---, x,) which are
equal to x. If fe X(3,, 5, A™), we define

f°+2 3 Zf"‘(xm'“

m=1 ¢{3=1 im=1

Sf(X) = ,» %, ). (11.1)

Proposition 11.1: If ¢ € F NE(E), there exists a
unique X, e L such thatiff;,---,f,eX, and disa
bounded continuous complex function on R? then

a($(Sf1,  * ., S)) = (SA(XL). « -+, SfLXL)-
(11.2)

The mapping ¢ — X, is one-to-one from F N &(E)
onto &L.

Notice that §(E) is the set of extremal, i.e., pure
states on the Abelian B* algebra ¥, and is thus also
the set of homomorphisms of U onto the complex
field. On the other hand, we may write ¥ = F N €3 ,
where G, is reduced to the identity.

Let A, be a relatively compact open subset of T
and A(A), be the sub — B* algebra of U generated by
the bounded continuous complex functions of the Sf
for fe K3, 5, A™). If 0 € F N &(E), then the restric-
tion of o to A(A,) is a homomorphism onto the
complex field. Therefore, if (u%) is the G, system of
density distributions associated to o, there exists n,
such that p}, = O for n 7 ny and p72 is obtained by
symmetrizing the measure 0, ® -+ ®4, on Ap
for some x,, - -, x, € A. Let X, , be the function
on A, defined by

Xap(®) = (11.3)

zf (x),
where fi(x) = 1 and fi(x) = 0 if x  x,. We define
X, to be such that its restriction to each A is X,.
It is then easily checked that (11.2) is satisfied ; further-
more it is clear that (11.2) determines X, uniquely.
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Let now X e L, the state o5 on U defined by

ox(B(Sf1,> " "+ 5 SR = HSA(X), - -, 5f(X))
(11.4)
is in ¥ and is a homomorphism onto the complex
numbers; hence oy € F ME(E) which shows that
o — X, is one-to-one onto, concluding the proof.
Since &(E) is identical to the spectrum of ¥, the
Gel'fand isomorphism associates to any peE a
measure v, > 0 on §(E). This measure is actually the
unique measure on §(E) with resultant p. If (7) holds!®
and if pe &, v, is thus identical to the measure ©,
of Theorem 10.1 for the case G = G,; in particular,
v, is concentrated on F N &(E). The set XL, identified
to F N&(E), is the “space of configurations of an
infinite number of particles” promised in the intro-
duction, this interpretation being justified by Prop-
osition 11.1.

Proposition 11.2: Let (T') hold®® and peF NE}.

(i) The mappings ¢— 7,0 define homeomor-
phisms of It which leave the measure », invariant.

(ii) If A €Y, let 4 be the function on s’ defined
by A(X,) = o(d4); then L%»,) is identified to the
Hilbert space $ by 4— 7,(4)Q.

(iii) The group G acts ergodically on (L, »,) if and
only if p e §(E NL}).

(i) is obvious; the identification (ii) goes via
the Gel'fand isomorphism; and pe8(E NL}) is
equivalent to the fact that », has no nontrivial de-
composition into two invariant measures >0, proving
(iii).

12. AVERAGES OVER TRANSLATIONS

In this section we consider the case where G = R*
is the group of translations in » dimensions. This
allows us to use a pointwise ergodic theorem.

Theorem 12.1: Let (T") hold, G = R", and let y, be
the characteristic function of the cube
A, ={g0<Lg<a for i=1,--+,9} (12.1)
divided by «'. If pe8(ENLLH NF, then v, is
concentrated on those X € X such that, forall 4 €%,

lim | dgy.(g)r, A(X) = p(A).

X— 00

(12.2)

If a system (") of correlation functions is associated
with p, v, is concentrated on those X € X such that,
for all fe K, ,

lim |dgr(g)SA7'r,f(X) =2 p"(fM). (12.3)

A—>CO

15 1t js in fact sufficient to assume that T is countable at infinity.
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(i) Using the identifications made in Sec. 11 (in
particular, Proposition 11.2), one sees that the func-
tions X — A(X) (with 4 € U) and (if the 5" exist) also
X — Sf(X) (with fe X,) are in L'(»,). The continuity
and ergodicity of the representation U of G in L%(»,)
(see Proposition 9.1 and Proposition 11.2) and a
pointwise ergodic theorem (see Ref. 16, VIII. 7.17)
imply then that v, is concentrated on those X such
that (12.2) [or (12.3) if the p" are defined] holds for a
given A e ¥ (or fe K,).

(i) Let (3), (3) be countable families as in
Proposition 4.3. We let (4,;) be a countable dense set
in 3, and (U,;) be a countable increasing approximate
identity in J, [see Ref. 14, Sec. 1.7]. Let U be the
set of those X € XL such that (12.2) holds for 4 = 4,
and 4 = U,; then », is concentrated on W. Since
(4, is dense in J,, (12.2) holds for X €U and all
A€d,. We have limp(l — U, =0, and every

A—s00

A €U may be written as AU,; + A(1 — U,), where
AU, <3, and A0 - 0l <4 1 =T so
that (12.2) holds for X € U and all 4 €¥,. Finally,
since v U, is dense in A, v, is concentrated on those
X € X such that (12.2) holds for all 4 e .

(iii) Let (f;) be a countable family of elements of
X, such that any feJ, may be approximated
uniformly on some compact by elements of (f;) (such
a family exists because T is countable at infinity and
its compacts are metrizable). Let (A,) be a countable
family as in Proposition 4.3. If W is the set of those
X e X such that (12.3) holds for f = f; and f =4,
then v, is concentrated on . Given fe X, and
€ > 0, there exist A, ¢ such that [f— f;] < eh,.
Therefore

DEAGES HIRD N (D

may be chosen arbitrarily small and (12.3) holds for
all X e U, fe X, concluding the proof.

Remark: Theorem 12.1 shows, in particular, that if
(T") holds and pe§(ENLE) NF, there exists
X e X such that, for all f;,---,f,eX, and ¢ a
bounded continuous complex function on RY,

p(H(Sfis "5 5f))
= lim | dgy ()¢ ST, f(X), - -, ST, f(X)). (11.4)

This is precisely the statement made in Ref. 17 except
for the replacement of the condition p e F N L} by

1% N, Dunford and J. Schwartz, Linear Operators (Interscience
Publishers, Inc., New York, 1958), Part I.

17 D, Ruelle, ““A Field Theory Like Axiom System,” in Endicott
House Conference (1965), R. Goodman and I. Segal, Eds. (M.L.T.
Press, Cambridge, Mass., 1966).
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the more stringent condition p€e&(E NLE) N F.
The proof alluded to in Ref. 17 is rather different
from that given here.

13. REMARKS AND QUESTIONS

(i) Hardcores. Let T = R’; one often imposes the
condition that, for some a > 0, the Euclidean distance
between two particles be always >a. One easily sees
that to impose such a condition on a state p on « is
equivalent to requiring that p vanishes on a family
of positive elements of A. If E N U is the set of
states satisfying this condition, then £ N U < & and
E NLL N Uis a simplex (see part A5 of the Appen-
dix). If p € E N U, the correlation functions of U
are defined and describe p completely.

Similar remarks hold for the case where T is a
lattice and two particles are forbidden to occupy the
same lattice point.

(ii) Example: state of a language. A language with N
symbols may be idealized as a state of classical statis-
tical mechanics with G = Z (the additive group of
integers) and T:N copies of Z. A “hard-core” type
condition must be introduced to avoid the occupation
of a site by more than one symbol. The symbols may
be letters, the corresponding correlation functions are
well known in cryptography, or they may be words.

(iii) Entropy per unit volume. Let T = R’ and
G = R’; then an entropy per unit volume s(p) can be
defined for p € ¥ N L} along the lines indicated in
Ref. 8. It has been proved by the author (unpublished)
that s is an affine upper semicontinuous function on
F N £}, It would be interesting to have a simple and
more general proof of this fact, and to prove the
equivalence of various definitions of the entropy
per unit volume (for another definition see Ref. 9).
One should be able to prove that the equilibrium
state of statistical mechanics is the solution of a
variational problem (involving s) under more general
conditions than those given in Ref. 8. One should be
able to prove the Gibbs phase rule [for almost every
interaction, temperature, chemical potential, the
equilibrium state is in §(E N £3)].

(iv) The problems of evolution. We may describe the
positions and momenta of point particles by taking
T = R" X (R"), where (R’)" is the one-point com-
pactification of R*. The first factor is the one-particle
position space, the second factor the one-particle
momentum space [the use of (R”) corresponds to the
fact that we want to restrict the number of particles to
be finite on compacts of position space].

No nontrivial existence theorem seems to be known
for the evolution of a realistic system of infinitely many
particles. Probably the evolution of states can be
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discussed for suitable interactions® (cf. the stability
conditions in Ref. 18 and references quoted there) and
suitable states (states having finite energy per unit
volume with respect to the interaction). In particular,
an equilibrium state would be a fixed point for the
evolution of states.

It is unclear to the author whether the evolution of
an infinite system should increase its entropy per unit
volume. Another possibility is that, when the time
tends to + oo, a state has a limit with strictly larger
entropy.

(v) The situation described in Secs. 11 and 12: A
group G acting on a space & with an invariant measure
v,, is the natural set up for ergodic theory; we have
used only the mean and pointwise ergodic theorems,
but much more could probably be done.

In quantum statistical mechanics, problems similar
to those considered in this paper arise. For instance, a
decomposition theorem analogous to Theorem 10.1
can be proved (see part A6 of the Appendix).

APPENDIX

(1) Integral representations on convex compact
sets. 2?2 Let K be a convex compact setin a locally con-
vex topological vector space. We denote by C(X) the
space of complex continuous functions on K and by
&(K) the set of extremal points of X.

An order 3 is defined on the set M, of positive
measures on K by u; 3 py <> uy(¢) < po(4) for all
convex ¢ € C(K). If u; 3 ps, then y, and u, have the
same norm and (if this norm is 1) the same resultant.
If 6, is the unit mass at p € K, §, 3 4 means that p
is the resultant of u.

A measure u € AG, is called maximal if it is maximal
for the order 3. For every u € M, there exists a
maximal g’ such that g 3 g’

If we M, is concentrated on &(K), then g is
maximal. Conversely, if K is metrizable and u is
maximal, then g is concentrated on §(X).

The set K is called a simplex if for every p € K there
is a unique maximal measure 4, & 6,.

In particular, if X is metrizable and a simplex, there
is a unique mapping p— u, of K to the probability
measures concentrated on &(K) such that 6,3 u,.
This mapping is one-to-one onto, and p, may be
considered as an integral representation of p on &(X).

(2) G-Abelian B* algebras. Let U be a B* algebra
with identity, aut (%) the group of its * automorphisms,

18 M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966).

19 N. Bourbaki, Intégration (Hermann & Cie, Paris, 1965), 2nd
ed., Chaps. 1-4, epecially Chap. 4, Sec. 7.

20 G. Choquet and P. A. Meyer, Ann. Inst. Fourier 13, 139 (1963).

#1 R. Phelps, Lectures on Choquet’s Theorem (D. Van Nostrand
Company, Princeton, New Jersey, 1966).
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G a group, and r a (group)homomorphism G— aut

(). If g € G, we denote by 7,: 4— 7,4 the correspond-

ing automorphism. Let £, be the subspace of A
generated by the elements of the form 4 — 7,4 with
g€G, AcWand let

L5 = {feW:Aely=>f(A) = O}.

L5 is thus the space of continuous linear forms on
A which are invariant under the action of G. If E is
the set of states on U, E N £} is the set of G-invariant
states on .

For p € E, the Gel'fand-Segal construction yields
a complex Hilbert space $,, a representation =,
of A in §H,, and a normalized vector Q, € §,, cyclic
with respect to () and such that for all 4 € A

p(d) = (Qp s 7'rp(A)Qp)'

If p € E N £}, there is a unique unitary representation
U,of Gin H, such thatforallge G, 4 €N

U, =Q,, U@n (AU g™ = 7, (r,4).

Let P, be the projection on the subspace of 9,
formed by the vectors invariant under U,(G.

Definition A2.1: U is said to be G-Abelian if, for all
p € E NL}, the von Neumann algebra generated by
P,m (WP, is Abelian (in other words, if 4,, 4,€ ¥,
then [P,7,(4,)P,, P,m,(A,)P,] = 0).

Theorem A2.2: If A has an identity andis G-Abelian,
then E ML} is a simplex and the unique maximal
measure g, with resultant p € E N L is determined
by

.up(jl e /i‘z)

= (Q,, 7,(4,)P, 7, (A)P, - - - P, ,(4),).

Theorem A2.3%: If, for each pe E NL}, there

exists a filter & on G such that for all 4;, 4, €U

lim p(l4;, 7,4s)) = O,

then A is G-Abelian, This is true:
@) if E N £} is empty;
(ii) if A is Abelian;
(i) if A is asymptotically Abelian,? ie., G is
locally compact noncompact and for all A4y, 4, €%

lim ||[4;, 7,4.]l| = 0.

g—x

22 A good characterization of G-Abelian algebras is given in
Ref. 7.

23 This terminology was introduced by Doplicher, Kastler, and
Robinson (see Ref. 4).
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Proposition A2.4: Let A be G-Abelian and p e E N
L5, then p € §(E N L) <> P, is one-dimensional.

(3) Integral representations of G-invariant states.

Proposition A3.1: Let A be a B* algebra with identity
and (8,) a countable family of self-adjoint sub-
algebras of U; define

F = {0 € E: the restriction of ¢ to
&, has norm 1 for all «}.

If u is a positive measure of norm 1 with resultant p
on 9, then

p € F <> u is concentrated on ¥.

The proof is essentially that of Part 4 of the theorem
in Ref. 3.

Theorem A3.2: Let A be a B* algebra and (Y,) a
countable family of sub-B* algebras of A such that
U, is dense in A. Let 3, be a separable closed two-
sided ideal for each « and define

F = {0 € E:the restriction of ¢ to
J, has norm 1 for all «}.

(@) If p € &, the Hilbert space $, of the Gel’fand-
Segal construction is separable.

(ii) If E N L} is a simplex (in particular, if A has
an identity and is G-Abelian) and if the positive
measure u of norm 1 on E N £§ has resultant p € F,
then

u maximal on E N L%
<> u concentrated on §(E N L3).

The proof of (i) is essentially that of our Proposition
9.2 and the proof of (ii) is essentially that of Part 5
of the theorem in Ref. 3.

(4) Groups with an invariant mean® Let G be a
locally compact group and Cx(G) be the Abelian B*
algebra of bounded continuous complex functions
on G. If f € Cx(G), we denote by f, the right translate of
f by geG. A state M on Cg(G) is called a right-
invariant mean if, for all g € G, f € Cx(G),

M(fg) = M(f).
If there exists a right-invariant mean on G, there also
exists a left-invariant mean and a two-sided invariant
mean, one says then that G is a group with an in-
variant mean.

24 Information about groups with an invariant mean is conve-
niently collected in J.-P. Pier, ‘Sur une classe de groupes localement
compacts remarquables du point de vue de I’analyse harmonique,”
thesis, Nancy (1965) (unpublished) which we have used as a source
for the indications given here.
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G is a group with an invariant mean if it is Abelian,
or compact, or admits a composition series consisting
of such groups.

One can prove that G has an invariant mean if and
only if for every € > 0 and compact K < G there
exists a function y on G such that

@) 2 >0,
(ii) f dgx(e) = 1,

(iif) f dglx(ge) — 1) <& ifg ek,

where the integrations are with respect to the right
Haar measure. In that case let yx , be such a
function, the family (y(x ) is a JM-directed set (see
Sec. 10) for the order.

KoL K,)<>Kc K, e>¢

of the indices. If the topology of G has a countable
basis, there is a subsequence of (y(x ) which is a
HM-directed set.

Theorem A4.1: Let (y,) be a M-directed set on G,
U a strongly continuous unitary representation of G
in a complex Hilbert space $, and P the projection on
the subspace of $ formed by the vectors invariant
under U; then

lim | dgx.(g)U(g) = P,

o&— 00

strongly.

This is a mean ergodic theorem (see Ref. 5 for a
proof in the case G = RY).

(5) States vanishing on positive elements. Let U be
a B* algebra with an identity, %, a sub-B* algebra of
A. A state p on U vanishes on U, if and only if it
vanishes on the positive elements of U, . Let (4,) be a
family of positive elements in % and let

VU = {feW':f(4,;) = 0 for all 1}.

D. RUELLE

If pe E and u is a positive measure on E such that
# & §,, then

peEV <suppu < U.

In particular, if % is G-Abelian, ENL5 NV is a
simplex.

(6) States of Quantum Statistical Mechanics. For
each Lebesgue-measurable set A = R, let JE(A) be the
Fock space of the canonical commutation relations
constructed with the real square integrable functions
on A as test functions. If A, N A; = ¢, one may, ina
natural manner, identify J(A) to J(A,) ® K(A,). It
is natural®® to identify the states occurring in
quantum statistical mechanics to collections (p(A))
where p(A) is a density matrix on J&(A), and if
A NA =4,

p(Ay) = TrJC(Az)P(Al U Ay).

We furthermore require the invariance of J¢(A) under
the group G of translations (or the Euclidean group)
of R".

Let now A, be the sphere of radius » around the
origin, %, the algebra of all bounded operators on
J(A,) identified to a subalgebra of J(RY), I, the
ideal of U, consisting of the compact operators. Let
A be the C* algebra on JE(R”) generated by the U,.
There is a one-to-one correspondence between
families (p(A)) and the set F of states on A with
restrictions of norm 1 to each J,. By Theorem A2.3
(iii), W is G-Abelian and therefore by Theorem A3.2
the states in F N £ have a unique integral repre-
sentation on §(E N £}) N F. Furthermore the Hilbert
space of their Gel’fand—Segal construction is separable
and one can see that the corresponding unitary
representation of G is strongly continuous.

25 G. F. Dell’Antonio, S. Doplicher, and D. Ruelle, Commun.
Math. Phys. 2, 223 (1966).
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Approximate methods for the solution of the N/D equations are discussed. Two methods in particular
are considered, one being the replacement of the unphysical singularities of the scattering amplitude
by a series of poles and the other being a pole approximation to the spectral integral of the kinematical
factor over the physical region. It is shown that Padé approximants may be used to define a sequence
of the above approximate solutions, which converges to the exact solution of the N/D equations in
those cases when the Fredholm method also gives a solution.

1. INTRODUCTION

ARTIAL wave dispersion relations play an impor-

tant part in the study of the strong interactions of
elementary particles. The usual problem is to solve
these relations for the partial wave-scattering ampli-
tude, given the unphysical singularities and inelastici-
ties. The simplest way of doing this is to use the N/.D
method,’ since the scattering amplitude will then
satisfy automatically the unitary condition for physical
energies. The dispersion relation is then equivalent to
a pair of coupled integral equations in the functions
N and D, from which either N or D can be eliminated
to give a simple integral equation in the other function.
It is in general not possible to solve this integral
equation exactly and so approximate methods have
to be used.

If the integral equation is not singular, then the
methods of Fredholm? can be used. However, as
discussed by Hamilton,? in many physically interesting
problems the equation is singular and then, although
the Fredholm method may still give a solution, other
methods are often tried. The method usually followed,
is to approximate the kernel of the integral equation
by a degenerate kernel either by assuming that the
unphysical singularities are poles? or by making a pole
approximation to the spectral integral of the kine-
matical factor over the physical region.’

It is the purpose of this paper to show how, using
the theory of Padé approximants,® a sequence of such

* Part of this work was done while the author was at Trinity
College, Dublin, Ireland.

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

2 See, for example, R. Courant and D. Hilbert, Methods of
Mathematical Physics (Interscience Publishers, Inc., New York,
1953), Vol. 1.

J. Hamilton, Strong Interactions and High-Energy Physics,
R. G. Moorhouse, Ed. (Oliver and Boyd, London, 1964), p. 344.

4 A. W. Martin, Phys. Rev, 135, B967 (1964).

5 H. Pagels, Phys. Rev. 140, B1599 (1965).

¢ A review of the properties of Padé approximants and a list of
references is given by G. A. Baker, J. Advan. Theoret. Phys. 1, 1
(1965).

degenerate kernels may be defined which converge
uniformly to the given nondegenerate kernel, and
then to investigate the convergence of the corre-
sponding approximate solutions of the N/D equa-
tions to the exact solution. In fact, it is proved that the
approximate solutions of the integral equation con-
verge to the exact solution in those cases where the
Fredholm method also gives a solution.

In Sec. 2 the N/D equations are introduced and
the reduction to a single integral equation is given.
The necessary and sufficient conditions for this
equation to be nonsingular are discussed. The approxi-
mation of the kernel by degenerate kernels is described
in Sec. 3 and the corresponding approximate solutions
of the N/D equations are given. In Sec. 4, sequences
of kernels which tend uniformly to the exact kernel of
the integral equation in the two cases are obtained.

In Sec. 5itis proved that the corresponding approxi-
mate solutions of the integral equation tends uniformly
to the exact solution when the usual Fredholm
method also gives ‘a solution. This occurs when the
Fredholm denominator is different from zero. Finally,
in Sec. 6, the results of this paper are discussed.

2. THE INTEGRAL EQUATIONS FOR N AND D

Consider the partial wave amplitude fi(s) for the
scattering of two equal scalar particles of mass u,
where s is the total centre of mass energy squared.
If it is assumed that the scattering amplitude has no
CDD poles, then it may be decomposed as follows,

Sis) = Ni(s)/ Dy(s), 2.1)

where Ny(s) has the unphysical cut, —0 <5< 5
and Dy(s) has only the physical cut, 4u2 < 5 < o of
fi(s). The unitarity condition on the right-hand cut
gives

Im Dy(s) = —N()R(s)pus)s 2.2

where Ry(s) is the inelasticity parameter and py(s) is a
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kinematical factor depending on the normalization
of the scattering amplitude. In the following work it
is assumed that the scattering is completely elastic, and
then R,(s) = 1. However, the results are unchanged
if R,(s) is allowed to take on different values so long
as it remains finite. The normalization of the scattering
amplitude is chosen so that

pi(s) = [(s — 4u)s]t. 23
The functions N,(s) and D,(s) then satisfy the follow-

ing equations:

(s — 89) P X)Ni(x) dx

D=1 = - = &Y
Im /() Dy() ,
Nis) = - fL ————————(x ) x, (2.5)

where s = 5, is an arbitrary subtraction point and
D(s) is normalized to unity at this point. The exact
solution of (2.4) and (2.5) for the scattering amplitude
is independent of the value of s,,* and so for con-
venience it is put equal to zero. It is now required
to solve (2.4) and (2.5), given the function Im f(s)
for s on the left-hand cut. Eliminating either N(s)
or D(s), the following integral equations are
obtained*%:

Dis) 1, 1 [ x[F(x) — F(s)] Im f(x) [ D(x)
s _s+7rfL (x—s) [x:l

(2.6)

N(s) = B(s) + -11; fRi-%)IZ—(—)g [xB(x) — sB(s)] dx,

2.7
where
S _px
E(s) fR Px— 3) dx (2.8)
B(s) = i—r fL I—————mxf (_")sd" (2.9)

and the suffix / has dropped from the quantities in
the above equations, as it is now to be understood that
a particular value of the angular momentum is being
considered.

Consider first of all the integral equation (2.6).
The kernel of this equation is

[x/m(x — $)I[F(x) — F(s)] Im f(x) (2.10)

and it is well behaved at x = s as long as dF(x)/dx
exists, The full Fredholm theory may be applied to
(2.6) only if

K(s, x) =

f fds dx [K(s, x)|*< oo, .11)
L)

A. K. COMMON

and this condition necessitates that
f JIm f(x)|* dx < o0,
L

If Imf(x) = O(x%) as x — — oo, then, for (2.12)
to be true, 6 < —% when —4 < 6 < 0; the dispersion
relations exist but (2.11) is not satisfied. The condition
d < —1 is both necessary and sufficient for (2.11) to
be true.

With the same asymptotic behavior of Im f(x), it
may be proved that the symmetric form of (2.7) is
Fredholm for all 6 < 0.7 This equation may thus
be solved using Fredholm’s methods for all cases
considered here. However, it may be more convenient
in a particular situation to use an approximate degen-
erate kernel by replacing the unphysical singularities
by poles. For completeness the behavior of the
corresponding approximate solutions are also con-
sidered in this paper.

3. APPROXIMATE SOLUTIONS USING
DEGENERATE KERNELS

To reduce the kernel of (2.6) to degenerate form,
Pagels® approximated the function F(s) for values of
s on the left-hand cut by the expression

(2.12)

o =3 S,

r=1(S - a,)

(3.1)

where ¢,, @, are constants and the poles of the
approximate form lie on the right-hand cut. The
kernel (2.10) is then given approximately by

N 1 1

N
Im f(x)

K(s, x) ~

=Xy &
7 =1(x — a)s — a,)
and so is degenerate. If d(s) is the corresponding
approximate solution for D(s), then, from (2.6) for s

on the left-hand cut,

ﬂg—l—sz[

r=1

Cr

(3.2)

(3.3)

]n(a,)

where n(s) is the corresponding approximate solution
for N(s). Then substituting in (2.5),

n(s) — B(S) z [SB(S) a B(ar)]crn(ar) , (3 4)
(S - ar)
which is true for all 5. Finally, from (2.6), for s on the
right-hand cut,

d(S) =1 +s z rn(ar) [

r=1 (S - ,.)

s —a,)

(=35 L ]

r=1 (S - ar)
(3.5)

? D. Atkinson, J. Math. Phys. 7, 1607 (1966).
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where F(s) is the exact function as given by (2.8). The
values of n(s) when s = a,, occurring in the above
equations, are obtained by settings = a;,s = a,, " * -,
s = ay in turn, in (3.4), and then solving the resulting
N linear equations.

The approximate solution of the N/D equations by
replacing the unphysical singularities by a series of
poles is now considered. The kernel of (2.7) is made
degenerate by the approximation of B(s) for s on the
right-hand cut by*

N c,

B(s)~ > . (3.6)
=1(s — a,)
Then substituting in Eq. (2.7),
N
n(s) =3 & d(ay) (3.7)
r=1 (S — ar)

for s on the right-hand cut, where once again n(s) and
d(s) are the approximations to N(s) and D(s). Then
for all s,

d(s) _ 1 + 2 cr d(ar)

r—l )

[F(a,) — F(s)). (3.8)

Finally, for s on the left-hand cut,
N

n(s) = B(s) d(s) — g ( —

The constants d(a,) can be obtamed as previously
from (3.8).

[d(S) — d(a)]. (3.9)

4, UNIFORMLY CONVERGENT APPROXI-
MATIONS TO THE KERNELS

Consider the kernel of (2.6):

[F(x) —

K(s, x) = F(s)] Im f(x). (2.10)

( — 5)
It has been shown in (3.2) that this kernel becomes
degenerate if the approximation

N

F)=%

r=1 (S - a,)

Cr

3.1

is made. In the following, it is shown that a sequence
of approximations of the form (3.1) may be defined
which tend uniformly to F(s) for s on the left-hand
cut. Now

_5{ _px
F(s) fR N dx

=—_—f—’£c—)dx+—1f PO e (28)
7 Jr X mJR(x — $)x
Make the substitutions

s=4w[(1 +w), x=4u}(1~y) @I)
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in the integral on the right-hand side of (2.8). Then

(1 + w) " p[4u®/(1 — W]
2 dy
4u*m Jo 14wy

o —lf P(—:}dx. “4.2)
rJr X
Now the function
pl4®/(1 — )]

1 1
4,u2‘n'J; L4 wy
when expanded as a power series in w, is a series of

Stieltjes,® since the numerator of the integrand in (4.3)
is nonnegative. This power series expansion is

F(s) =

G(w) dy, 4.3)

G(w)

=i§(_w)igi »

1 2
where g, = 1 p[ A
4w Jo 1 —
and it converges for |w| < 1.

The Padé approximant to this series is now defined.
The [N, M] Padé approximant is of the form of one
polynomial P(w) of degree M divided by another
polynomial Q(w) of degree N. The coefficients of the
two polynomials are determined uniquely by equating
like powers of w in the following equation:

G(W)Q(W) — P(w) = AwMFN+1 4 ByM+N+2 4 ...
(4.5)

y]y" dy, (4.9

where

Q0 = 1.0.

Baker has written a review article® on the properties
of these approximants. The following theorems in
that article are used here.

Theorem 1: If f(w) is a series of Stieltjes with radius
of convergence R, then the corresponding sequence of
[N, N 4 j] Padé approximates converge to f(w) as
N— o0, with constant j> —1 in the cut plane
(—o < w< —R). The convergence is uniform in
any closed region of this cut plane.

Theorem 2: The poles of the [N, N 4 j] Padé
approximant to f(w) lie on the cut (—o < w < —R)
and all the corresponding residues are positive.

In the case considered here R =1, and so the
[N, N + j] Padé approximants converge to G(w) in
the cut plane and, in particular, for -1 < w < 0, which
corresponds to s real and negative. The best approxi-
mant [N, M]to G(w) for a given odd value of M + N

8 T, J. Stieltjes, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys.
8,9, 1 (1894).
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for these values of w is of the form® [N, N — 1] and
this one is used to obtain an approximate form for
F(s) on the left-hand cut in the s plane. Then

N 6"
Gw)~ [N, N — 1] =,§1(a, Figet (4.6)

where, from the second theorem quoted above, 6, > 0,
o, > 1. Substituting for w in terms of s, the corre-
sponding approximate form for F(s) is

s
~ : , (47
Fo=a +w),_zl( +w) gl(s— a4

where
¢ = 48, /(1 — a) < 0

and a, = 4, f(a, — 1) > 0. (4.8)
In (4.7) the constant term

1 f ’i.;f_) dx

) x
has been omitted, but the kernel of (2.6) is unaltered
by this as is obvious from (2.10).

From Theorems 1 and 2 the approximate form (4.7)
converges uniformly to F(s) as N — oo for values of s
on the left-hand cut in the s plane, and all its poles
lie on the right-hand cut. It should be noted that 4,
and «, in (4.6) depend on N, and so all the poles and
residues of the approximate form (4.7) to F(s) change
as the number of poles is changed, and this applies
also to the kernel (2.10).

The approximate for B(s),

N ¢
B(s)~ > . (3.10)
=1(s — a,)
is obtained in almost the same way. Now
B(s) = & f T Imfe) 2.9)
7T J-o (x — 5)
Make the substitutions
s=—sw/(1+w), x=—5/1-y). 4.9
Then (2.9) becomes
1 — —
By = — L) f Imfl=si/ =21 ) 410,
7 Jo (1 — )1+ wy)

The integral on the right-hand side is not a series of
Stieltjes since Im f(x) may take both positive and
negative values on the left-hand cut in the s plane.

9 This result follows in a simple way from Egs. (2.20), (2.21), and
(2.37) of Ref. 6. The discussion of the properties of Padéapproximants
for this part of the w-plane is anticipated in a following paper.

A. K. COMMON

However, writing (4.10) in the form

_a +w)J‘ {|Im f| —-Imf}d
(1 =y + wy)
_d+w{lmf] +Imf}

27 Jo (1 — )1 + wy)
each of the integrals is the sum of a series of Stieltjes,
and so they may be approximated as previously. The
approximant converges uniformly for all values of
s in any closed interval on the right-hand cut in the
s plane, and the poles of the approximants lie on the
left-hand cut.

, (4.11)

5. CONVERGENCE OF APPROXIMATE
SOLUTIONS OF THE N/D EQUATIONS TO
THE EXACT SOLUTION

It follows from the last section that the approximate
kernels of the integral equations (2.6), (2.7) tend
uniformly to the exact kernels over finite ranges of
the relevant variables. It is proved in this section that
the corresponding, approximate solutions of (2.6),
(2.7) converge to the exact solution. It is first of all
shown that the approximate solutions tend to a
limit, and then it is a simple matter to prove that this
is the exact solution of the corresponding integral
equation.

Now, as stated previously, the constants ¢, and a,
appearing in the approximate solutions (3.3)-(3.5)
and (3.7)-(3.9) depend on the order of the approxi-
mation. Therefore it would be difficult to prove the
convergence of the approximate solutions directly.
Instead the standard methods of Fredholm! are used
to do this, it only being necessary to check that at
each step the integrals occurring converge. As a
preliminary, the approximate solutions are rederived
using the standard procedures for solving an integral
equation with degenerate kernel. Consider Eq. (2.6)
and let

=22 g9 =1, afy=—,
s s (s —a,) .0
_ —xImf(x) '
ﬁr(x) - 1T(x _ a,) .
The approximate form for the kernel is then
N
kN(s’ X) = glar(s)ﬂr(x)a (52)

and the approximate form for (2.6) is

2(s) = ) — 2 f,—, kn(s, )n() dx,  (5.3)

10 See Ref. 2, pp. 142-145 for a presentation of these methods.
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where 4 = 1.0. Try to find a solution of (5.3) of the
form

N
$a(s) = g(s) + gl *(s)4,, (54

where the A, are constants. Then this is a solution if
and only if

N N
> a,(s)[A, — g —AS AiB,,d} —0, (5.5)
r=1 i=1

where
- f ¢(B,(x) dx, B,,= f B (X)) dx. (5.6)
L L

Now (5.5) is true for all s on the left-hand cut if and
only if

AND N/D EQUATIONS 1673
integral equation (5.3) is
b = 80) + 13— o [
Ap(s, x; A)
= g(s) + f Ah) g(x)dx, (5.9
where
An(s, x; 1) = Z EAi, A)B(x).  (5.10)

It is an easy matter to prove that the above solution
for ¢n(s) = d(s)/s is exactly the same as that given by
Eq. (3.3). The integrals occurring in Egs. (5.3)-
(5.10) exist when Im f(x) = O(x?) as x — — oo with
d < 0 as was assumed earlier.

The resolvent of Eq. (5.3) may then be written as

N
A, — g, — A3 AB.,=0 (r=1,2---,N). the ratio of two polynomials in 4 as follows:
r=1
(5.7) " Un(s, x5 2) = Ap(s, x; A/ANL) (5.11)
wit
Let A (%) be the determinant of the & linear equations 1 22 (= 1)VANA
(5.7) in the unknowns 4; and let A, , be the comple- AyA)=1—~— A + A — +————‘———N
ment of the element of the rth row and ith column. ! N1
Then it follows that, if Ay(#) 5 0, the solution of _, (5.12)
(5.7) is unique: 4
N . — —_—— .
A,=13 A‘_':T_g_" (5.8) Ap(s, x5 2) = Ay(s, x) 1!A1(S, x) +
=1 Ay(4) (—1)WN-1N-1)
and the corresponding form for the solution of the + W Ap-n(s, x), (5.13)
where
ky(x1, x1)  kn(xy, x9) kn(xy 5 xz)
kn(x2, x1)
Ah=f ff : dx, dxg+ + - dxy, (5.14)
LJr JL
kn(Xzs 1) k(x5 X2)
kN(s$ x) kN(Sa xl) kN(ss xh)
kN (x 1> x)
Ah(s, x) =f J‘ M .f dxl de b dxh (5.15)
L) JL
kN(xh 4 x) kN(xh s xh)
These relations can be proved using Fredholm’s
methods for the case when the range of integrations a, > 0,
is finite.* It has only to be checked that the integrals ¢,
in (5.14) and (5.15) exist. (s, )l = | x Im f <x>,§1 (x e —a)
Now it may be shown that, when —1 < w < 0, the .
[N, N — 1] Padé approximant to G(w) is of smaller <|=Im f(x)Z
magnitude than G(w) itself.? Since from (4.8) ¢, <0, s r=1X — 4,
11 See, for example, W. Lovntt,Lmear Integral Equations (McGraw- < % Im JS(X)F(x) (5.16)
Hill Book Company, Inc., New York, 1924), pp. 34-42. s
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for x and s on the left-hand cut. Therefore, for all x
and s on the left-hand cut, it follows from the
asymptotic behavior of Im f(x) and F(x) that

lkas, ¥)| < M[|x%], (5.17)

where M and e are constants independent of N
and —6 > ¢ > 0.

Using (5.17) and Hadamard’s inequality for deter-

minants,’? it is a simple matter to prove that all the
mtegrals in (5. 14) and (5.15) exist and that the series

4 S 1h + 1P MOV (s

and
1+ 3 WG AL,
h=0

which are convergent for all 4, are majorants of the
series (5.12) and (5.13), respectively. The latter series
therefore also converge for all values of 1 and the
convergence is uniform for all values of . Now as N
tends to infinity each term of these two series tends
respectively to the corresponding terms of the
Fredholm series,

AN =1+ i(— 1)"A, k!, (5.18)
AGs, %3 A) = hf(—-nhA,,(s, MR, (5.19)

where A, and A,(s, x) are defined by (5.14) and
(5.15) but with ky (s, x) replaced by K(s, x). Since
(5.17) is also satisfied when kx(s, x) is replaced by
K(s, x), it follows as above that (5.18) and (5.19) are
both convergent series. It follows immediately that

Lt Ap(A) =A(A) and Lt Ap(s,x; 1) = A(s, x; A),
N Nz (5.20)

where the limit is approached uniformly for all s and
x on the left-hand cut in the latter case.
Therefore, if A(2) £ 0,

Lt Ty(s, x; 4) = 2E:X50
N-w A(A)
where A(s, x; A) and A(4) are given by (5.18) and
(5.19), respectively, and the convergence is uniform
for all s, x in any finite interval on the left-hand cut.
Therefore, from (5.9) and (5.11),

A(s, x; A)
= Al 28X 4
- ;:’tm‘ﬁN(s) g(s) + L[ AG)

and the limit is approached uniformly for all values of
s in a finite range on the left-hand cut. Now the right-
hand side of (5.22) is just the form of Fredholm’s

, (5.21)

jlg(x) dx, (5.22)

12 See Ref. 2, p. 36.
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solution to the exact integral equation which it
satisfies if A(4) ¢ 0. This is true even when the integral
equation is singular, so long as the terms A, and
A,(s, x) in the definitions (5.18) and (5.19) of A(4)
and A(s, x; ) are finite, which is the case here.

Therefore, if A(1) 5 0, dn(s), the solution of the
approximate form of (2.6) tends uniformly to a
limiting function ¢(s) as N — oo for all values of s in
a finite range on the left-hand cut, and this function
&(s) is a solution of the exact integral equation, i.e.,
d(s), as given by (3.3), converges uniformly to D(s) the
solution of (2.6) for all values of s in a finite range on
the left-hand cut. From (2.5) it follows that n(s) given
by (3.4) converges uniformly to N(s) for s in any
finite region of the s plane. Finally, for s in any finite
closed region not containing the left-hand cut, d(s)
as given by (3.5) converges uniformly to D(s).

Exactly the same procedure may be followed to
prove that the approximate solutions of (2.7) converge
to the exact solution. In this case

p(x) [xB(x) — sB(s)
( > ) wX [ X —38 :I
p(0) [xBy(x) — sBy(s)
X l: X —3S :I
_ P_(x_) [sz(x) _ SBZ(S)] (523)
mX X —S ’

where B;(x) and B,(x) are the two functions on the
right-hand side of (4.13), and so

B(x) = By(x) — By(x).
The kernel (5.23) is now approximated by ky(s, x),
which is obtained by taking the [N, N — 1] Padé
approximants to the integrals occurring in B,(x) and
By(x). Therefore it is of the form

_p (S ca,
Fae(s, x) = X {21 (s —a)(x —a,)
N c/a/
-5 ——rr 3\ (5.24
= (s — a)(x — a;)} (528

where a,, a,, c,, c are negative constants. The
approximate mtegral equation (2.7) may then be
written in the standard form (5.3), where kp(s, x) is
given above and
én(s) = n(s), g(s)=B(s), and A=1.

The whole procedure from (5.3) to (5.22) may be
carried through exactly as previously. There is one
small difference since in this case?®

lkn(s, x)| < M'[|sx]

13 The relation between the asymptotic behavior of B(s) and
Im f(s) has been discussed by L. Lanz and G. M. Prosperi, Nuovo
Cimento 33, 201 (1964).

(5.25)
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instead of (5.17), where —0 > ¢’ > 0 and ¢ =1 if
—1 > 4 and where M’ is a constant independent of N.
But this does not alter the final results, which may be
stated as follows.

If A(1) # 0, then n(s), as defined by (3.7), tends
uniformly to N(s), the solution of (2.7), for all s in
any finite region on the right-hand cut. Then d(s), as
defined by (3.8), tends uniformly to D(s), the solution
of (2.4), for all s in a finite region of the s plane.

Finally, n(s), as defined by (3.9), tends uniformly to
N(s) for all s in any finite closed region not containing
the right-hand cut.

6. CONCLUSIONS

Approximate methods for solving the N/D equa-
tions have been discussed. These methods have to be
used since in general the equivalent integral equations
for N or D cannot be solved exactly. Although the
integral equation for N is nonsingular” for the
asymptotic behavior of the scattering amplitude con-
sidered here, it is often solved by taking an approxi-
mate degenerate* kernel instead of using the standard
Fredholm’s method for solution. The corresponding
solutions were given in Sec. 3. In many physically
interesting cases the integral equation for D is singular.
The full Fredholm theory then will not apply to this
equation although it may be possible to use Fredholm’s
methods to obtain a solution. However, approximate
solutions may again be obtained by choosing an
approximate degenerate kernel, and they have also
been described in Sec. 3.

It has been the purpose of this paper to show that
one can define sequences of the above approximate
solutions which converge uniformly to the exact
solution of the N/D equations. The first step was to
obtain a sequence of degenerate kernels which con-
verges to the exact kernel of the relevant integral
equation. This was done in Sec. 4 using the method
of Padé approximants.** Now for the partial wave
dispersion relations to exist, it is sufficient that
Imf(s)—0 as s— —oo. The simple asymptotic
behavior Im f(s) = O(x%) with 6 < 0 has been con-
sidered here. In Sec. 5, it was proved that, with this
asymptotic behavior, the approximant solutions of
the N/D equations converge uniformly to the exact
solution when the above convergent sequences of
kernels is used, so long as A(l) # 0. [A(4) is the
denominator of the Fredholm solution of the relevant
integral equation and is defined in (5.18).]

¢ Padé approximants have also been applied to the theory of the
solution of the N/D equations by A. P. Balachandran, Ann. Phys.
(N.Y.) 30, 476 (1964) and by D. Masson, J. Math, Phys. 8, 512
(1967).
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Now the full Fredholm theory may be applied to
the integral equations (2.6) and (2.7) for D and N,
respectively, so long as they are nonsingular. As
stated previously, the integral equation for N is non-
singular. The integral equation for D is nonsingular
if and only if 6 < —3. However, for —% < d <0,
the Fredholm series still converges, as was seen in
Sec. 5. In both cases the Fredholm method gives a
solution of the relevant integral equation and corre-
sponding solutions of the N/D equations, as long as
A(1) # 0. Comparing with the previous paragraph,
one sees that the approximate solutions of the N/D
equations considered here converge to the exact
solution when the Fredholm method also gives a
solution.

When the integral equations are nonsingular, the
zeros of A(A) are denumerably infinite (or finite if
the kernel is degenerate) and in any finite region of the
A plane there are only a finite number of them. One
would then expect A(1) = 0 for only certain special
cases of the input function. However, the integral
equation for D is singular for } < é < 0, and these
properties of A(4) are in general no longer true. In
fact, singular integral equations can be found in
which the zeros of A(2) fill the real axis completely.!®
In the case considered here, it can be seen from (5.18)
that A(4) £ 0 for at least some small region about
A = 0. Whether this region includes the point 1 = 1
or not depends on the value of M in (5.17), which in
turn will depend on the form for Im f(s) on the
left-hand cut.

In writing down Egs. (2.4) and (2.5) for ¥ and D
it was assumed that no CDD poles were present.
However, it is a simple matter to show that the intro-
duction of such poles does not affect the convergence
of the corresponding approximate solutions of the
N/D equations. Finally, as mentioned in Sec. 4, the
poles and residues of the approximate kernel & ,.1)(s, X)
are all different from those of ky(s, x). Therefore an
iteration procedure such as that derived by Bander?®
cannot be used here to obtain the approximate solu-
tion corresponding to k(y,y(s, x) in terms of the
approximate solution corresponding to kn(s, x).
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Plane waves of small amplitude ¢ in a cold plasma which propagate into an equilibrium state and the
head of which approaches steadiness are studied on the basis of a one-fluid model with transverse
magnetic field. Their asymptotic behavior is shown to depend on whether the limits are taken in the
order e — 0, t — oo or ¢t — ©, € — 0. The latter, nonclassical limit is the physically relevant one, and an
approach is developed which yields uniqueness results for it. It is shown that the wave must ultimately
become nonlinear, and a steady solution can be approached only in a conditional sense. If the wave
lowers the magnetic pressure, it must do so monotonely. If not, then it must begin with a near-periodic
wave train approaching steady solutions locally, but different ones in different places.

I. INTRODUCTION

“QHOCK" waves in a collisionless plasma which lead
from one equilibrium state to another and settle
down to a permanent form have attracted considerable
interest over the last decade!~!! in connection with
plasma heating and the solar wind, and on account of
their intrinsic physical interest. The model envisaged
in most cases is that of a charge-neutral, zero-tem-
perature plasma of singly-charged particles describ-
able by a one-fluid theory.1:4=% It may not be realistic
enough,® but a number of investigations!-%-51! have
shown that more elaborate models including tem-
perature effects lead to quite similar results. This is
due largely to the unimportance of collisions at
sufficiently low density, which gives to any model the
character of a process governed by conservation
equations without dissipation. It is of interest, then,
to understand the properties of the simple model
clearly, especially since it has some subtle features with
strong effect on what is observable. To reduce the
complexity further, only a transverse magnetic field is
considered.
The first question is whether there can be waves
which are steady,**#*® and thus readily observable,

* This work was supported by the National Science Foundation
under Grant GP-6143.

1 C. S. Gardner, H. Goertzel, H. Grad, C. S. Morawetz, M. H.
Rose, and H. Rubin, in Proceedings of the Second United Nations
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(United Nations, Geneva, 1958), Vol. 31, p. 230.

2 J. H. Adlam and J. E. Allen, in Ref. 1, p. 221.
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in the frame of some observer traveling with fixed
velocity. The second question is whether these are
actually approached asymptotically in time, and
Morton’s computations®-® confirm this, on the assump-
tion that the plasma is governed by a Korteweg—
de Vries equation—but only provided the ampli-
tude is not too small. There is, in fact, a curious para-
dox: steady solutions leading from one equilibrium
to a different one exist only for amplitudes above a
critical value; for smaller amplitudes, the only steady
solutions are either strictly periodic waves or solitary
waves leading back to the initial state.® The following
therefore concentrates on the case of arbitrarily small
amplitude e.

This introduces the double limit 7— c0 and
€ —0. The classical procedure of mathematical
physics is to let e — 0, thereby linearizing the problem,
and then to evaluate the solution asymptotically in
£.%-® But that is nonphysical since observation always
concerns a wave of given amplitude, studied over a
sufficiently long time. Classically, one hopes that the
limits commute, but this is disproved for the problem
at hand. A direct attack on the correct double limit
appears difficult, and the following indirect approach
is used. The two double limits stand at the ends of a
spectrum of single Kaplun limits!? such that the real
time is t* = t/7(¢) and € — 0 with ¢ fixed and with
7(€) — 0 with e. More precisely, 7 is of class

Q = {6(e) € C(0,1)| 0 > 0 and ¢ — 0 as e — 0}.
Now for any u € Q,

L,={ceQ](c/u)—0as e—0}

7

may be called the “left set of u,” and it has been

12 8. Kaplun and P. A. Lagerstrom, J. Math. Mech. 6, 585 (1957).
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shown!?® that asymptotic approximation under

lim ( lim )

e~ \{*—w
is equivalent to asymptotic approximation under
a Kaplun limit, if the Ilatter approximation is
uniform'®in a left set, The present investigation there-
fore starts by consideringal/ = € Q for the plasma wave
and proceeds to show that only a few approxima-
tions result and, finally, that only two among these can
be uniform in any left set. The asymptotic solutions
discovered before are not among these two and are
therefore only “asymptotic transients” (Sec. V).
The steady small-amplitude wave*®® is approached
only in a conditional way, indicating a possible resolu-
tion of the paradox just mentioned.

Since collisionless plasma is dispersive, with
highest phase velocity for the longest waves, the head
of a wave propagating into an equilibrium state must
be anticipated to have a large length scale L. But the
particular relation L = O(e %) postulated by the
earlier authors®~%®1! turns out not to be the only
relevant one, and it is desirable to assume only
L7 = 0(e) Q2 and to let the governing equations
determine &(e). Dispersion, moreover, tends to sort
out the different wavelengths as time increases, and
the time asymptotics of a dispersive process must
therefore be anticipated to be thoroughly nonuniform
in space. The present study is concerned only with the
“head” of the wave, that is, with the wave front and
as much of the wave behind the front as may be
describable asymptotically in terms of a single length
scale 61, The analysis soon shows (Sec. III) that larger
length scales may also be involved, but they are not
considered here. It follows that the analysis cannot
generally impose any “tail” boundary condition
specifying the new equilibrium state to which the wave
leads! Fortunately, the resulting indeterminacy turns
out not to preclude uniqueness results.

It may be useful to look at the same difficulty also
from another angle indicating that it need not depend
on dispersion. The wave is governed by conservation
equations formally expressible as

N9t + 9M/dx = 0.

Steady solutions are obtained from M = const. More
generally, M is formally given by

® (0N
M= —\ dx,
L ( ot )
if M — 0 as x — + o0, because the wave travels in the

13 R, E. Meyer, J. Inst. Math. Appl. (to be published).
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direction of x increasing into an equilibrium state.
Approach to steadiness means |dN/d¢| — O, which is
seen to imply, not directly steadiness, but rather that
any appreciable effects of unsteadiness are postponed
to large distances from the wave front. There is then
no a priori assurance that the new equilibrium state
will be approached by the wave’s near-steady part
for which |0N/0t| — Oimplies M — 0. For a sufficiently
long transition, moreover, collisions, even if rare,
might have a decisive influence on the tail of the wave.
It appears all the more desirable to concentrate first
on a clarification of the possible asymptotic forms of
the head. In some instances (Secs. IV, V), specification
of a steady tail boundary condition will turn out to be
consistent with the asymptotic equations governing
the head. But, generally, the only assumption is the
implicit one that the tail boundary condition depends
on time to a sufficiently small degree to permit an
approach to steadiness at the head of the wave.

A further remark is necessary with regard to the
meaning of time asymptotics. If a steady phenomenon
is readily observed, it is implausible that the steady
state could depend sensitively on the initial conditions
from which it developed. This suggests either the use
of a canonical (rather than strictly experimental)
initial condition,®®* or, still more simply, a direct
investigation of solutions that could emerge after a
long time, without consideration of initial conditions.
The latter approach is chosen here, and since time then
enters into the problem only through the differential
operator of the conservation equations, the only
meaning assignable to the large time scale 7 of
the Kaplun limit will be that 7(e) characterizes the
smallness of the time derivatives at the head of the
wave. Accordingly, the analysis is concerned with time
asymptotics in the sense of asymptotics for a close
approach to steadiness. The earlier remarks on the
double limit t* — o0, € — 0 are equally relevant to the
limit 9/0t* — 0, € — 0. The results obtained, more-
over, encourage us to think of a progressively closer
approach to steadiness as corresponding to progres-
sively later stages in the development of the wave.
But this interpretation is not implicit in the assump-
tions of the analysis.

A final difficulty arises from the fact (proved in
Sec. VI) that a certain class of asymptotic solutions
must indeed be governed by the Korteweg-de Vries
equation.!® It has the property that some of the steady
solutions form a singular subset of the solution set in
the sense that ““neighboring’ solutions differ radically
from those steady ones, at least qualitatively. To

1 D. J. Korteweg and G. de Vries, Phil. Mag. (5) 39, 422 (1895).
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WANDAN x

FiG. 1. Sketch of the head of the near-periodic wave train; the
magnetic field perturbation is shown vs. distance at fixed time.

clarify the way in which steadiness can be approached
therefore requires an unconventionally cautious
analysis.

Conclusions. The main results may be summarized
as follows. The asymptotic solutions discovered
earlier®? are only asymptotic transients (Sec. V) which
can neither approach steadiness arbitrarily closely, nor
continue indefinitely to approximate a solution. True
asymptotics in either sense imply necessarily that the
small nonlinear effects accumulate, and this leads to a
sharp distinction between waves which lower the
magnetic pressure and waves which raise it.

If the magnetic pressure ever falls below the initial
equilibrium value within the head of a truly asymptotic
wave form, then it must decrease monofonely at any
fixed position as the head passes, and the head must
spread linearly with time (Sec. IV). The only other
possible wave approaching permanent shape (Sec.
VI) must begin with a near-periodic train of almost
cnoidal waves (Eq. 48), in which the magnetic pressure
fluctuates, but always exceeds its initial value (Fig. 1).
The details of the wave train depend on a parameter
varying slowly in time and space, and the first crest of
the train approaches the steady solitary-wave solu-
tion.>®

II. FORMULATION

Consider plane waves of a charge-neutral plasma
of singly ionized particles at zero temperature, with-
out collisions,’® and let n* and u* denote respectively
the number density and velocity component of the
ions (or electrons) in the direction of propagation
(x* increasing). Assume the magnetic field B* to be
purely transverse, take its initial direction to define
that of z* increasing, and let E* and v* denote, re-
spectively, the y components of the electric field and of
the difference between the ion and electron velocities.
The only other nonzero field component is the charge-
separation field (m, — m_)v*B*/(m <4 m_), where m_
and m_ are the ion and electron masses, respectively.
If the ion charge is e, the conservation of numbers
and momentum is expressed by 12

an*|or* + d(n*u*)[ox* = 0,
du*[0t* + u*ou*|0x* = ev*B*|(m, + m_),

0y
@
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Ov*/dt* + u*dv*[oOx*

= e(m, + m_)E* — u*B¥)[(m,m_), (3)

and Maxwell's equations give
OB*[0t* + OE*[ox* =0, )
OB*[0x* + pen*v* =0, (5)

where u denotes the magnetic permeability.

Assume v* to be twice differentiable; then by (3)
and (4), ov*/ox* + e(m, + m_)B*/(m m_) satisfies
the same conservation law as n*. Since the wave is
assumed to travel into plasma at rest and uniform
number density 7, and magnetic field B, it follows®
that

0v*[0x* = e(m, + m_)(Byn*|ng — B*)/(m,m_),

and (1), (2), (5), (6) are the governing equations.
They are Galilean invariant, and we choose the

frame of reference of an observer traveling in the

direction of propagation with constant velocity

U = By[uny(m, + m_)(1 — l)]_%
with respect to the plasma at rest. The boundary
conditions ahead of the wave are then
u*— —U, v¥—>0,n* >ny, B¥* > B,
as x*— +oco0, all * (7)

The constant A determining U is to be chosen so that
the wave can approach steadiness for our observer,
and the physically natural interpretation of this
notion is that the time scale is large compared with
LjU, where L is the length scale. The most general
stretching transformation reflecting this and the
notion of small amplitude is

x = ox*eluny(m, + m_)Jm,m ),

t= oyUt*eluny(m, + nL—)]%(erm—)—%:

u*(x*, t*) = —U + eUu(x, t; €),

v*(x*, t*) = 0Uv(x, t; €),

n*(x*, 1*) = ng(1 + wn(x, t; €)),

B*(X*5 t*) = BO(I + ﬁb(x, t; €))1
where the Greek letters denote small parameters and,
since Kaplun limits are to be studied, 8, v, 8, 8, v all
€ (). The propagation constant A may also depend
on ¢, and it is assumed that A(¢) & C(0, 1).

To find necessary conditions for solutions approach-
ing steadiness at the head of the wave, it is now
assumed that (I) to (7) possess solutions for which
u, v, n, and b are € C? and tend, as € — 0, to functions

of class C2% More precisely it is assumed that
{u, v, n, b} € I'? defined by

r» = {f(x, t; €| lim fe C"(E)},
&0

(6)

®)
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where E is the set of all (x, ¢) and the limit is under-
stood in the pointwise norm including the derivatives
of order <n. Moreover, the solutions are assumed
nontrivial in the sense that u, v, n, b, and

(10u/0t] + |0v/0t| + |On[0t| + |0b/0t])

all belong to the class & of functions not possessing

upper and lower bounds tending to zero with € on
every open, bounded x, ¢ set.

All this expresses the physical assumption that
€, 0, v, and B do represent the proper amplitude scales
and 771 = (y8)! and 67, the smallest relevant time
and length scales, respectively, at the head of the
wave, The need to distinguish bounded sets from others
in which |x| or |t] do not remain bounded as € — 0
arises from the suspicion that scales larger than = and
71 may also be relevant to the wave. If the tail
boundary condition can be consistently applied on the
scale 671, it is taken to be
©®)
If not, there remains a possibility of mistaking the
outer skirt of a wave, near its very front, for a sub-
stantial part of the wave. The definition of amplitude
and length scales is then completed by the assumption
that |b| remains bounded as x — —oo. (It emerges
that choosing |u| or |n| here, in the place of |5, would
not change the results.) To simplify the language by
giving adequate meaning to “boundedness” of |¢] in
the absence of initial conditions, we add the con-
vention that ¢ = 0 represents a time at which the
degree of unsteadiness at bounded |x| is already so
small that (yd)~1 is the locally relevant time scale.

b(x,t;0) > b, =const as x—> —o0, all ¢

IIT. ANALYSIS
The transformation (8) brings (1) into the form

y_va_n_*_gg:()’ un—3n+vnu. (10)
€ ot 0x €
Equations (1) and (2) may be combined into a
momentum conservation law, but it is more con-
venient to work with the energy conservation law
obtained directly from (2), by the help of (5) and (6),

and which (8) transforms into
ou  Oh
— 4+ —=0,
¥ ot  0Ox

(1n
h=—u+P0 = b+ g(u2 + o2?),
€
where ea = 0(m, m_)k(m, + m_)1. In addition, (8)
transforms (5), (6), and (7), respectively, into

0pobjox + eav(l + )1 — At =0,
€adv[dx = (vn — BbY(1 — M)},

(12)
(13)

1679

lul + |v| + |n| + 6] -0 as x—>+oo forall ¢, e

(14
For fixed € > 0, Eqgs. (10)-(14) are equivalent to the
exact equations governing the plasma model.

To begin the study of the limit € — 0 defined in
Sec. II, note that, if p(¢) and o(e) are any two-
parameter functions defined by the stretching (8),
and if it be shown that p/o tends to a nonzero limit,
then no generality is lost in taking lim p/o =1,
because (10) to (14) are homogeneous. Moreover,
there is then no need to distinguish p from ¢ because
information is sought only on the limit of solutions of
Eqgs. (10)-(14).

Next, note that
{u,v,n,b} €T}

= {feI*|f(x,t;0) > 0as x — oo, all t}.
For if, e.g., b(x, t; 0) +> 0 as x — oo for fixed ¢, then,
given any X > 0, we could find x; > X such that
|b(xy, t;0)] > 2¢ > 0, and since b € I'?, also ¢, > 0
such that [b(x;,?;€)] > ¢ for 0 < € < 2¢,, which
which would contradict (14). It follows that

o{u, v, n, b}/ox € N.

Indeed, consider, e.g., b on an arbitrary open-
bounded set S < E. For every ¢; > 0, another such
set R can be found such that § © Rand that (x,#) e S
implies (X, t) € R for X sufficiently large to ensure
|b(X, t; €)] < ¢ for 0 < e < ¢, because be I, If
0b[0x ¢ N, then ¢, could be chosen small enough to
make Lub. |b] < 2¢, for0 < e < ¢, contrary to the

R
hypothesis b € N.

Now consider (10); it shows »/e-+> 0, for otherwise
Ou/0x ¢ N. It may also be written

on/ox — (e/v)0u/dx = yon[ot + €d(nu)/dx

for every € > 0, and since n and u € I}, the right-hand
side — 0 with € on all bounded sets. But du/dx e N
implies the existence of a point (x,?) at which
Ou/0x —a # 0 as e > 0, and if ¢/» did not tend to a
limit, then on/dx could not do so either at (x,¢?),
contrary to the hypothesis #n € T'X, Moreover, €/v+5 0,
for otherwise on/ox ¢ N. Without loss of generality,
therefore, »(e) = e.

From (12), similarly, ex = 08(1 — )t and
objox € T2, and then from (13), f(e) = v»(¢) and
020v/ox € I'2, and thus a(e) € Q. Moreover, (10)
and (11) yield

ob 0
A ™ Y5 (n+u)

5 0%

) ox®’

+ 52 (0 + a2 4 200) (15)
2 0x
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so that
as(€) = max (e, 62, [1]) € Q.

It is useful to establish that 1133 ov/ox — 0 as
x — oo for any fixed t. Given 5 > 0, (14) implies the
existence of X,(€) such that € >0 and x > X ()
together imply [n — | < 7. Let dv[0x = f(x; €); then
(13) has been reduced to n — b = é%. Suppose
f(x;0) -0 as x— oo, then, given any X, we could
find x; > X such that | f(x,; 0)] = 2¢ for some ¢ > 0.
Since fe I'' by hypothesis, there must then be an
€9 > 0 such that | f(x;; €)] > c for 0 < € < 2¢,, and
if 8(ep) = &y, also an x; > X, (o) such that

¢ < |f(x15 € < 1/d3,
which is not possible for every # > 0. Hence

dv[ox e T3, (16)

Since ¢ + h = (¢/2)(u? + a2v? + 2nu) — Ab — §%0v/0x,
it follows that

Q0+ H=o'q+ h)el;.
On the other hand,

h—q=2b—u)—ib+ ¢&*

(17)
o
ox

+ ; ® + o®® — 2nu) e T3, (18)
whence, by (10), (11),

AV
(2 ot ax)( )
YO [e, o 2 2 2 OV
=L —|= —2nu) — Ab — 6°—
>t [2 W + v nu) — Ab ax:l
= paog1, & €Ty, (19)
and
- =f°°g1(£’ 7(€);€)dé, &) =1t— e (& —x),
Y% z 2

(20)
for every € > 0, by (14) and (18). For fixed x, ¢, then,
7 > 0 implies the existence of X, (¢) such that

z
UY g(&, 7(&); ) dét <7

whenever both Z> Y > X () and ¢>0. An
argument similar to that used to prove (16) now shows
that the integral in (20) converges also for € = 0, and
it then depends continuously on x and ¢, by (19).
Thus
Y HH — Q) = (ya) '(h — @) €T},
and, from (16)—(18),
Q=o'qely, H=o'hel}, og’(u —b)ely.
(22)

21)
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Since 420v/0x € I'?, moreover, (19) may be differ-
entiated for € > 0, and the same argument then shows
y10(h — q)/0t and y~'0(h — ¢)[0x € T, whence, by
(18),
aro(b — w)foteTy, of'd(b — u)/ox T,
oy(€) = max (¢, ).
To sum up, it has been established that the pertur-
bations of number density, magnetic field, and x
velocity all have the same amplitude parameter e.

More remarkably, the corresponding mass-flow
perturbation
q = (n*u* + noU)/(enyU),
energy perturbation
_ 61— m,m_v*?
- eU2[ 2 2(m, + m_)?

and momentum perturbation

(23)

By(B* — Bo):]
p(m,+ m_)n, ’

2

1 I:Z =3 noU? + n*u*® + BT :I
en UL 2 2u(m, + m_)
are all much smaller, when e is sufficiently small, than
the perturbations of number density, magnetic field,
and x velocity. There is, moreover, a significant
difference between g + 4 and ¢ — h. The result
g + h = O(max (8% ¢, |A])) is largely independent of
the condition that the wave travels into equilibrium
plasma; it reflects mainly the local amplitude, length,
and time scales. The smallness of ¢ — 4, by contrast,
is due to its very small rate of growth with distance
from the wave front, and this makes |g — k| even
smaller than |¢g + 4| at the head of the wave.

The amplitude scale of the transverse velocity
difference v* has been shown to be

0 = ed(m, + m_)(1 — Di(mom_ ),

with 1€ Q also, and the governing equations (10)-
(13) have been reduced to

yg;b+aa—‘i=0, g =u—>b+ eub + 0
= q + yO°0v[ot = ,Q', (24)
'ya—u -a—h=0, h=(1—2Db—u+ er =a,H,
ot 0ox ©5)
v = —(1 + en)™20b/0x, 26)
n=>b + §%0v/ox, 7

where H and Q' e T, ay(e) = max (e, 62, |4]), and
abbreviations
w = yov[0t — (1 — eu)dv[0x,

r= 3@+ (1 — A)é%?) 28)
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are used for correction terms, To conclude this
section, it is now shown that the head of the wave
must be governed by limiting equations resulting from
(24)-(27) as €—0 with either Ursell number's
€/0* —0or 8*le—~0or 8% = e,

To this end, note first that du/dt, 0b/dt and On/ot
are each € N. For if one were not, the other two would
also be ¢ N, by (23) and (27). But by hypothesis
(Sec. II), there would then be a bounded open set S
with lgb |ov/dt]+>0as e — 0, and since v and n € I'},

there would be a point (x, t) with neighborhood on
which glb lim |9%b[0x0t| > 0, by (26), which con-
>0

tradicts the supposition 9b/0t ¢ N.
Next,

= 2w =12+ ub) + F), 29)
ot y 0x

obtained from (24) and (25) for € > 0, is used to show

that
(30)

is incompatible with our hypotheses. Suppose it was
compatible; then, from (15),

(A/y)obj/ox — o(n + u)/ot ¢ N,

and since 0b/0x € N and d(n + u)/ot € I'', A/y must
tend to a limit. But A/y 4+ 0, for otherwise (30), (29),
and (23) would imply 9b/dt ¢ N. Thus (30) would
imply a nonzero limit for A/y and (29) would be an
equation for b analogous to Eq. (19) for # — ¢ and
would imply, similarly, that b¢ N, contrary to
hypothesis.

The possibility that both €/A— 0 and 62/A — 0 as
e — 0 may now also be ruled out because (15) would
then imply 9b/0x — (y/A)0(n + u)[0t ¢ N, and since
both db/dx and J(n + w)/dte I N N [because
o(n — w)/ot ¢ N by (27), (23)], y/A would have to
tend to a nonzero limit and (30) would follow.

For € > 0, (15) may be written

v yo(n+u

e—0

e/y >0 and &*y—0 as

ox* & ot
e 0 A 0b
+ 5_6—25;(”2 + a®® 4+ 2nu) — gé-a-; , (31)

and to complete the argument requires confirmation
that the four derivatives in (31) are each € N. This
has already been shown for 9b/9x and 9(n + u)/ot,
and if it were not true of d%/dx2?, then v(x,t;0)

15 §, Ursell, Proc. Cambridge Phil. Soc. 49, 685 (1953).
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would be linear in x, contrary to the hypothesis
v € T2 N N. It has also been shown that « € Q and u
and 0u/0x € N, and since n — b, d(n — b)dx, b — u,
and 0(b — w)/0x ¢ N, by (27), (22), and (23), the
confirmation is complete. We recall that the four
derivatives in (31) are also €I° by hypothesis
(Sec. II).

Now suppose that neither 6%/e nor ¢/6? tends to a
limit. Then (31) implies either

O 0@ + oat? + 2nu)/ox — (2A/€)0bjox ¢ N
or
(i) O%[9x2 + (1/0%)dbJox ¢ N.

In case (i), again since both the derivatives e I'* N N,
it would follow that A/e tends to a nonzero limit, and
then, without loss of generality, |A/e] — 1, and (27),
(22), (23) would imply 0(3u* F 2u)/0x ¢ N, contrary
to the hypothesis ¥ € I'S N N. In case (ii), similarly,
[A/6?| -1, and by (26), 0%/0x* F v¢ N. Since
veT% NN, it would follow that v — ce* ¢ N with
constant ¢ # 0, and (26) would imply b — ce™* ¢ N,
contrary to the hypothesis that b remains bounded as
x — — oo (Sec. II).

IV. VERY LONG WAVES
Waves for which

8%e—>0 as (32)

are now studied, and we begin by showing that then
AJe tends to a limit and y = . From (24) and (25),

y 9 _A%_ 29 &

TV ="15% ax(r+ ub + 2 “’)
for € > 0. Suppose now that A/e does not tend to a
limit; then, since r + ub e I and 0b/Ox e T* N N, it
would follow that 0b/dx — (y[A)0(b 4 u)[dt ¢ N and,
since b + ue I, ify must tend to a limit, so that
9(b + w0t — (A[y)0b/ox € T, But ¢y -0 would
imply (30), by (32); and since u, 9u/0x € N, we have
o(ru + b)/ox e N, by (28), (22), and (23), and it
would follow that /e must also tend to a limit. Thus
lim (A/€) does exist, and no generality is lost in taking
xy = €, and from (24), (25), and (28),

e—>0

2
H+Q'=%u2—&u+é-(w+f(l—l)v2)
€ € 2

+ (u - %)(b — u),

o(H + Q)[ox = —(y[)o(b + u)[ot.

Since d(b + u)/ot € N, by (23), it now follows from
(17) that lim (p/e) exists, and since (32), (22) and

(33)
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ueN imply H + Q' €N, (17) rules out (y/e) >0,
and no generality is lost in taking y = e and o, = e.
By (23), (33) therefore implies

20u/0t + (3u — Al€)0u[ox ¢ N
and, in the limit,

du/dt =0 when dx[dt=3}QCu—k), (4)

where k = lim i/e. By (32), moreover, this result is
valid for 7 = ¥4 in the left set of ! and, hence,s for
the desired double limit (Sec. I). Now 3u — k increases
with u and thus, if at some 7 the longitudinal velocity
u (or n or b) fails to be a monotone, nondecreasing
function of x, then it will fail to be € I'?, and indeed
even € I, after a finite interval of . A necessary
condition for (32) to be asymptotically consistent
with the governing equations is, therefore, that u, b
and n are monotone, nondecreasing functions of x
at any fixed +—for an observer who sees the plasma
initially at rest, the wave must lower the longitudinal
velocity, the magnetic pressure, and the number
density, as it passes.

The conclusions arrived at are sufficiently explicit
to permit remarks also on the real time asymptotics
of this wave type, provided thateither the tail boundary
condition (9) applies with b, <0 [so that (34)
describes the whole wave] or the tail does not overtake
the head. In that case, if the necessary monotoneity
condition is satisfied at some ¢, (34) shows it to
remain satisfied over any bounded time interval and
indeed over any time interval At such that p(e)At —0
as € — 0 for every p € Q. Moreover, (34) shows the
wave to spread by and by and thus to develop in a sense
strengthening (32), so that real time asymptotics are
equivalent to asymptotics for approach to steadiness.
As far as the present analysis can carry, it therefore
reveals no inconsistency in the existence hypotheses
of Sec. II. The reader will have noticed the similarity
between these waves and the simple waves of gas
dynamics,'® but there does not appear to be an exact
solution of Eqs. (1)-(7) of such type.

V. LINEAR WAVES
Assume next that
€/0?—0 as €—0;

(33)

then an argument analogous to that opening the
preceding section shows that /62 must tend to a limit,

16 R, Courant and K. O. Friedrichs, Supersonic Flow and Shock
Waves (Interscience Publishers, Inc,, New York, 1948).
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b
FiG. 2. Graph of (38) for
¢ > 0; it represents the

(transient) asymptotic form W/\\//\ /\
of the magnetic field per- \/
turbation vs, distance at

fixed time for all trans-

mission waves; scaling
according to (35).

N~

g
and «, = 6% From Egs. (24)-(28), therefore,
1—eud®» 1 ov
H = =
T e o
€ e(1 — eu)0bon
—_— b —_—
+62(r+u ) (1 + en)®0x0x
O(H + Q)jox = —(y/8DA(b + u)/dt,  (36)

and since (23) implies 0(b + u)/dt € N, (17) shows
lim (y/6?%) to exist. If p[d2— 0, (17) and (35) imply
0%h[0x? — (A/6)b ¢ N, so that b must be either
trivial or unbounded, contrary to hypothesis (Sec. II).
Thus y = %, and by (23), (36) implies 20b/0t +
0°b/0x® — (A/6%)0b[0x ¢ N; and the last term in this
expression may be absorbed into the time derivative
by a transformation to the frame of an observer
traveling with speed corresponding to 4/6% = 0, to
obtain the limiting equation

20b/ot + 8°b[ox® = 0. 37
It is readily verified to have a solution®1?
© o
b(x, f) = ¢ f Ai(u) dp, o = (-37) X,
(38)

- 3
Ai(p) = L J‘ cos (,uw + 1) dw
7 Jo 3

representing a wave of transition (Fig. 2) from the
magnetic field B, to the magnetic field By(1 + ec).
Thus (38) satisfies (9), if ¢ = ;. Conversely, (37),
(9), and (14) are invariant under the transformation
x=uax', t=a%", b(x,t)=0b'(x',t") for arbitrary
constant a # 0, and the solution b(x, ¢) for the initial
condition b(x, 0) = by(x) may thus be obtained from
the solution b’(x’, ¢') for the initial condition

b'(x', 0) = by(ax’).

For any monotone by(x) satisfying (9) and (14),
b (x',0)— b H(—x') as a'— 0 (where H denotes
the unit step function), and that is the initial
condition satisfied by (38) if ¢ = b,. Any transition
wave governed by (37) and monotone in x at some ¢

17 H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics
(S%amt;gidge University Press, Cambridge, England, 1946), pp.
8518,
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therefore approximates (38) asymptotically as ¢ — co.
This holds, moreover, also for any such wave
differing from a monotone one at some ¢ by an
integrable function [use the linearity of (37), a slightly
different transformation, and the x derivative of
(38)]-

Gardner and Morikawa® conjectured that (38) is
not truly asymptotic for Eqs. (1)—(7) because (37) does
not admit the steady solitary-wave solution®=* of Egs.
(1)~(7). This is unconvincing, since Sec. IV indicates
the existence of solutions approaching steadiness arbi-
trarily closely, but governed by a limiting equation
that also fails to admit steady solutions. Rather than
discredit the conjecture, however, the present result
supplies proof that (37) can describe only a transient
asymptotic stage in the approach to steadiness. This
follows from (35), which has been seen to imply
y = 0%, so that = = §%; if the approximation be
uniform for = in the left set of some o(e) € C(0, 1),
i.e., valid for every 7 such that /o — O with ¢, then
it must therefore be valid for §* = 7 = e min (¢, 0),
which implies (32), not (35). For the head of a wave
characterized by (35), moreover, an increase of the
time scale (yd)™! = 6~ relative to the amplitude
scale e must weaken (35) so that ultimately pd%fe — 0
for every p € Q—indicating that closer approach to
steadiness requires boundedness of %/e.

The conclusions are again sufficiently explicit to
permit relating near-steadiness to real time asymptotics
and proving that (37) can represent no more than a
transient also in the latter sense. Indeed, (38) shows
b, u, and n to depend asymptotically (as ¢t — oo) only
on t~¥x, and the development of the wave therefore
preserves the relation y = 62, while the rates of change
of b, u, n with x and #—to which the definitions of &
and yd relate directly—decrease in magnitude as ¢
increases.’® Since the amplitude eb; is independent
of time, (35) must weaken with time and must be
anticipated to give way eventually to y = 0 = e. It
should be stressed that (37) resuits® from the classical
procedure of letting the amplitude tend to zero before
letting the time tend to infinity, and our result there-
fore shows the order of these limit processes to be
definitely noncommutative for the physical problem
at hand.

VI. KORTEWEG-DE VRIES WAVES
Assume finally that
0 =e,

(39)

Then an argument similar to that opening Sec. IV
shows that A/e tends to a limit, and ) = €. From Egs.
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(24)-(28), therefore,
A 1—eud®  3b+u
H ‘=8 —=b — -b
=t e T T2 D)
B 1—41, 1—eu dbon
Dpe =t - D 4
+yat+€[ 2 v (1+en)23xax:| (40)

o(H + Q)/0x = —(y[d(b + u)[ot,

and by (23) and (17), lim (y/e) exists. This leaves two
possible cases.
@ If y = ¢, (23) implies
b, 0[0% , ... 4
“a T [ax2 i b] #N @
so that the limiting equation is that of Korteweg and
de Vries.* However, y = 8 = ¢ implies 7 = ¢},
which does not represent a left set, and (41) can
therefore relate only to a transient asymptotic
approximation. Conversely, the numerical work of
Morton® and Peregrine'® indicates that (41) can
describe the development of a transition wave, both
from a shape with rather short length scale and also
from one with very large length scale, to one of the
last type remaining to be discussed.
(ii) If y/e -0 as € — 0, so that the time scale is
large compared even with e, (40) and (17) imply

0%b[ox® + 3b* — kb ¢ N, k =Ilim Ale, (42)
and since b € I'3,
b ~ k sech? (3kix), (43)

a solitary wave of amplitude parameter k. Since this
result has been deduced for r in the left set of €%, it
applies to the desired double limit (Sec. I). This wave
type and the one discussed in Sec. IV are therefore
the only possible, fully asymptotic waves consistent
with Egs. (1)-(7). Observe that (43) implies k > 0, if
b € N, so that the wave front must raise the magnetic
pressure; conversely, it is the only fully asymptotic
type of wave that can start with a rise in magnetic
pressure, since the very long waves have been shown
(Sec. 1IV) to require a monotone fall in magnetic
pressure.

The result (43), however, has been deduced only
for the head of the wave, and it may mislead, because
(43) is an exceptional solution of (42). Under such
circumstances, an asymptotic statement like (42) may
not be precise enough, and we therefore return to (40).
Assuming y/e bounded, it gives, by (22) and (23),

9%b[0x® + (3/2)6® — kb — of = H+ (', feT%, (44)
9(H + Q)/ox = —(y[e)d(b + w)/ot,  (45)

18 D, H. Peregrine, J. Fluid Mech. 25, 321 (1966).
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and if y/e — 0, this pair is a near-steady form of an
equation close to that of Korteweg and de Vries.
Since the solution must approach (43) for bounded x,
it follows that k > 0, and since db/0x € T (Sec. III),
integration of (44) gives
(Ob'jox")y = b2 — b'* + 2F — 2G = C(b'; x', t; €),
(46)
where b' = bjk, x' = k¥x and

KF=H+ Q' + ¢, G=—f b’g—Fdx. 47
' X

Observe that C(b’; x', ¢; €) is a near-cubic in &’ with
coefficients 2F, 2G which, by (17) and (45), are small
and slowly varying with x. The criterion for real
solutions, bounded for bounded x, of (46) with
constant F and G is!*
A=1+9F—-27G)* -~ (1+6FP<L0,
and the curve A =0 in the F, G plane is thus a
critical curve for (46). By (17), (44), and (47), F—0
and G — 0 (and thus also A —+0) as x - 4+ oo for
any fixed #; and F= G =0 corresponds to the
solitary-wave solution (43) of (46). As x decreases, the
- representative point (F, G) must be anticipated to
shift slightly from the origin of the F, G plane and,
however little it shifts, the solution of (46) may then
assume a quite different character.1®

19 T, B. Benjamin and M. J. Lighthill, Proc. Roy. Soc. (London)
A224, 448 (1954).
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If the representative point shifts into the region
A > 0, the solution of (46) satisfying (14) fails to be
bounded even for bounded x, contrary to hypothesis.
It cannot shift along the critical curve, as x decreases
for fixed ¢, because A = 0 implies 3 dG/dF =1 —
(1 + 6F)} ¢ N, while (47) implies (9G/0x)[(9F|0x) =
b’ € N. For an arbitrarily close approach to steadiness
at the head of the wave, with 8% = e, it is therefore
necessary that the representative point shift into the
region A < 0, and (46) is then the equation of a
cnoidal wavelt

b=p+(1+v—penlix’(1+v— o} (48)

of modulus (1 + » — p)¥(1 + » — o)~%, where 1 + ,
p and o are the roots of the cubic C(d';x’,#; €) in
decreasing order. The wavelength is

A =401 + 7 — o) HK([(1 +» — p)I(1 + v — AB),

where K denotes the complete elliptic integral of the
first kind and, since |v| + |p| + 6] = 0 as € — 0 for
bounded x’, t, A ~ —2log (p — 0). The wavelength
is therefore logarithmically large compared with the
scale that defines the head of the wave. For bounded
x, (48) approaches (43) as € —0; but as x > — o0,
the real asymptotic approximation is a near-periodic
wave train (Fig. 1) dependent on the slowly varying
parameter F.
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It is remarked that no complete proof exists in the literature that the asymptotic states of quantum
field theory are independent of the spacelike surfaces chosen to define them. In this paper we present a
proof which is valid for any plane surface; this follows the Haag-Ruelle method, supplemented by
lemmas showing that the usual bounds on truncated Wightman functions and smooth solutions of the
Klein-Gordon equation are uniform in certain spacelike regions. The same lemmas immediately show
that asymptotic states may be defined using any spacelike surface possessing a normal, which lies inside
a closed timelike cone at all points. The proof of the convergence of these states has hitherto been
incomplete. It is then important to show that these states are independent of the surface; we sketch a

proof of this.

INTRODUCTION

HE fundamental work of Haag! and Ruelle? on the
asymptotic condition in axiomatic quantum field
theory turns on two lemmas. The first concerns the
asymptotic properties of the truncated Wightman
functions in spacelike directions, and the second, the
behavior of the smooth solutions of the Klein-Gordon
equation, and its space integral, for large times. The
first lemma had received some attention from previous
authors? but the first proof of a theorem adequate for
the problem was provided by Ruelle.2 For the second
lemma, Haag gave a rough argument in his original
paper, which was made more mathematical by Ruelle.
However, neither Ruelle’s proof, nor the expositions of
it,* go into complete details, and this must be con-
sidered unsatisfactory in view of the importance of the
subject. As remarked by Segal, it is not easy to
supply all the details if one follows Ruelle’s method.
Following a suggestion of Jost, Brodsky has given
a complete proof of the required lemmas on the
Klein-Gordon equation using operator methods,®
and Jost himself has presented a straightforward
proof.® These results, together with Ruelle’s lemma
on the truncated Wightman functions, enable one to
follow the usual line of argument.l->¢ This demon-
strates the convergence for large times of a sequence
" % The research reported in this document has been sponsored in
part by the Air Force Office of Scientific Research OAR through
the European Office Aerospace Research, U.S. Air Force.

1 R. Haag, Phys. Rev. 112, 669 (1958).

* D. Ruelle, Helv. Phys. Acta 35, 147 (1962).

3 H. Araki, Ann. Phys. (N.Y.) 11, 260 (1960); K. Hepp, R. Jost,
D. Ruelle, and O. Steinman, Helv. Phys. Acta 34, 542 (1961).

4 A. Wightman, in Theoretical Physics, A. Salam, Ed. (Inter-
national Atomic Energy Agency, Vienna, 1963); R. Jost, General
Theory of Quantized Fields (American Mathematical Society,
Providence, Rhode Island, 1965).

51, E. Segal, in Mathematical Theory of Particles and Fields,
(M.LT. Press, Cambridge, Mass., 1966) A. R. Brodsky, Ph.D.
thesis, Massachusetts Institute of Technology (1964). The details of
Ruelle’s proof have been given by H. Araki, Lectures at ETH,

Zirich (Unpublished) 1962.
$ R. Jost, Helv. Phys. Acta. 39, 21 (1966).

of time-dependent states ¥'(¢) formed from products
of creation operators B,(t). These are obtained from
the field by integrating over a plane spacelike surface
labeled by a parameter ¢. The limit states ¥'* obtained
as £t — oo are called asymptotic states of the theory.
However, to show that the limit states are independent
of the spacelike surface chosen requires a little more
work. The published discussion on this point®4
ignores the problem of showing that the bounds are
uniform in the parameters defining the normal to the
surface. We fill this small gap in this paper, at the same
time generalizing the existence proof to certain curved
surfaces. The properties of the truncated Wightman
functions beyond those given in Ref. 2 are easily
obtained, using the method of Ruelle; the extension
of the results of Jost and Ruelle is also quite
elementary. This is virtually all that is needed to
prove the uniqueness of the states obtained using
curved surfaces.

1. PROOF OF CONVERGENCE

Let us recall the lemmas in more detail. Suppose
#(x) is a Wightman field with representation U(a, A)
of the Poincaré group. Suppose U(a, 1) = e'#x, and
the spectrum of P# exhibit the simple features of an
ideal model, that is, a nondegenerate point vacuum
¥, and a one-particle state ') of mass m > 0 sepa-
rated from other states by a mass gap (see Figs. 1-3
in Ref. 7). Since polynomials in the smeared fields
form a dense set when applied to ¥y, there exist
operators (finite sum)

b= ; fg“(xl’ T X)P(xg) o Plxg) dxy e e dxy,
(1.1)

such that BY', is not orthogonal to W', . Here we may

? R. F. Streater and A. S. Wightman, PCT, Spin and Statistics,
and All That (W. A. Benjamin, Inc., New York, 1964),
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take g;; € S(R%). The creation operator B; can be
made into a field by translations

Bx) = Ux)B,U(x), (1.2)

where U(x) = U(x, 1). Ruelle has proved that the
truncated Wightman functions W, formed from the
fields B, satisfy the following inequalities. Define

W‘;'(al’ Tt an)

=f(‘F0! Bl(xl + al) e Bn(xn + an)lP.o T
(1.3)
where a; = (a9, a;). Then there exists a number 4

such that
Iquz'(al P

<p(x1’ e axn)dxl. : .dxna

s a,) < A[(1 + 2y, (1.4

where
A = max |a, — a,|
4,4

and all the 4 are equal.

The arguments of Jost® or Ruelle lead to the
following bounds for any smooth solution of the
Klein-Gordon equation: Given f(x, t), there exists a
number A (depending of course on f) such that

Ifx, 0] < ArS, (1.5)

f Lf(x, 9] dx < A(1 + |)E. (1.6)

Suppose B, acting on the vacuum, creates a state whose
one-particle component has wavefunction A(p), that is,

(¥, BY,) = h(p); (1.7

then the time-dependent creation operator

—

B = [ | Bx X)L filxn) (1)

where agb = adb — (0a)b, creates a state with wave-
function a(p)h(p), if the solution f, of the Klein—
Gordon equation has the form

£l = f P H(p)S(p* — ma(p) d'p.  (1.9)

The method of Haag! now shows that the limit states
lim B, (t) - - - B, (0¥, (1.10)
t—+o0
exist in norm.
Instead of using the creation operators (1.8), we
could define other time-dependent operators

«>

BY(t) = f d(n - x — B(x, x°) % nf(x)d'x, (1.11)

where n,, is a timelike vector, We are thus integrating

R. F. STREATER

over a spacelike plane with normal given by the vector
n,. A simple argument shows that, acting on the
vacuum, BZ(t) creates the same one-particle state as
B,(¢), which happens to be independent of time. What
can we then say about the convergence of the states

Y(n, t) = BL()B7(1) - - - BL(O)Y, (1.12)

as r— +o00? We can immediately assert the con-
vergence of these states using the explicit Lorentz
covariance of the theory. For there exists at least one
Lorentz transformation A such that An = (1, 0, 0, 0),
a purely timelike vector. Then we may write

By(®) =f d*xB,(Ax) K f(Ax).  (1.13)

0=t ox°
To put this in the form used above, we first note that
Ja(x) = f(Ax) defines a new solution of the Klein-
Gordon equation, which is therefore bounded by
At} if t = x° (4 depending on ). Secondly, in the
proof of convergence, we need consider only the
expectation values of B7(¢)inthevacuum state, and this
involves a study of

(By(Axy) - -~ Bk(Axk»g‘ = <V(A)_lBl(Ax1)V(A)
X VTH(A)By(Axy) - -+ B(Ax)V(A)yg, (1.14)

where U(a, A) = U(a)V(A), say. Now we may rewrite
this as

(By(Axy) - - - By(Ax)§ = (Bi(x1) "+~ Bp(x)) > (1.15)

where
B = V(A)BVY(A) (1.16)
and

BA(x) = U(x)B*UY(x). 1.17)

So far the argument does not use the form (1.1) for
the operators B, and could apply also the algebraic
formulation of Haag and Araki.® On using (1.1), we
see that

B, = ; fgijA—l(xl 5T Xy)
X $(xy) - d(x)dxy - - dxy, (1.18)

which is again of the same form. Hence, the inequalities
(1.4), (1.5), and (1.6) are sufficient to show the
convergence of the states (1.12) to limit states ¥*(n),
which have as much right as ¥ to be regarded as the
asymptotic states of the theory, containing & particles
with wavefunctions specified by the one-particle
states produced by the creation operators. The
argument given here is not sufficient to prove the
convergence of similar products of creation operators

8 See H. Araki, Local Quantum Theory (W. A. Benjamin, Inc.,
New York, to be published).
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obtained from an arbitrary surface ¢, which is not
flat. Even more important, we do not know that
¥*(n) is independent of n. As a vector it might not be
even differentiable in the parameters defining n#. The
usual argument®* considers (d¥'/dn)(n,t), showing
that for  — 4 oo this state converges to zero in norm.
This would in fact be sufficient if the limit is uniform
in the parameters 7 of n, that is, if for any e, there
exists a f, such that

I(@¥/d))n, D] < e
for all ¢t > t, and all n in some set. For then
L
[ dqxnn)dn”
o dy
a¥(, 1)

[¥(, ) — ¥, 5| =

Len if t>1t,,

showing that
Y(z, t) > ¥* = lim ¥(0, 1).
i+t

Here 7 is a parameter of the normal: n = (cosh 7,
sinh 7, 0, 0), say. In the next section we show how this
uniform convergence foilows from the corresponding
uniform bounds similar to (1.4), (1.5), and (1.6); these
bounds are derived in Sec. 3.

2. THE UNIFORM CONVERGENCE LEMMA
In order to prove that d¥(n,t)/dy converges

uniformly as ¢ — 4-co, we use the following strength-
ened forms of (1.14), (1.15), and (1.16).

Theorem 1: Let B;, j=1,2, -, n be “local”
quantities, that is, operators such that By(x) =
U(x)B;U(—x) commutes with B,(y) if (x — y)® < —kZ,
[we use the timelike metric x* = (x?)? — x2]. Then
define, for p € S(R*"),

Wﬂmu'uaﬂ=fﬂh,“wxﬁ

X Wp(xy +ay, - ,x, +a,)dxy - -dx,, (2.1)
where
Wixy, -, x,) = (‘"Fo: By(x1)By(x) - - B, (x,)V;)
2.2)

and W, is the usual truncated function defined in
terms of W. Then for any « > 1 and any N, there
exists a number C(«) such that

i+ A¥wiay, - +,a,) <C, (2.3)
where
/A = max |a, — a,|,
ik
and the a;, - * -, a, are only restricted by
8, — af’ > o |a; — afl’. (24)
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Remark: The “local” operators could come from
a Haag field® just as well as being polynomials in a
Wightman field.

Theorem 2: Let f be a smooth solution of the
Klein-Gordon equation, and W a compact neighbor-
hood of the identity in the Poincaré group. Then there
exists a number A4 such that

Ifalx, )] = | f(AX)] < A1 + )2,
Ix| | fax, D] < AQ + 122,
forallxand 7, and all Ae W.

2.5)
(2.6)

Theorem 3: Given f and W as above, there exists a
number 4 such that

fumnm%<Au+mﬁ @7

for all A € W and all x = (x, t).

In discussing now the uniform convergence of
d¥(n, t)/dn, we first remark that ¥(, f) is a differ-
entiable vector in #. This comes about because the
creation operators in the form (1.13) involve the
parameter A only in the test function, which is a
smooth function. The differential coefficient is then
given by the usual rules for the product:

d¥(n, 1) =SBy .____---B,(t)‘I’o.

(2.8)
As remarked, B}(f)¥, is a one-particle state, inde-
pendent of both » and ¢; it follows that

[dBg(8)/dnT¥, = 0. (2.9)

Haag’s method is to expand the norm of d¥'(z, t)/dn,
which is a 2k-point Wightman function, in terms of
truncated functions. It is clear that in any nonzero
contribution, dB7(t)/dt cannot be next to the vacuum,
and so must occur in at least three- or four-point
function. The same goes for the conjugate dB} ()*/dn
which occurs in the scalar product

|d¥ [dn)2 = (d¥ [dy, dY |d). (2.10)

In discussing the transformation A such that
An=(1,0,0,0), we may assume, without loss in
generality, that

{Ax)® = x®cosh 5 + x'sinh 5, .11)
(Ax)! = x%sinh 5 + x* cosh 7, (2.12)
(Ax)? = x2, (2.13)
(Ax)® = 3, (2.14)
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where || < 7, determines the compact neighborhood
W of the origin of the Poincaré group. Using the form
(1.13) for Bx(t), it is clear that dB?/dn(t) is a sum of
operators of the form

BO(Ax)x,ef ) (Ax), (2.15)

where /=0, 1 and the symbol (‘) means possible
differentiation with respect to x, or x;. The differ-
entiated functions satisfy the same properties of
Theorems 1, 2, and 3 needed for the proof. We can
show that the n point product of such objects can be
uniformly bounded as follows. Only two of the terms
in the product will involve dB/dn, which brings down
the extra power of |x| or 7. Then a typical truncated
function is

f (%o, BO(AX)* - - By(AR)E ) o fO(Ax) - x,f(Axy)
x e (Ax) dxy - dx,, k>3, (2.16)

involving one dB/dn, or
f (¥, B(Ax)* - -+ BYAX)YP ) pf 3 (Ax) - - - x,

X fEAx) - xf ) e £ (A,
k>4, (217)

involving both dB/dn and dB*|dy. These may be
bounded uniformly in %, by using the theorems. Thus

[(Yo, By(Axp)* - - - B(Ax))l < [4/(1 + A)V], (2.18)
A, = max |Ax; — Ax,| > max |x; — x,|
i i
since all the points x;, ‘- -, x; have the same time
component. Putting

A = max |x; — X,], (2.19)

49
we can uniformly bound (2.18) by 4/(1 + 4)", whose
integral over R**-1 converges to a constant, say C.
Thus (2.16) and (2.17) are bounded by

f I (Ax)) d*x, f Wil AGx, — x50, A(x — %), -+ )

x (1 + 073001 4 |ty cosh g d(xy — x,) - - -,
k=3, (2.20)
and

f 1 Ax) f W AGry — x2), AQy ~ X5) - *)
x (1 + 5701 4 1)) cosh gy d(x; — x9) - - -,
k>4, (2.21)

giving the usual bounds, uniformly in A; that is, the
functions with one dB/dn are bounded by

A(L + |t Dy
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and those with both dB/dy and dB*|/dn by
A(1 + [z])~ReD+2,
Both of these tend to zero as t — oo,

3. PROOF OF THEOREMS

We are going to consider solutions of the form

F(x) = f 6(p)8(p* — MO e d'p,  (3.1)

where f; € 8. It is clear that f(x) may be written as a
convolution with the singular Green’s function

Gyl(x, 1) = f B(p)e Vot — m?) d'p, (3.2)
namely

s =[x ~E0r®FE G
In order to be able to bound integrals of this type,
Jost’s idea was to avoid the singular Green’s function,
replacing it by the continuous function G(x) whose
Fourier transform is

G(p) = (1 + p)0(p)0(p* — m?).  (3.4)

Naturally f3(£) in (3.3) becomes replaced by g(é),
where £(p) = (1 + po)*fo(p). Because f, € 8, we have
ges.

Instead of (1 + po)3, any other smooth decreasing
function of p would do; Jost’s choice is convenient
because of the identity

2 fw 2 —a,—apy
—— = % %" da, 3.5)
(po + 1)? 0
which means that
Gx,t)=c¢ f o®e*F(a, X, t) da, (3.6)
0

where
F(a, x,t) = f ¢ Pt Wip X p \§(p? — m?) dpt. (3.7)

Using the method and some results of [6], we first
put uniform bounds on G. We put r = |x|.

Lemma 1: For any ¢ > 1 and N > 0 there exists a
number 4 such that

IG(x, )] < A(o, N)/(1 + )V
for all x with r > ot.

(3.8)

Proof. In the course of Ref. 6 it is shown that there
is a constant B such that

]
Fax ) < BLEE ey (39)
x
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where

&= (rt— 12 + of — 2iat)t. (3.10)

Putting u=r%— 1?4 a? ov= —2af, one obtains
for r2 > o%2

EP=(2+ oD >u> (1~ Yo)rr (31D
and
Re{ = #(u + (& + vz)ﬁ) >u>(1—1/Hr2 (3.12)
Therefore, from (3.9),
|F(x, %, )] < BI(1 + ab)fad)(1 — 1/o?)ir¥
x e-(1-1/eHtr (3.13)
Thus we obtain
~{1—o—2)r poo #
1666, 01 € € " P hE atede, .14
r o

from which the result follows, since G is a bounded
function at r = 0 and the integral in (3.14) converges.
We have in fact shown rather more than stated in the
lemma since exponential decrease is faster than “rapid
decrease” in general. But we lose this information
in the next lemma.

Lemma 2: Let f(x,¢) be a solution of the Klein—~
Gordon equation of the form (3.1). Then, for any
o > 1 and any N, there exists a number 4(c, N) such
that

7Gx, Ol < Ao, ML+ n)Y (3.15)
for all x such that r > ot.
Proof. We have
1@ =[e@6x~E0d 31

with g € 8. The integral can be split into two parts I,
and I,; in the first, £ is such that (1 < ¢’ < 0)

® Ix — gl > o't, (3.17)
and in the second
an Ix — E| < o't.
Thus
ILy) = f ®G(x — &, 1) &%
A(o’, N + 3) d%¢ 3.18)

< [ o0 o

by (3.8). The integral in (3.18) as a function of X is
bounded by an expression of the form A4(1 + r)~~.
In the second term of the integral, I, we have the

condition
Ix—El <ot and x| > ot
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Thus we get the lower bound for JE}:
x? — 2x-§ + E2 < o2,
giving
—2x - E+ B2 <o —r2 L0,
Thus
—E2 4+ 2x-E2> 12— o2 > r¥(1 — 0"%o?) > 0.
Therefore

2x + § 2 r*[(o* — o"?)[0],

Bl 2 #rl(a® — a)/0®] = yr,
say, by using

giving

2x - & < 2|x| |&].

But we know g € §, so that for N given, there exists a
C such that

lg®)] < C/(1 + [PV,
Hence

L = f E)Gx — E, 1) d°%

cM
— e PF
Sflamr A + gV d

where M bounds G(x, t). The last integral is obviously
bounded by an expression of the form C/(1 + r)?V.
This proves Lemma 2,

Proof of Theorem 2. By rotation invariance of the
inequalities, it is sufficient to prove the theorem for Ax

given by (2.11)~(2.14), with |5 < 7,. We prove it
for % > 0 and ¢ > 0. The other cases are proved
similarly.

The inequality (1.5), proved in Ref. 6, shows that
there exists a constant C such that

c
1 + {tcoshn + x!sinhg|?
Divide space into two regions; in the first
tcoshn + xtsinhg > pot, 0< p <1, (3.20)

where p,, independent of x, ¢, and 7, is chosen later.
Equation (3.20) with (3.19) gives

|f(A) < €I + (pot)H]

in the first region, which can clearly be put in the
required form. In the second region

(3.19)

If(Ax)] <

jt cosh n + x! sinh 9} < pet, (3.21)

giving, certainly,

t cosh n + x!sinh 9 < pyf,
so that
0 < t(cosh  — pg) < —x'sinh ),
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showing x* < 0 as # > 0, and
—x* > t[(cosh  — po)/sinh 5].
Hence
—x; cosh n — tsinhy
> (t(coshn — p,) cosh 5 — ¢ sinh® #)(sinh 7)™
— t(l — po cosh 77)
sinh %

1 — pycosh, :
sinh 7,

s

>0, (3.22)
provided we choose p, < 1/cosh 7,. But, by (3.21),
t > |t cosh n + x, sinh 7|/p,,
and therefore, from (3.22),
x: 4+ x3 + |x, cosh 57 + #sinh 7|?
> |x, cosh % + tsinh 5> > (}—:-(ﬁl—::—i)im’)zt
(!:—B‘f—@l]—@)z |t cosh# + x, sinh 7).
po sinh 7,

Choose p, such that (1 — p, cosh )/ p, sinh 2, > 1.
This is clearly possible in the range 0 < p, < 1 since
the expression diverges as p, — 0.
Then we can apply Lemma 2 to show that, in the

second region,
A((1 — p, cosh sinh#,, 2
If(Ax)l < ((2 i;o 770)/,’0 770' ) o~
(1 + x5 + x5 + |x, coshn + tsinh 5|
< A .

{1 + [(1 — p, cosh ny)/sinh 7’1"}
This clearly implies the inequality (2.5). To prove
(2.6), if |x| < p,t for some p, independent of x, ¢, and
A, then by the result just proved,

[x] [f(Ax)] < paA(1 + |1)7E,
as required. We need consider only the points with
|x] 2 pyf. This can happen in two ways:

[%1] 2 (po/2)t

(3.23)
or
Il < pufy and. (4 + xDE > [(v — Dirlpyt.
(3.29)
We choose », independent of A, x, and ¢, later on.
If |x;| > (pyt/v), then
|x; cosh + ¢ sinh 7]
> |x,cosh | — tsinhy
2 |xy coshn| — |x; sinh | — tsinhn — tcoshy
+ (t coshn + |x, sinh %))
> |t coshn + x; sinh 7|
provided
|x1] (cosh 7 — sinh ) > #(cosh % + sinh 7),
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that is, provided |x;| > e*¢ for all || < 7, and x, ¢ of
the region. This holds, in view of (2.23), if we choose
p1/v = e?, In this region, by Lemma 2, Eq. (3.15), we
have ’

[x] | f(Ax)]|
< A |x]
(1 + x5 + x2 + |x; cosh 5y 4 ¢ sinh |2)¥
B B
1+ (3 + x5 + XD 71+ N
< B

1L+ [(p/o) N

which shows the result for this region.
In the region (3.24) we have

x3 + x3 + (x, cosh 5 + ¢ sinh %)?
> [(v — 1)/»)pi® 4+ (x, coshn + ¢ sinh 7)?
> [(v — D/vPpit* 2 pa(t cosh 7 + x| sinh 7 )?
(3.25)
provided p,, p, are chosen such that p, > 1 and
[(» — 1)/»)*pi > pi[cosh 7, + sinh 5y(p,/»)T,

consistent with p, = ve?™, since |x;| < pi/v in the
region (3.24). This is clearly possible if we make »
large enough. Then, from (3.25),

x% + x3 4 (x, cosh 5 + t sinh 5)*
> pa(cosh 7t + sinh 7, [x,])®
> piltcoshn + x, sinh 7%
Thus, again by Lemma 2, we can bound r | f(Ax)| by

3
max | f(Ax)|

2t2
(i + D) + B2

[ + xD) + (o214

< [1 + x2+ x3 + (x, coshn + ¢ sinh #)* ¥+

L pi

[ S )
[1 + {[(z — DPlp Y
which proves Theorem 2.

Proof of Theorem 3. The idea of this proof is the
classical one, that the volume of space inside which
f(x,t) is not very small, increases at worst like |¢|?
as t— $o0. We first prove the result for > 0,
t > 0; the other cases are proved similarly.

We split the integral into two main parts, each with
a finite number of subdivisions. Then each integral is
shown to be bounded uniformly in A by a function of
the form A(1 + |t])%. In the part (a) we have

(@) x3+ x3 4 (x; coshy + ¢ sinh #)?
2> o’(x; sinh 5 + tcosh#)?, (3.26)

<c

for some C,
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where ¢ > 1 is chosen later. In part (b) we have
(b) x3 + x5 + (x, cosh#n + tsinh 5)*
< o*(x, sinh + tcoshn)®.  (3.27)

The region (a) is again split up into the regions (al)
and (a2), given by

(al) (3.28)
(a2) (3.28a)

o to be chosen later. In the region (al), clearly, by
Lemma 2,

Lf(Ax)) <

|x; cosh 9 + ¢sinh 5| > « |x,],
|x; cosh 9 + ¢sinh 9] < a |xy],

Ao, N)
1 + [x2 + x} + |x, coshy + tsinh#|*]Y
A(o, N)
1+ [x3 + x5 + o231V
by (al). Therefore

f If(Ax)] & < C,

some number, from which (2.7) follows. Expanding
the inequality (a2), we arrive at four cases:

(3.29)

(a2i)) 0 < x,cosh# + tsinhn < ax;;
(a2ii) 0 < x;coshy + tsinhn < —oxy;
(a2iii) 0 < —x;coshn — tsinh 5 < axy;
(a2iv) 0 < —x;cosh#y — tsinhn < —ax,.

The first and third are impossible, since « < 1 and
t > 0, # > 0. From (a2ii) we see

tsinh > —x, cosh 5 = |x,| cosh 5 > [x,},
s0
Ix;] < tsinh 7,.
In (a2iv) x; < 0 and
%] (1 = &) < |x4] (cosh n — &)
= —x,(coshy — «) < tsinh < ¢sinh 9, (3.31)

(3.30)

showing that, in (a2),

11l < [sinh 7o/(1 — @)}t = Bt,

say by combining (3.30) and (3.31).
1t follows that

f | (A%)| d*x
A(e, N) dx, dx,

Bt
d
Sf xlfl + [x3 + x2 + |x, cosh 4+ t sinh 5|*¥
Sf‘” J‘A(a N) dx, dx,
1+ [x3 + x3b
< CBt  for some C.
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This deals with the region (a). In region (b) we wish to
show that |x| is bounded by a fixed multiple of ¢.
Because of (3.27), |x,| < § |¢] is sufficient for this for
some § independent of 7. For then

|x3l <€ o |x, sinh 9 + ¢ cosh 7]
< o |x,| sinh 54 + o cosh 7, [¢]
< (o sinh 5y 4 o cosh ny) |t| = € }t],

say, and the same for |x3|. Then

P C 5t et et
f [f(AX)| &x < (————1 py] f_“dxlf_etdxz f Etdxe.

< B(1 + |tht  for some B.
Equation (3.27), valid in region (b), clearly implies
[x; cosh 7 + ¢ sinh | < o |x; sinh % + £ cosh 7|.
Again there are four cases:
(bi)
0 < x; cosh 5 + ¢sinh 5 < 6(x; sinh 9 + tcoshn);
(bii)
0 < —x,; cosh 5 — ¢sinh 9 < o(x, sinh 5 + ¢ cosh 7);
(biii)
0 < x; cosh 9 + ¢ sinh 7 < o(—x, sinh 9 — ¢ cosh %);
(biv)
0 < —x;cosh — tsinh g
< o(—x, sinh 5 — ¢ cosh 7).
In (bi), if x, < 0, then —x, cosh # < ¢ sinh % implies

|x;] < t sinh 7, as desired. So we may assume x, > 0.
Then
x,(cosh  — ¢ sinh %)

< ot cosh n — tsinh 5 < to cosh 7).
Let us choose o < cosh 7y/sinh 7,. Then cosh  —
o sinh > 0 for all 5 < 7, and we have
o cosh 7, to cosh 7,

cosh g, — o sinh 7,

x| <t
=l cosh#y — ¢ sinhg

the desired result. In (bii), x; > 0 is not possible (we
have t > 0, > 0). Thus (bii) gives
Ix1] < |%,} (cosh  + & sinh %)

= ~x,(cosh 5 + o sinh 9) < #(o cosh % + sinh %),
S0
|21 < t(o cosh 5, + sinh #,),

proving the result for (bii). In (biii) x; must be negative,
and then —x; cosh 9 < ¢ sinh % leads to
Jx:] < ¢ sinh #,.
In (biv) x, must be negative since
—x,sinh — tcosh > 0.
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But then
—x,(cosh n — o sinh 1) < t(sinh 5§ — ¢ cosh 7))

is not possible since the left-hand side is positive and
the right-hand side negative. This proves Theorem 3.

Proof of Theorem 1. The proof follows that of
Ref. 2. Suppose we are considering a sequence of
configurations for the a,, - - -, 4, in which

A = max |a; — a]
ik
becomes large, and such that the maximum is
attained for a fixed j = i, k = i;. Consider also the
family F(iy, iy) of all partitions of the set (1,---,n)
into subsets X, X’ such that iy € X, i’ € X', Define

min |a; — agtz].

# = max
ieX,i’'e X"

XeFliody')
Suppose also that the configurations also are all
such that this maximum is achieved for a fixed
partition X = X, X' = X, and for fixed i =j,,
i’ = j,. Then ny > A. As in Ref. 2, we set
o=@l <ip < - <A@
and
X =< <ip)
and define a permutation
I=(,2,---,n
J=(fl,£3,’ '3in')
with the permuted expectation values W1 and W9
defined by permuting the fields appropriately. We then
note that
F(xl," ’,x”)
= WI(xl 5T xn) - WJ(xl PR xn) (3'32)
vanishes whenever the differences &,; = x; — x,, are

sufficiently spacelike. Therefore g(x) does not con-
tribute to

Folas, -, a,)
=f<p(x19”.3xn)F(x1 +al,"',x,,+a,,)dx

I A S

for any x such that
(x; + a; — xp — a;)* < =K%, K = max K,;.
This is ensured for sufficiently large #, provided that
Ixl* = r* + x§ < 4%
for some A, independent of u, chosen later. For then
(x; — %) + (a; — a;)* + 2(x; = x;)(a; — a;)
=(x} —x)? — (x; = x))* + (a) — a) — (a; — ;)
+ 2(x§ — xM(a% — ad) —2(x; — x}) - (a, — a,)
< 44%F + pi(—1 + 1/a®) + dAp(npfa) + dAu-nu
< —-K*

R. F. STREATER

if A is small enough (depending only on « and X).
Thus for large enough g, i.e., large enough A, greater
than 4, say, depending only on « and K, this is
negative. The rest of the proof goes as in Ref. 2.

4. CONCLUDING REMARKS

Because of the uniform nature of our bounds, the
lemmas can be immediately applied to prove that
certain smooth curved surfaces may be used to define
creation operators. Let o(f) be a set of spacelike
surfaces, with a normal at every point, which lies
everywhere inside a compact timelike cone; then
if n = (cosh #, sinh %, 0, 0), we know there exists an
7, such that || < 5, on 6. The operators

0
ors —_
Bl(» ——J;(t )do"‘B(x) I n, fo(X)

exist as creation operators, and
Bi()Y,

is a one-particle state independent of o and ¢, as is
well known. Now suppose the time dependence of
a(t) is smooth enough so that BI(¢) is differentiable
in ¢, and is such that the fixed point

(xo(t, 6),0,0,0) € o(1)

goes to infinity as £ — co. Then our method proves
that

lim Bi(t) - - - Bi2(O)¥,

o0
exist in norm. These states have a right to be called
asymptotic states; it is therefore an important
problem to prove that they are independent of the
series of spacelike surfaces used to define the limit
states. To prove this in general involves more work,
though it is easy to show, as above, that it is inde-
pendent of the orientation. Note that the surfaces
o(t) need not be all the same shape, though the
dependence on shape with time must be smooth.

To show the independence of the limit states on the
sequence, we remark that the limit states may be
obtained by following the sequence 7,:x4(f, 0y) = n
an integer; as t — o, S0 n —» o0, where

(xo(t, 01)0,0,0) e 0,.
Both sequences converge. But there exists a set of
other surfaces, smoothly interpolating between these
two surfaces, i.e., a surface o(f) such that o(z,)) = 0,(¢,)
and a(t,ﬂ,%) = 0y(f,+y) as surfaces. We know that the
surfaces o(#) converge, showing the other limits must
coincide.

The result of this paper, the independence of the
states on the Lorentz frame, was obtained without
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using the covariance of the theory under the Lorentz
group. It is interesting that if the theory is covariant
under the Lorentz group, then our result is essential to
show that the asymptotic states transform covariantly.
It would indicate that the Lorentz invariance of the
S matrix is not independent of almost locality.

One might like to extend the results of scattering
theory to states of the form

¥,,...0,(0) = BAOBAW) - - - BANF,.

However, such states do not seem to converge; the
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reason is that if ¢, £ o,, there are always some points
on o, and g, with a timelike difference. We cannot
obtain suitable bounds in this case, unless ¢, and o,
are very close together at cc. We do not pursue this
question.
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This paper contains a discussion of unitary irreducible representations of the group U(2, 2) in terms
of the noncompact algebra of creation and annihilation operators and some applications to massless
fields. In particular, the U(2, 2) algebra yields discrete values for p, (energy), one of its generators. The
little group and wave equations of massless fields are also derived from the Lie algebra of U(2, 2).

1. INTRODUCTION

THIS paper is a contribution to the explosion of

group theoretical publications pertaining to ele-

- mentary particle concepts. The present state of theoret-
ical research on elementary particles seems to
indicate that there exist ever increasing possibilities
for the so-called “classification™ of particles. Recent
attempts! for the unification of internal and space-
time symmetries into a single group theoretical
structure aiming at an hypothesis of simultaneous
charge, hypercharge, and spin independence of strong
interactions (at high energy) have led to further dis-
cussions of the subject by others.2 These authors have
shown that there are some basic difficulties in the
models proposed earlier.! In particular, if one adheres
to the existing interpretations of the isotopic spin,
then spin and isotopic spin assignments to various
generators of the group SU(3, 1) lead to noncom-
muting operators for the respective observables. There-
fore, what remains as acceptable is the product of two
commuting groups, i.e., the cover group is just the
direct product of the Poincaré group with an internal
symmetry group.

In the light of these investigations the fundamental
issue appears to be the possible existence of a “non-
compact symmetry group” whose unitary repre-
sentations together with some reasonable physical
assumptions on the nature of interactions of fields
may provide a good beginning for particle physics.

We use here, as in the previous paper,! the tech-
niques of creation and annihilation operators for the

* This research is supported by the U.S. Air Force Office of
Scientific Research, Washington D.C., U.S. Air Force Contract No.
49 (638)-1260.

1 Proceedings of the First Coral Gables Conference on Symmetry
Principles at High Energy (W. H. Freeman and Company, San
Francisco, 1964). See also B. Kursunogiu, Phys. Rev. 135, B761
(1964).

2 W, D. McGlinn, Phys. Rev. Letters 12, 467 (1964); F. Coester,
M. Hamermesh, and W. D. McGlinn, Phys. Rev. 135, B451 (1964);
H. Bacry and J. Nuyts, Phys. Letters 12, 2, 156 (1964); M. E. Mayer,
H. S. Schnitzer, E. C. G. Sudarshan, R. Acharya, and M. Y, Han,
Phys. Rev. 136, B888 (1964); A. Beskow and U. Ottoson, Nuovo
Cimento 34, 248 (1964).

representation of the group SU(2, 2), which is locally
isomorphic to SO(4, 2). Our discussion is confined
only to unitary, irreducible representations.

2. REPRESENTATION OF U(2,2)

In order to establish the method, we consider a
special set of ten Hermitian operators satisfying the
commutation relations for the inhomogeneous Lorentz
group. These are given by p, (four translation oper-
ators), and by the relativistic definition of angular
momenta,®

Ruv = xva - vap = l<XI FMuv IP>, (21)
where
-1 0 0 0o X1 N
0-1 0 0 P
F= =" ="
0 0 _1 0 xa Ps
0 0 O 1 X4 Ps
2.2)

and x,, p, (4, v = 1, 2, 3, 4) are subject to commuta-
tion relations

[x,an] = '—ihguv; [xua xv] = [P,qu] = 0’ (23)

with g,, being the elements of F. Every Lorentz
matrix L satisfies the condition

LFL = F, (2.4)

where L is the transposed form of L.
The operators x, and p, under a Lorentz trans-
formation transform according to

%) = LIx), |p) = LIp). 2.5)

In a way similar to (2.1), we introduce complex
creation and annihilation operators. For example, the

3 B. Kursunoglu, Modern Quantum Theory (W. H. Freeman and
Company, San Francisco, 1962). See p. 254, Eq. (VIII.8.3) also p.
50 for the definition of the 4 X 4 matrices M,,,, which are generators
of rotations and Lorentz transformations. The matrices M, con-
stitute a -nonunitary representation of the homogeneous group.
This book is hereafter referred to as MQT.

1694



UNITARY REPRESENTATIONS OF U(2, 2) AND MASSLESS FIELDS

Hermitian generators of the homogeneous Lorentz
group can be represented by [MQT, p. 257, Eq.
(VIIL8.21)]

Ju = ¥a| Bo,, |a), (2.6)
where
1 0 0 0 a,
0 1 0 0 a,
'3=0 0o -1 o = ag|
0 0 0 —1 a,
(al = [a}, a%, af, al), (27)

and the operators a,, a} (x, p = 1,2, 3, 4) satisfy
the commutation relations
[0, 3] = Brp 20,1 = [a, 0] =0 (28)
with § being taken as the “metric” of the 4-dimensional
complex space.
We could, if we wished, use two-component repre-
sentations for the @’s. For example, the commutation
relations (2.8) can be replaced by the equivalent set

[a2, ab] = [bs, bh] = 6,4,
[a:, bo] = [a}, i1 = 0,
[al’ aw] = [bls ba)] = 0:

(2.8)

where we put
a; = by, GI = b,
and the subscripts 4, w = 1, 2.
We are using a representation of y’s given by

Dus vl = =284, 74 =ip,
Vs = Y1V2¥3V45
Ay =31 £ iyy),
Oyy = —%i[}’“, Vvl

75Guv - % vaﬁg
and

En=1gn=gn= —Fu=—1,
g1=8uy=0, 8;=0, k#],
where y; (j=1,2,3) are Hermitian and y, is anti-
Hermitian.
The corresponding commutation and anticom-
mutation relations are

[‘%Guv’ Jz‘o'ap] = %i(gavauﬂ + 8pvOup — BauOvp — £up0av)>
29

o,y» %p]+ = —V5€uvap T Zau8pv — 8up8avs (2.10)
(04, 751 =0 (2.11)
Hoyy, v,] = i€V — &ou?V)s (2.12)
How, vobe = —ie“vp,,yﬁy5 . (2.13)
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From the two representations (2.1) and (2.6), it
follows that we may define a transformation operator
S, in analogy to a Lorentz transformation L, which
satisfies the condition

STpS = p (2.14)
in complex 4-dimensional space. However, the
relation (2.14) implies that the 4 x 4 complex matrix
S depends only on 16 free real parameters, so that the
group in question is a l6-parameter group. All
nonunitary 4-dimensional representations of U(2, 2)
must satisfy the matrix condition (2.14). This means
that the S-transformations on 4-dimensional complex
objects Z, must leave the statement

1Z4* + 1Z,f* —

1Zs[? — |Z,[?

unchanged. The condition (2.14) is valid only for
proper U(2, 2) transformation. For improper trans-
formations the right side of (2.14) should be replaced
by —p. In this paper we are not concerned with the
latter case.? Under a Lorentz transformation of the
generators J,,, the operator column vector |a)
transforms according to

ld) = S'la), (2.15)
but the correspondence here is in the sense of a
homomorphism. The commutation relations (2.8) are
invariant under S-transformations satisfying the
condition (2.14).

A special type of S-transformations are gauge
transformations of the type exp (i¢). Furthermore,
from (2.14) it follows that the determinant of an
S-transformation is defined up to a phase factor.
Hence the group of S-transformations can be de-
composed according to U= U; X S, X Z, where
U, is the one-dimensional unitary group and S, is the
group of S-transformations with determinant +1.
The factor Z is of the form exp (3imn), n = 1,2, -
representing an invariant S-transformation subgroup
of fourth order whose members consist of +1 and
+4i. This means that there are four types of vector
operators a, pertaining to the representations of the
group U(2,2).°

In terms of the operators a, and af, the Hermitian
generators of U(2,2) for the positive energies are

4See Eq. (VIIL5.55) on p. 240, and Eqs. (VIIL.8.21) and
(VIIL.8.22) on p. 257 of MQT. Equations (VIII.5.56) and (VIIL5.57)
on p. 241 of MQT are examples of S-transformations. The operators
Vs; iyu, Ysyu are also generators of S-transformations.
5 This is a special case of an arbitrary phase factor discussed in
R. E. Marshak and E. C. G. Sudarshan, Introduction to Elementary
Particle Physics (Interscience Publishers, Inc., New York, 1960),
p. 59.
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given by
Ju = ¥a| fo,, la), (2.16)
P = —(al yAiy,la), (217
P = —(al vy, la), (2.18)
{ = Kal Bys la), (2.19)
I' = Kal B la). (2.20)

The 16 Hermitian operators as defined by (2.16)-(2.20)
provide an irreducible unitary representation® of
U(2, 2). The commutation rules of U(2, 2) are given by

[Jnv’ Jaﬂ] = i(gav‘]uﬂ + gﬂv‘]an - gaquﬂ - guﬂ']av)a

(2.21)

Uuvs P51 = {(8ouPy — EouPV)s (2.22)
[Pk, ps1=0, (2.23)
Wovs POl = i(8oPh — 8ouP3)s (2.24)
[pe, Pv1=0, (2.25)
[p%, P71 = 2i(gl — ¥J,0), (2.26)
ry, {1 =ipy, (2.27)
[Py, {1 = —ipy, (2.28)
[, {1 =0. (2.29)

These are satisfied by (2.16)—(2.20).

The operator I' commutes with all the rest of the
generators. From the above commutation rules it is
seen that the group U(2,2) contains the Poincaré
group as its subgroup. The special representation
(2.16)-(2.20) refers to a massless case.

An invariant of U(2, 2) is given by

Moy = J(up2 + puplk + T 0*) — . (2.30)

The invariants, for any of the p’s either p, or p_,

L = p,p*, I, = §J"J,,p,p* — J,,J"p,p* of the sub-

group vanish, as can easily be shown via (2.16)-
(2.20).

Now, from the definition (2.16) of J,, we obtain

Si=Jdu+Ju (=1,2,3), (2.31)
Ji = Yo
where
Ju = YAl o, |4), Jy=—4B|o,|B) (232)

and where o, (/ = 1, 2, 3) are the usual Pauli matrices,

and
4y = H IB) = m
a, a,

¢ B. Kursunoglu, in Proceedings of Second Coral Gables Confer-
ence on Symmetry Principles at High Energy (W. H. Freeman and
Company, San Francisco, 1965), p. 163,
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They satisfy the commutation rules for the com-
muting angular momenta,’

Vi, Jei]l = 0, Vi 1] = iedu,

(2.33)
[V2is Joi] = el
where
P=ji+1, JF=h(h+1D J3=j(a+ 1D,
(2.34)

; 1 : i T

ji = Haiay + agan), jo = Hasas + a,a). (2.39)
Hence we see that the space part of J,, is decomposable
into a direct product of two 3-dimensional rotation
groups. The resultant angular momentum j is asso-
ciated with angular momenta

]=,]1 —j2|’|j1—j2l+1"."jl +j2’ (236)
where |j; — jo| (= 5) is the minimum value of j, it is
the spin quantum number of the representation
assuming the values 0, §, 1, -.

From (2.17) (dropping superscript +) and defini-

tions of y’s (see p. 235 of MQT), the translation
operator p, can be written as

n=Jig— Jo + %(a;r‘h + a;al + a;az + a;aa),
pe=Jy — Jp — %i(aIa4 - 41‘11 + a;az - a;aa),
ps=Jy, — Jo + %(a]:;al + aIa3 - alaz - a;a4),
p=h+tj+1+ %(agal + aIas + aIaz + a;‘h)-
(2.37)

Using these definitions we can construct the helicity
operator of massless particles in the form

To=J-p=1+ ¥alBla)
= ala, + ala, — aal — aal), (2.38)
where

p="L,
§ 2

and where (a| # |a) commutes with the ten generators
of the group and is therefore a group invariant. We
consider only positive energy representations where
the helicity operator Iy together with p,, J2, and J,
form a complete commuting set. A set of simultaneous
eigenstates of these commuting operators is designated
by |n, &). The requirement of nonnegativity for j; and
Jo also assures positive sign for the energy and the
former is obtained only by defining the vacuum state
by the conditions

a; [0y =0, al|o)y=0,
ay |0y =0, a}|0)=0.

(2.39)

(2.40)

? The commutation rules (2.33) are the same as the commutation
relations corresponding to the Lie algebra of the 4-dimensional
Euclidean group, namely the group Oy.
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These definitions in terms of two-component operators
as defined in (2.8) can be written as g, ]0) =0,
b, |10) = O, respectively. The vacuum state as defined
here is invariant under SL(2, C) subgroup of U(2, 2).

In complete analogy with Fock representation of
harmonic oscillator (see Chap. 7 of MQT), we find
that occupation number operators are given by

N4 = 0401 3
(2.41)

t ¥ t
N, =aya,, N,=a,a;, N;= asa,,

which satisfy the eigenvalue equations

N,jny =n,ny (x=1,2,3,4), (242)

where
n,=0,1,2,3,---.

The normalized eigenstates are defined by

Iny = (mYHad™ 10, |ny) = () Hah™ (0),
Ingy = (ng!) Hag)™ 10), ng = ()~ H(ag™ |0),
(2.43)

so that the simultaneous eigenstates [n, & of the
complete commuting set p,, {y, J%, and J; are products
of these eigenstates.

From (2.38) it follows that the helicity operator can
be expressed in the form

J'f’ =}(Ny+ N. — Ny — Ny = iN, (2.44)
and it acts on the state |, £) according to

Jepln, & =1inin, &),
where

In=13m+n—ng—n)=j —jy= s

assumes both positive and negative half odd-integral
and integral values including zero. Hence we can write

Jepln, & =xsn, & (2.45)

The eigenvalue equation can further be simplified
by noting that it is equivalent to

J ¢ p |nr ] E) = TBSP4 In,- ’ 5>9 (2'46)

B |n+,§)] _{1 o]
lnfas)—l: s Tg = 0 _1 S

[n_, &
J-pln,, & =spsin,, &),

Iny, & =30 + 79) In,, &),
Jepln_, &) = —spsin_, &),

[n_, & = (1 — 75) In,, &).

Hence, the most general state is a superposition of
two orthogonal states,

In, & =In, & +n, 8,

where

(2.47)
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referring either to two different states of polarization
or to two different particles. It depends on the
reflection symmetries of various spin states whether
one has just a different state of polarization or a
different particle. Two states of polarizations, whether
they refer to identical particles (e.g., zeron s =0,
photons s = 1) or two different particle states (e.g.,
v, # with s = }) as eigenstates of 5, span a 2-dimen-
sional space.

Finally we note from (2.37) and (2.43) that the
diagonal element of the operator p, with respect to the
state |n, &) is given by

(n, Elpyln, & = 3y +ny 4+ ny + ny) + 1
=in+1, (2.48)
where n =0, 1, 2, - - - so that zero-point oscillations
are also included in the algebra of U(2, 2).
3. WAVE EQUATIONS

As is well known the group of translations, being an
Abelian subgroup of the Poincaré group, has only 1-
dimensional irreducible unitary representations. For
a translation of states by a real vector b, the unitary
operator is exp [—ib*p,]. This group of translations
also contains the representations exp [—ib*p,]
provided p, is obtained from p, by a proper Lorentz
transformation

b= Lip,.

An infinitesimal translation of a function of co-
ordinates by an amount €b, is represented by

exp [ieb”p,Jy(x) exp [—ieb’p,]
= (1 + ieb?p, )p(x)(1 — ieb’p,)
= 9(x) + ieb"[p,, w(x)].

Hence in the limit of ¢ — 0 we obtain

b*(@yp[ox") = ib*[p,, p(x)]
or, since this is valid for ail #,, we have

—i(8p[0x*) = [p,., 1. @G.1)
Now consider the eigenstates |r, ) of the complete

commuting set q

qlr,7) =rjr, ). (3.2

The translation opec-ator acts according to
exp [—ieb*p,] |x) = [x + eb) = (1 — ieb"p,) |x).
Hence, this being valid for every b, we get
p, 1x) = —i(0/0x*) |x). (3.3)

A way of obtaining a wave equation may proceed
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by representing the state |r,¢) in a Hilbert space
spanned by |n, &). Thus, writing

(r,t|n, & =Ir,t,5)

and regarding it as 2s 4+ 1 component wavefunction
we can derive a wave equation.
From (2.45) we obtain

{r, tlJ'pln’ 5) = s, thA ln! E)

or introducing the unit operator

flr, 1), t| d°r,
using (3.3) and performing the obvious steps we get
the wave equations
Hir, t,s) = Fik(0[0t)[r, t, s),
where the Hamiltonian H is given by
H = (c[hs)J - p. (3.5

For spin } particle (s = ) we have J = }#o. The
corresponding wave equations are

3.4)

H vy = ik g—t ), (3.6)

H vy = —ik —aat [, 3.7

where

H=co-p, [v)=]|r,t,}) = 2-component spinor.

If we call |») the neutrino state then the anti-neutrino
state can be defined by

(%) = T|»), (3.8)

where T = io,C is the time reversal operator for a
2-component spinor state and C is just complex
conjugation operation. The operator T acts on o,
according to (see p. 221 of MQT)

T0,T = —o,. (3.9

Hence the wave equation (3.7) can be written as

H|p) = i}i-g |7, (3.10)
ot

which is of the same form as (3.6) but refers to anti-
neutrino. Reflection symmetry here consists of time
reversal operation alone, since space parity is not
valid in this case.

As a second example, we take s = 1 with J repre-
sented by J; = hK,, (i = 1,2, 3), where K, are the
generators of 3-dimensional rotations. Thus (3.4)

BEHRAM KURSUNOGLU

yields the wave equations

9
= ih— A1
H|n) = ik % 7>, (3.1

b7}
= —ih—|n),
Hlm i at|77>

where |7) is a 3-component complex vector, and
H = cK.p is the Hamiltonian of a single photon.
Now, defining |p) as a 3-dimensional column vector
in terms of p,, (i = 1, 2, 3) and operating on H from
the left we obtain

(3.12)

(p| H =0,

which is due to H being a 3 x 3 anti-symmetric
matrix operator in p’s. Hence the Eq. (3.11) yields

Vin=0, (3.13)

which is the transversality condition of the photon
wave (see Chap. II of MQT).

The wave equation (3.12) refers to a state of polari-
zation opposite to the one described by (3.11). This
can be seen by performing a parity operation on
|m).2 Thus if we take

17 = Clz) (3.14)
and noting the transformation
CHC = —H,
the wave equation (3.12) becomes
e O
H|7) = tha—tln), (3.15)

which is of the same form as (3.11) but refers to a
state of polarization opposite to the one contained in
(3.11). The corresponding transversality condition is
obtained as V - 7 = 0.

A third example is the wave equation for zeron.
We first observe that

 E8-pin, &)= %1, (n&|n &H=1

for every n, where S = s71J. Thus for zero spin we
must have 8 = 4. Hence

P’ 10, & = p} 0, &),

which, using the same methods, yields the scalar
wave equation

A%p — (cB)1(2%)91%) = 0. (3.16)

8 All of this analysis could also be carried out by using the other
alternative of helicity operator which involves pj in place of pif.
The results are the same and the two helicity operators commute. At
this point it is tempting to assume that the electron and muon
neutrinos belong to the massless representations of U(2, 2) instead of
that of Poincaré group. However, this interpretation entails doubling
of integral spin massless particles, also on the basis of the discussion
of U(2, 2) in this paper alone it is not possible to speculate on the
existence of two kinds of photons.
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4. THE LITTLE GROUP

The group of Lorentz transformations which leave
a null vector invariant is isomorphic to the two-
dimensional Euclidean group. This is a known
result.? However, here we derive it in a direct way.

Under an S-transformation, the requirement of
invariance of p, is contained in the statements

D= —(a] S'pALy,S la) = —~(al ysA, ¥, la) = p
4.1)

This must hold for every a, and a}, which is possible
only if the S-transformations in question commute
with p, . The operator J - p = }N is the only nontrivial
invariant of the group, and therefore, a given S-
transformation must be a function of {N and also
must satisfy (2.14). Such an operator is uniquely

? E. P. Wigner, in Theoretical Physics. A. Salem, Ed. (Inter-
national Atomic Energy Agency, Vienna, 1963), pp. 59-82.
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defined to be

S = oM, (4.2)
where 0 can be regarded as an angle of rotation in the
xy plane. For an electromagnetic wave, 0 is the angle
of rotation of the electric vector in the plane per-
pendicular to its momentum.

The result (4.2) proves the required isomorphism
between the group of Lorentz transformations which
leave a null vector invariant and the 2-dimensional
Euclidean group. Thus the representation of the little
group for massless particles is 1-dimensional. The
representatives of S are of the form

<n” EI N lns E) = 67m'eﬁsos (43)
where

—s<in<s, —s<In' s

and the dimension of the representation is 2s + 1.
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The infinitesimal operators of a class of representations of the GBM group described in a previous
paper are given in explicit- form. All unitary representations of this type with positive “rest mass” are
shown to be completely reducible; each irreducible component is characterized by the eigenvalue m? of the
rest-mass operator, by the lowest eigenvalue s(s + 1) of the “spin” operator and by the sign of an eigen-

value of a suitably defined operator R;".

I. INTRODUCTION

IT has been shown® that from any linear representa-
tion G = {T(])} of the inhomogeneous Lorentz
group L, acting on a linear space X, it is possible
to construct a linear representation G = {7(g)} of the
GBM group, acting on a linear space ®, G being
unitary and faithful whenever G is such. The restric-
tion of G to a specific subgroup of the GBM group
isomorphic with L will be denoted by G, = {T(})}
and called the induced representation of L. Whenever
T is irreducible, so that its rest-mass operator P? is
a multiple of the identity with eigenvalue m2, the
rest-mass operator P? of the (reducible) induced
representation G is also a multiple of the identity,
with the same eigenvalue.

In Sec. II of this paper the representation of the
GBM Lie algebra associated with G is derived in
explicit form, and a basis is introduced in the repre-
sentation space J. In Sec. III, G is assumed to be
unitary and irreducible, with positive rest mass: the
irreducible components of the induced representation
Gy, of L are determined. It is shown that the GBM
representations G of this type are themselves com-
pletely reducible, and their irreducible components
are characterized.

II. INFINITESIMAL OPERATORS
AND REPRESENTATION SPACE

A. Infinitesimal Four-Rotations

The notation being the same as in Ref. 1, consider
any one-parameter subgroup {A,} of the homogeneous
Lorentz group (Ay = 1; ApA, = Ap ).

* Sponsored in part by the Aerospace Research Laboratories
under Contract AF 61 (052)-877, through the European Office of
Acrospace Research (OAR), U.S. Air Force.

t NATO research scholar, on leave from Gruppo di ricerca No.
36, C.N.R., Roma.

3V, Cantoni, J. Math. Phys. 7, 1361 (1966).

The element T A € G, corresponding to A, € {A}, is

defined by
T\ 0, 9) = T(A), [T(A)€eT];

T',, transforms the generic element ® € & into the
element &)At € X defined by

D (0, ) = KafA7'0, A7) T(A)DAT 6, A7 ),

[('DA,(09 <P)_’ (D(A?IG, AII ‘P) € Je]

Throughout this paper the mappings ® € & are
assumed to be twice differentiable on the two-sphere.
Ky (A1, A7), A710, and A;lg are differentiable
with respect to ¢ (see the Appendix). Therefore one
can write

(T)A,(& ®)
-1 1
ot t=0
& —1
x [1+ Mt + 0(:2)][613(0, o) + (Q?MM
20 ot
F -1
op ot Ji—o
_ {1 + [M 4 (aKA,(A#B, A:‘q)))
ot t=0
0ATI0 _@_ OAT'p 0 2
+ ( ot )t=o "t ( ar )t=o aqj’ + 00 )}
X &)(0, ®),

where M is the infinitesimal operator of G correspond-
ing to the one-parameter subgroup {A,}.

Hence one gets the expression for the infinitesimal
operator M corresponding to {A,} in the representa-

tion G:

AZI(0,¢)=M+(

aK A:(A71 0’ A?I ‘P))
t=0

ot
AT\ @ |, (0AT'¢\ @
— 4 (=X — (1
( ot ),=oaa ( ot )t=oa<p o
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which transforms any element ® € ¥ into the element
¥ € ¥ such that ®,,(6, ¢) = K(0, p)®(0, @). The
expressions for

(aK (A0, A;‘cp)) (aA;IG)
t=0’ t_o’

ot ot
(5
ot =0

are derived in the Appendix for the six one-parameter
subgroups of four-rotations in the coordinate planes
(x%, x7), (i,j=0,1,2, 3;i # j). One obtains for the
corresponding infinitesimal operators #,; in the
representation G:

and

7 0
Myy(6, 9) = My, — "; = My, + By,
M%(e’ ‘P) M23 — sin [/ a
09
0
— cotg 0 cos ¢ — = My + Mys,
o
Y 0
My(0, 9) = My, + cos ¢ —
a6
— cotg 0 sin ¢ -a-a— =My + My, Q)
4
My(6, ¢) = My, — sin 6 cos ¢
0 sing d
9 ~ . b
+ cosfcos ¢ 20 sin 699
Mo(0, ) = Mgy — sin O sin ¢
0  cosg 0
g T A e
+ cos 6 sin ¢ — 2 + im0 99
M03(0’ (P) = M03 — cos O — sin 0

06’
where the M;’s (i,j=1,2,3;i#j) are the oper-
ators corresponding to the infinitesimal rotations in
the representations of the three-dimensional rotation
group acting on spherical functions.

As usual, it is convenient to replace the operators
M, by their linear combinations

H les - MBI les + M31: Ha 1M12’
F+ = lMol - Moz, = iMy + M, Fa iMo .
(3)

The “angular momentum” operator
=yA A +HH)+ A
can be written in the form
Bt= H*+ §* + 2H$, + H$_ + H$,, (@)
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where

HE = YHH_+ HH)+ H?
and

532 = %(5.5+55— + 9.9 + $5§
B. Infinitesimal Supertranslations

Let a = (@, 4%, a?, a®) be the vector of a 4-transla-
tion of L, represented by T(a) in the representation G.
It is well known that T'(a) has the form

T(a) = exp (—id*P,),

where P, is the kth component of the linear momentum
operator in G.

Consider now a supertranslation (1, ), character-
ized by the function «(0, ¢), and denote by a,, the
vector of its asymptotically tangent translation in the
ray direction (6, ¢). In the representatlon G, the oper-
ator T, corresponding to (1, «) is defined by

To(6, ¢) = exp (—idh,Py)

and transforms any element ® € X into the element
®, € & defined by

(T),(B, ‘P) =

(see Ref. 1, Sec. V).

The supertranslation (1, ) belongs to the one-
parameter subgroup {ta} of supertranslations whose
generic element is characterized by the function
to(0, @), t being the parameter; the corresponding

infinitesimal operator S, in B is defined by

7,0, @, ¢)

ga(ea <P) = —ia’(;(pPk’

and transforms any element ® e & into the element
®, e X defined by

&)s(es (P) =

Following Sachs,? one can expand «(f, ¢) in
(normalized) spherical harmonics Y,,,(0, ¢),

—idk, PO, ¢).

2 z (zlelm + ( l)mzlel~m)

1=0 m=0

(8, ) =

(the bar denotes complex conjugation), and consider
the complete set of one-parameter subgroups

toty,, = I(Ylm + (— l)m Yl——m),
tﬂlm = it(Ylm - (_l)m Yl-—m)'

The operators 4,,, and B, of 6 which represent the

2 R. Sachs, Phys. Rev. 128, 2851 (1962).
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corresponding infinitesimal elements may conven-
iently be replaced by their linear combinations:

,S’lm = %(]lm - iElm)’
gl—m = }(— l)m(/rzm + i'Elm)S
(l=0:1a“.;m=031""’1)-

Making use of the expressions for 4§, (i = 0, 1, 2, 3)
given in Ref. 1, one obtains

§lm = —i(l - DI + DY,.P,

+ i[%l(l + 1) sin 6 cos ¢Yy,

__sin ¢ Yy,

oY,
+ cos B cos ¢ —= |P,

sin 0 Og 06 |

+ i[gl(l + 1) sin 0 sin ¢¥,,

cos ¢ Y,

o] p.
o6 |

+ cos 6 sin 9
sinf g 4

+ il}l(l + 1) cos 8Y;,, — sin 0 aae :IPS,

a=0,1,---;m=-L,—-14+1,---,D. (5

The operators B, (i = 1, 2, 3) defined by F,-(B’: @) =

P, and the operator P2 = —P2 4 P2 + P2 + P2 may
be expressed in terms of the §,,’s:

Py = i(477)%§00

ﬁl = _i(%ﬂ')%(gu - §1_1)

B, = —¢mSu + 8 (6)
P 3= ‘i(%”)%§1o

P? = $n(25,5,_, — §%) + 45%.

According to Sec. VII, Ref. 1, P, and P? are, respec-
tively, the linear momentum and the rest-mass oper-

ators of the induced representation G, of L.

C. Introduction of a Basis in &

It is well known®* that the representation space JC
of the representation G of L admits a basis whose
elements are simultaneous eigenvectors of the momen-
tum operators Py, Py, P,, P;, the spin operator and
the operator W, = }e¢;,;,M*/P* (e denoting the permu-
tation tensor and indices being raised with the Lorentz
metric). Whenever G is irreducible (as it is here
assumed to be), P,P? and the spin operator are multi-
ples of the identity, and the elements of the basis may
only be labeled by the corresponding eigenvalues of

3 E. Wigner, Ann. Math. 40, 149 (1939).
¢ 8. S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Row & Peterson, Evanston, Illinois, 1961).
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P,, P,, P;, and W, The generic clement of such a
basis is denoted by ¢, , where p stands for the set of
eigenvalues (p,, pa, ps) of Py, P;, and P;, and {is a
discrete index corresponding to the eigenvalue of Wj.
The generic element of J has the form

°=3 f £(p Do dp.

According to the definition of the representation
space J of B, the generic element ® € ¥ maps each
point (8, @) of the 2-sphere on an element ®(6, ¢) €
JC, so that one can write

30,9 =3 f 70 66, D)o dp,

and the functions f(p, {; 0, ¢) are continuous and
twice differentiable on the 2-sphere for all values of p
and {.

If f is expanded in spherical harmonics, ®(6, ¢)
takes the form

B, ¢) = ) s 2

=1 m=—1

me(P, C)Ylm(e ‘p)‘PJIC dp

from which it is clear that the elements q?,,;lmeﬁi
defined by

¢p€lm(0’ (p) = Ylm(e’ (p)(PpC (7)

constitute a basis for J6.

Note that J€ can be regarded as a linear space over
the ring of twice-differentiable complex functions on
the 2-sphere, the “product” of a function f(6, p) and
an element & € J¢ being the element ¥ e & defined by

O, ¢) =10, p DO, ¢).
In particular the element §,,,, of the basis can be
denoted by Y,,$,, and regarded as the product of
Y0, ¢) and §,, where q?,,;ef@ is defined by
¢p;(63 ®) = Por -

III. REPRESENTATIONS WITH
POSITIVE REST MASS
A. Analysis of the Induced Representation G,

Throughout this section it is assumed that G is
unitary and irreducible, and that

PO =m0 (®eX) 8)

with m > 0.

The induced representation "8’,: of L is unitary, and
therefore fully reducible.? Since (8) implies P2d =
md, (de JE), the irreducible components of ‘ZN‘;’L all
correspond to the same eigenvalue m? of the rest-mass
operator P2, but not, in general, to the same eigen-
value of the spin operator.
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.
s-i s+l
s integer ® e o
T 25 -1
e . . . [}
o] 2s
e o . « v e o ® 8
2g +|
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s o . . .
. . . [
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s
.
s half-integer Y. '.“
3/2 . . . - - 2‘_3/2
l/z ® . . . » . 25“/2
® e . . . . o o \
25 +Yo
e e . . . o o @ 3
Zs'/z
e . 4 e . e o o

® & & . o+ e e v s s s e
® o+ s s e s s e e s =

L I T T

FiG. 1. Here each dot represents a subspace of JEO irreducible
under O (or the corresponding irreducible representation). The

(I 4+ Dth row represents the subspace of J€, spanned by the elements

{Yy@or}- Elements of the same column correspond to the same
weight, which labels the column.

The irreducible components of G, can be found by

considering the subspace &, of J spanned by the
elements {Fo;m} = {YimPo,} Of the basis, and by
determining the subspaces of ¢, which are irreducible
under the three-dimensional rotation group O3 [the
operators which correspond to the infinitesimal three-
rotations being the M,’s (i,j=1,2,3;i % j) given
by (2), up to a common factor m].

It is clear from (2) that for every fixed value of / the
subspace of J~€0 spanned by the elements {Y;, @y} of
the basis may be identified with the representation
space of the product of two irreducible repre-
sentations of the rotation group, namely the repre-
sentation with weight / acting on spherical harmonics
of order /, and the representation with weight s acting
on the subspace J¢, of J€ spanned by the elements
{go;}» s denoting the spin of the representation. Such
a product is reducible,® and can be decomposed
into irreducible representations of O° with weights
I4+s, I4s—1,---, |l —s|, each of these repre-
sentations appearing once in the decomposition.

The number / takes all possible values 0, 1,2, -

BONDI-METZNER GROUP
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in %,; consequently if s is an integer (half-integer),
Je, is the direct sum of subspaces invariant under O3
and corresponding to irreducible representations of
0? with integral (half-integral) weights. It is clear
from the diagrams (Fig. 1) that the number of such
subspaces corresponding to any given integral (half-
integral) weight ¢ is 20 4+ 1 for ¢ <5 and 25 + 1
for o > s.

Hence one is led to the following conclusion:
Whenever the representation G of L is irreducible and
unitary with positive rest mass and integral (half-
integral) spin s, the induced representation Gy, can be
decomposed into irreducible representations of L with
mass m; each integral (half-integral) value o of the
spin appears N, times in the decomposition with
N,=20+41for c<sand N, =25+ 1 for ¢ 2 s.

B. Properties of the Representations E

(1) The whole representation space % can be gener-

ated from the element {yy; ic., every element beie
is of the type ® = TyPo0, Where T is a linear
combination of products of operators belonging to
the representation of the GBM Lie algebra.

Proof. Since every element §,,,, of the basis which
does not belong to J¢, can be obtained from some

element y € 3, by acting upon it with the operator
T, of a suitable homogeneous Lorentz transforma-

tion A, it is sufficient to show that f@o can be generated
from the element g, .
According to (7) one has for the 25 + 1 elements

Potoo*
Pooo(0, ¢) = Yoo(0, @)oo, = (477)_%‘?0;
(C= -4, '—s+ 1"'.,s),
and it is clear from (2) that by repeated application of
multiples of A, and A_ any of these elements can be

transformed into any other of them. On the other
hand, in the representation G of L one has

Py, =0 (i=1,2,3),
Popo, = Mm@y,
so that in G one gets from (5) and (7) for /3 1:
Q~zm‘l~7o;oo = (4mi(t — 30 + 1))_1§lm¢o;oo

= YiPor00 = Pogims

®

(10)
where
Oin = @m(1 — (U + D)8, (I~ D).
This shows that every element @,,,, of the basis of

e, with I 1 can be generated from any of the
elements @0
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To complete the proof, it must be shown that the
elements @y, . can also be generated from an element
Poroo - By repeated use of the relation®

( + DRI+ D@ + )Y a0
+ 12 + D@~ DI,

satisfied by normalized Legendre polynomials, one
can derive the following expression for Yy,:

(4-77/ 3)% Ym Y, 10

—10 "

Y,, = $(1407/3)t ¥, ¥,  ~50/9.33-} Y,

— 289217ty (1)
From (11), taking (5), (7), (10), and (2) into account,
it is seen that the operators
J,, = 3(140m/3)40,,0,, — 50/9.33-30,
—28/9.21-%0,,,
On=24HA.0y — éloﬁ+)»
O0r=24A_0, — 0,08,

transform the element @y, into the elements

(12)

Q;m%e;oo Pogim (m=~1,0,1),

which is the desired result.

Note that each operator J,, transforms any ele-
ment of X, into its product (in the sense of Sec. I1C)
with the function Y,,, with the same indices.

(2) The operators H,, A_, Ay, and J,,, satisfy the
commutation relations

(A, Ol = [+ m + DI — Qs

A, Ol = I + m)(I =~ m + DFDpy, (13)
[ﬁs, le} = lem’
[ﬁga sz] =l + 1)Q~lm + zmgzmﬁs
+ [+ m)(l = m + DO, A,
+ I+ m+ 0 - mPd,.. A, (14
[ﬁ-—’ QN{}} = 2§Q10Q'1—1
[ﬁ ?., Qu] =2 ;*Qlleml (15)

+ 23(3- - I)QIOQ1~2 + 22&1-1@{? 1’

which can be obtained from (2), (3), (5), (10), and
(12) by straightforward calculation (see also Ref. 2).

(3) Whenever an element @ € %, is a simultaneous
eigenvector of H® and A, with eigenvalues A(1 + 1)
and g, respectively, it is denoted by @,, and called an
element of type (4, w).

¥ 1. M. Gel'fand and Z. Ya. Sapiro, Am. Math, Soc. Transl,,
Ser. 2, Vol. 2 (1956).
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Consider the operators

-~

Rt= Qn s
. 2%}*@10 - Qllﬁ—s
By =222 — )0, — 224 — OOLA-
+ Quﬁ.z_ A=0,41--")

Making use of (13) and (14) one can verify the relations

(16)

RO, =4+ D+ R,
H3ﬁ+®u = (1 + 1)R+®Az,

a 2ﬁi®u = M4 + I)ET(T)M.’
ﬁaﬁT(ﬁxz = ’“ﬂé‘j&)ua

ARG, = (4~ DVARD,;,
A0, = (- DE0,,,

which show that R+, Ry, and R; transform any
vector of type (4,4) into vectors of type (4 +1,
A4 1D, (4,2, and (A — 1, 2 — 1), respectively.

The operators R+, R=, and R~ satisfy the relations

R = 53— 2+ R'R;,
v

-~ o~

R Rt = — 53; @\ + 1)+ RR;.

C. Reduction of the Representations T

Whenever it is necessary to specify the particular
value s of the spin of the representation T from

which T is constructed, the latter is denoted by T,.

L. Irreducibility of B,

In the case s = 0 it is already known from Sec.
IIIA that the induced representation G, contains,
exactly once, each irreducible representation of L
with mass m and integral spin. Here the index {
takes the unique value 0, and it is clear from (4) that
the elements @y, (for any fixed value of /, and
m= —[, —[+1,---,1) span the intersection of
Je, with the subspace of J which is invariant under
B, and corresponds to the value / of the spin.

Suppose that J has a proper subspace / which is
invariant under the GBM group: a fortiori h is
invariant under L, and must contain at least one of
the elements §y,,;; for some A. Hence to prove that
J has no proper invariant subspace under the GBM
group, it is sufficient to show that J can be generated
from any of the elements @p;;, or on account of
the result of Sec. I1IB1, that any element @y, can be
transformed into the element @ppy.
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The element R+@,, is obviously of type (4, 4) and
equal to $gg,, up to a scalar factor. By acting upon
it with the operator R;, taking (15), (16), and the
condition &_@y, = 0 into account, one gets

ST 3 omiaa-
;.RH‘Poo = — —~ AR+ l%o;
27

the element obtained is equal to Fgez_;;1 up to a
scalar factor. Thus by successive application of the
operators Ry, Ry, -, Ry, the element @y, is
transformed into a multiple of @gee9, and the irreduci-
bility of G, is proved.

2. Reduction of "é#

In the case s = 4, a decomposition of G, into
irreducible representations of L gives, exactly twice,
each representation with mass m and half-integral spin,
and the index { takes the values —1 and }.

The operator Ry has two independent eigenvectors
of type (3,4), namely the elements ¢, = Fo +
(873 RyGey and §_ = Gy — (87/3)ERS Gyy; the
corresponding eigenvalues are (3/8x)% and —(3/8n)3,
respectively. It is shown that the two subspaces of
Je generated from ¢ . and P_ by acting upon them
with all possible sums of products of operators of the
GBM Lie algebra are disjoint, invariant, and irreduc-
ible, and that G 3 is the direct sum of the corresponding
irreducible representations of the GBM group.

Consider the two sequences

Sy = {9, ﬁ+‘/7+, §+2¢+’ R ﬁ“'/’nw 8 a7
S = {tp_, +'/‘;_, R+2’(/7_, e, R+)"l/)~_, A }

of elements of J: the kth element of each sequence
is of type (3(k — 1), #(k — 1)) and belongs to a
subspace of J irreducible under G;, corresponding
to a representation of L with spin }(k — 1). Denote
by & . the sum of all the subspaces of J& which are
irreducible under G, and contain one of the elements
of the sequence {,, and by J_ the subspace of &
defined in an analogous way in terms of the sequence
{_. Tt is easy to verify that the linear independence of
¥, and $_ implies the linear independence of Rt*j,
and R+*j_ for all values of 4, so that, for each half-
integer 4 + 3, %, and X_ contain distinct subspaces
which are irreducible under B, and correspond to a
representation of L with spin A + &, (A =0,1,---).
Hence one is immediately led to the conclusion that
Je, and %._ are disjoint, and that & = 3, + J_.

It must be shown that Jé+ and J_ are invariant
and irreducible under the operators of :Gi'

1705

The irreducibility follows, exactly as in the case of
the representation G, from the fact that any vector
of each sequence (17) can be transformed into any
other vector of the same sequence by acting upon it
with a suitable product of the operators R+ and R;.
To prove that 3, and J#_ are invariant subspaces it
is sufficient to show that ¢, cannot be transformed
into ¥_, and vice versa. Consider any element % of
type (4, 3): the subspace of J~€0 generated from ¢ is
easily seen to be constituted of elements of the form

I'F = lz almglm"p' + lz bllemﬁ—w’

where the a;,’s and the b,,’s are arbitrary constants.
' is also of type (3, §) if and only if Ay’ = 3¢’ and
H.' = 0: from (2), (3) and the concluding remark
of Sec. I1IB1, one sees that this is only possible if a,, +
27%p;; = 0 and all the other constants a,, and b,,
vanish, except ag, Which remains arbitrary. In other
words, any operator which transforms an element of
type (4, 4) into another element of the same type is a
linear combination of the operator R'j and the
identity operator. Since ¢, and ¢_ are independent
eigenvectors of the operator ﬁ;, both of type (1, §),
there exists no operator which transforms one of them
into the other, and the invariance of J&, and R_ is
proved.

Thus “5% is the direct sum of two irreducible
representations t;" ancl 1Y of Ehe GBM group, with

representation spaces J, and J_, respectively.

3. Reduction of B, (s > 1)

In the general case the operator R: has 25 + 1
independent eigenvectors of type (s, s). Two of these
eigenvectors, denoted by ¥, and §_, are characterized
by the additional condition

Rp. =0, Rp_=0;
their eigenvalues are (3/2m)ts and — (3/27)ts, respec-
tively.

The subspaces 3. and J_ of 3 which can be gener-
ated from 4, and §_ are disjoint, invariant, and irre-
ducible, and the restrictions of G, to J&, and J._ are
irreducible representations of the GBM group
(denoted by ¢f and ¢, , respectively). The reduction
of the corresponding induced representations of L
gives in both cases, exactly once, each irreducible
representation of L with mass m and spin s, s + 1,
s+ 2,--+. The restriction of "é, to the orthogonal
complement of 3, + ®_ in R is equivalent to the

representation B,_,. The proofs of these statements



1706

are straightforward generalizations of the analogous
proofs given in the special case s = §.

One can conclude that the irreducible components
of the representations considered are characterized by
the eigenvalue m* of the rest-mass operator, by the
lowest eigenvalue s(s + 1) of the spin operator, and
by the sign of the eigenvalue belonging to the eigenvector
of type (s, 5) of the operator Rz .
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APPENDIX

Denote by (Af) the matrix of the homogeneous
Lorentz transformation A in the Cartesian frame
{y*} associated with the polar coordinates (4, r, 0, ¢).
One has!

r'= K0, pr +J + 0@,
u=)y"—r, w=)"—r,
so that the transformation
u' = K30, )u + 0(r™)
can be written in the form
Ay’ + Alrsin 0 cos ¢ + Alrsin 8 sin ¢ + Adr cos 6
— Kyr —J +00™) = K3'u + O(r™).
Dividing by r and passing to the limit for r — oo,
u = const, one gets the following expression for K :
K6, ) = AJ + A} sin 6 cos ¢
+ Al sin 0 sin ¢ + A cos 6.
Hence, denoting by 4% («, § =0, 1, 2, 3) the value
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of [0K,,(A;'0, A7'g)/0t],_e corresponding to the
one-parameter subgroup of rotations in the coordinate
plane (=, yf), one obtains

AY=0 (i,j=1,273),

A" = [(9/0r)(cosh t — sinh t sin A7'0 cos AT )], _,

= —sin 8 cos ¢,
A” = —sin O sin ¢,
A%® = —cos 0.

Denote by B** and C*# the values of (0A;*0/01),_,
and (0A;'@/01),_,, respectively, for the one-param-
eter subgroup of four-rotations in the coordinate
plane (%, y°). By differentiation with respect to ¢ of
the equations

3 i ) 3
cos A7 = A2 (= [zawy]).
r a
and
A2 X i
tan AT g = === "y, ,
Alyy
one obtains, passing to the limit for r — o0, u =
const:
B?= —1, B® = —sing, B* = cos ¢,

B" = cos 0 cos ¢, B" = cos 0 sin ¢,

B® = —sin 0,
C?=0, C®= —cotfcosg,
C® = —cot 6 sin @,
01____s_in_<p Coz___COS‘P "=
sin 6 sin 8
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HE term (e®A,, + AX/mc®a, was omitted from the
right-hand side of Eq. (2.14). This term can be com-
bined with the first term on the right-hand side of
Eq. (2.14) if we replace /o, by
hd, = ho, + (®A,, + AX[mc?),
which corresponds to the addition of the electron’s

zero-point energy due to the presence of the electro-
magnetic field described by the vector potential (2.3).
Thus, in the subsequent equations it is necessary to
replace fiw,, by ki, in every equation referring to the
solution (or properties of the electron state) in the
presence of the laser field.
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are straightforward generalizations of the analogous
proofs given in the special case s = §.

One can conclude that the irreducible components
of the representations considered are characterized by
the eigenvalue m* of the rest-mass operator, by the
lowest eigenvalue s(s + 1) of the spin operator, and
by the sign of the eigenvalue belonging to the eigenvector
of type (s, 5) of the operator Rz .
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APPENDIX
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